
TyphoonLabs’ GLSL Course 1/1

OpenGL Shading Language
Course

Chapter 5 – Appendix

By
Jacobo Rodriguez Villar
jacobo.Rodriguez@typhoonlabs.com

TyphoonLabs’ GLSL Course 2/2

APPENDIX

INDEX

Using GLSL Shaders Within OpenGL Applications 2
 Loading and Using Shaders 2
 Using Uniforms 4
 Using Textures 6
 Using Vertex Attributes 7
How To Use the 3DSMax5 Mesh Exporter 9
References 10

TyphoonLabs’ GLSL Course 3/3

Using GLSL Shaders Within OpenGL Applications

Though we have covered creating GLSL shaders, they have not yet been used
in any OpenGL-based application outside of Shader Designer. We now need to
look at loading, compiling, linking, and using the shaders from within the
OpenGL API (more information can be found at
http://developer.3dlabs.com/openGL2/slapi/index.htm).

Loading and Using Shaders
For a GLSL shader to work, it is important that the following four extensions are
supported by the graphics card:

• GL_ARB_vertex_shader
• GL_ARB_fragment_shader
• GL_ARB_shader_objects
• GL_ARB_shading_language

This information can be found in one of two ways:

• Checking for these tokens using the extensions string
(glGetString(GL_EXTENSIONS);.

• Using an extension enumeration library like GLEW
(http://glew.sourceforge.net), which is much easier and the method we'll
use for our example(s).

If the card does support GLSL, you can attempt to load/use the shader in the
following way:

• Create a placeholder for your shader using the glCreateShaderARB
call:

GLhandleARB vertexShader = glCreateShaderObjectARB(Glenum shaderType);

shaderType must be either GL_VERTEX_SHADER_ARB for vertex
shaders or GL_FRAGMENT_SHADER_ARB for fragment shaders.

• Load the source string into your shader using the glShaderSourceARB

call:

 void glShaderSourceARB(GLhandleARB shader,
 GLsizei nstrings,
 const GLcharARB **strings,
 const GLint *lengths);

The shader will be initialized with a glCreateShaderARB call. nstrings
holds the number of the strings contained within the shader (usually one);
strings is a pointer to an array of strings; and lengths is an array which
holds the length of the source strings. The shader is finally compiled with the
function:

TyphoonLabs’ GLSL Course 4/4

void glCompileShaderARB(GLhandleARB shader)

For example, to use a vertex shader called “generic.vert” (the file extension is
not important), you would initialize it using the following code:

The shader is now compiled and ready to be attached to a program object (the
executable unit that is a placeholder for compiled shaders). However, you may
want to know the compilation result, as well as warning/error messages (if any).

If the compiled variable returns false the shader will not compile due to errors
(ill-formed data, resource issues, etc.). You may gain more information by
retrieving the compilation log, but you must first find its length in order to
allocate enough space for it.

We can now define an executable unit by creating and compiling the program
object. This process involves linking global variables, varyings, etc.

size_t ProgramSize(char *filename)
{
 int shader;
 size_t size = -1;

 shader = _open(filename,_O_RDONLY);
 if(shader == ENOENT)
 size = -1;

 size = _lseek(shader, 0, SEEK_END);
 _close(shader);
 return size;
}

{
 FILE *source = fopen("generic.vert","rb");
 size_t size = ProgramSize("generic.vert");
 GLcharARB *programSource = (GLcharARB *)malloc(size*sizeof(GLcharARB));
 fread(m_programSource,m_size,1,source);
 fclose(source);
 GLhandleARB vertexShader = glCreateShaderObjectARB(Glenum shaderType);
 glShaderSourceARB(vertexShader, 1,(const GLcharARB **)&programSource,NULL);
 free(programSource);
 glCompileShaderARB(vertexShader);
}

int compiled = 0, length = 0, laux = 0;
glGetObjectParameterivARB(shader, GL_OBJECT_COMPILE_STATUS_ARB, &compiled);
glGetObjectParameterivARB(shader, GL_OBJECT_INFO_LOG_LENGTH_ARB, &length);
GLcharARB *logString = (GLcharARB *)malloc(length * sizeof(GLcharARB));
glGetInfoLogARB(shader, length, &laux, logString);

TyphoonLabs’ GLSL Course 5/5

A program object (able to contain shaders of both types), which is both linkable
and executable, can be created using the following function:

GLhandleARB glCreateProgramObjectARB(void)

Once created and compiled, the vertex and fragment shaders must be ‘inserted'
into the program object (they can be inserted into multiple program objects).
This can be achieved using the glAttachObjectARB call:

void glAttachObjectARB(GLhandleARB program, GLhandleARB shader)

When the shaders are attached, you can link your program and leave it ready to
be used:

void glLinkProgramARB(GLhandleARB program)

You can also query the link status and information log:

We now need to activate the program by making it part of the current state,
which can be done using:

The shaders themselves and programs can be deleted using:

void glDeleteObjectARB(GLhandleARB object)

If an object attached to another object is deleted, it will only be flagged for
deletion and not actually deleted until it's no longer attached. This means we
must detach all objects before any real deletion can occur:

void glDetachObjectARB(GLhandleARB container, GLhandleARB attached)

Using Uniforms

Passing variables from an OpenGL application to a GLSL object is done using
glUniform calls, but it is important that the program object is linked first. If it is
not linked, the calls will have no effect, as linking operations always initialize all
uniforms at 0.

GLhandleARB vertex = MyFuncThatLoadShaders(“vertex.vert”);
GLhandleARB fragment = MyFuncThatLoadShaders(“fragm.frag”);
GLhandleARB program = glCreateProgramObjectARB();
glAttachObjectARB(program,vertex);
glAttachObjectARB(program,fragment);

glLinkProgramARB(program);
glGetObjectParameterivARB(m_program,GL_OBJECT_LINK_STATUS_ARB,&resul);
glGetObjectParameterivARB(m_program,GL_OBJECT_INFO_LOG_LENGTH_ARB,&length);
glGetInfoLogARB(program,length,&laux,infoLog);

glUseProgramObjectARB(program);
// Render some stuff, with glVertex, glDrawElements...
glUseProgramObjectARB(0); //back to fixed function pipeline

TyphoonLabs’ GLSL Course 6/6

In addition to this, glUniform calls do not use strings for variable names, but
instead use integers, which can be obtained using:

GLint glGetUniformLocationARB(GLhandleARB program, const GLcharARB
*name)

There are many glUniform calls:

• glUniform{1|2|3|4}{f|i}ARB is used to pass single values.
• glUniform{1|2|3|4}{f|i}vARB is used to pass an array of values.
• glUniformMatrix{2|3|4}fvARB is used to pass mat2, mat3, mat4, or

arrays of them.

A complete description of these calls can be found at:
http://developer.3dlabs.com/openGL2/slapi/UniformARB.htm

int location = glGetUniformLocationARB(program,”bumpSize”);
glUniform1fARB(location, mybumpSizeVariable);

TyphoonLabs’ GLSL Course 7/7

Using Textures

Using textures involves passing both the texture unit (not the texture object)
number to the shader and the correct binding of the texture to that unit.

We can pass the texture unit number by using the
glUniform1i(location,texture_unit); call, but if you want use this as a sampler
within the fragment (or vertex) shader, you must use the [1i] variant of the
glUniform or else an error will occur.

You can find out the maximum number of textures a program object can support
by querying the GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB define
with glGetInteger (which, once known, can simply activate each texture unit
and bind the texture to it) (glEnable is not required here):

for(int I= 0;I< my number of textures;I++)
{
 glActiveTextureARB(GL_TEXTURE0_ARB + I);
 glBindTextureARB(GL_TEXTURE_2D,my_texture_array[I]);

 // glEnable(GL_TEXTURE_2D); this is not needed, don’t do it

 int location = glGetUniformLocationARB(myProgramObject, mySamplerNameArray[I]);
 glUniform1iARB(location, I);
}
glActiveTextureARB(GL_TEXTURE0_ARB); // back to texture unit 0

TyphoonLabs’ GLSL Course 8/8

Using Vertex Attributes

Every time the glNormal, glTexCoord, and glColor functions are called, you
send pre-defined vertex attributes to the vertex shader. Vertex arrays (like
glTexCoordPointer and glNormalPointer) can be used as well.

We will now look at some generic attributes which work in much the same way,
but are more flexible, as you can assign descriptive names or complex types
(like mat4 instead of normal vec types).

Vertex attributes must be bound to a free ‘slot,’ which can be obtained via the
OpenGL API, but this the program must be linked or else it will not work (as it is
the link operation that decides which slots are free/not free):

GLint glGetAttribLocationARB(GLhandleARB program, const GLcharARB
*name)

For example:

This method will always retrieve a free slot, unless they are all occupied (we
can force slots with the glBindAttribLocationARB function, but it's better to
ask OpenGL for a free one).

Once a slot has been established, we can then send the attributes to OpenGL
just like standard attributes and vertices. There are two ways to do this:
immediate mode and vertex arrays.

Immediate mode:
Using glVertexAttrib*ARB between a glBegin/glEnd pairing, like glNormal or
glTexCoord :

int location = glGetAttribLocationARB(myProgram,”tangent”);

int location = glGetAttribLocationARB(myProgram,”myattrib”);
glBegin(GL_TRIANGLES);
 glVertexAttrib3fARB(location,0,1,0); glVertex3f(0,0,0);
 glVertexAttrib3fARB(location,1,0,0); glVertex3f(0,0,0);
 glVertexAttrib3fARB(location,0,1,1); glVertex3f(0,0,0);
glEnd();

TyphoonLabs’ GLSL Course 9/9

Vertex arrays:
To use a vertex array, you must first enable it for both the server and client
states:

To use generic vertex attribute arrays, a location is needed, which allows you to
setup your arrays easily:

Though this example may not be very good (as it assumes vertex attributes
only, without vertices, so no drawing is actually performed), the objective is to
show how to correctly setup a generic vertex attribute array.

The most complex function in this example is glVertexAttribPointerARB,
which works the same as glNormalPointer but is generic.

A complete description of this function can be found at:
http://developer.3dlabs.com/openGL2/slapi/VertexAttribPointerARB.htm

glActiveTextureARB(GL_TEXTURE5_ARB);
glClientActiveTextureARB(GL_TEXTURE5_ARB);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glVertexPointer(3,GL_FLOAT,0,geometry);
glNormalPointer(GL_FLOAT,0,normals);
//draw stuff
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glActiveTextureARB(GL_TEXTURE0_ARB);
glClientActiveTextureARB(GL_TEXTURE0_ARB);

glActiveTextureARB(GL_TEXTURE5_ARB);
glClientActiveTextureARB(GL_TEXTURE5_ARB);

int location = glGetAttribLocationARB(myProgram,”myattrib”);

glEnableVertexAttribArrayARB(location);
glVertexAttribPointerARB(location,size,type,false,0,myarray);
//draw some stuff
glDisableVertexAttribArrayARB(location);

glActiveTextureARB(GL_TEXTURE0_ARB);
glClientActiveTextureARB(GL_TEXTURE0_ARB);

TyphoonLabs’ GLSL Course 10/10

How to Use the 3DSMax Mesh Exporter

Though Shader Designer has a series of default meshes, you may wish to
import your own geometry. This can be done using the Flexporter
(http://www.codercorner.com/Flexporter.htm) a plug-in manager for 3DSMax5,
with the Shader Designer’s export plugin.

This export plugin allows you to export an entire scene (without animations) to a
GSD (Shader Designer mesh format) file. However, there are a couple of items
to take into consideration before exporting any data:

• The default view frustum in Shader Designer is znear=1, zfar=500,
fov=45, while the camera position is at (0,0,3) pointing at (0,0,0). If your
mesh is too large and not centered correctly at (0,0,0), you may not see
anything. If this is the case, reduce the mesh until it fits within a bounding
box of 3 units, then place it (the scene) at the origin.

• Remember to perform a resetXform on every submesh/object of your

scene before exporting it.

TyphoonLabs’ GLSL Course 11/11

References:

Shader Designer homepage: http://www.TyphoonLabs.com

OpenGL Shading Language API man pages, GLSL examples and resources:
http://developer.3dlabs.com

GameInstitute homepage: http://www.clockworkcoders.com/oglsl/tutorials.html

GLSL Shaders: http://3dshaders.com

GLSL Tutorials: http://www.clockworkcoders.com

