
TyphoonLabs’ GLSL Course 1/25

OpenGL Shading Language
Course

Chapter 4 – Advanced Shaders

By
Jacobo Rodriguez Villar
jacobo.Rodriguez@typhoonlabs.com

TyphoonLabs’ GLSL Course 2/25

Chapter 4: Advanced Shaders

INDEX

Introduction 2
Per Pixel Illumination Model 2
Bump Mapping 9
Simple Parallax Shader 15
Mandelbrot Shader (Flow Control) 19
Advanced Illumination Model 22

TyphoonLabs’ GLSL Course 3/25

INTRODUCTION

This chapter will focus on advanced illumination algorithms and other
miscellaneous items like fractal computing, displacement shaders, and Perlin
Noise usage. You should be confident with the material in all previous chapters
before reading further.

Per Pixel illumination Model (point light, amb, dif, spec*gloss)

The theory for this shader was covered in the last two chapters, so here we will
only cover what changes need our code in order to achieve per pixel lighting
rather than per vertex lighting.

First, fill the property grid values with the same information as the last shader
(specular * gloss mapping tutorial) and insert two uniforms (texture and camera
position).

[Vertex shader]

It is easy to see that we’ve removed all code related to the light computations.
Here only the future values needed for the fragment shader are computed and
passed to it.

varying vec3 normal;
varying vec3 position;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
 normal = gl_Normal.xyz;
 position = gl_Vertex.xyz;
}

TyphoonLabs’ GLSL Course 4/25

[Fragment shader]

This fragment shader contains all the computations that were removed from the
vertex shader, but there are few things that are important to mention:

First, in the vertex shader it wasn’t necessary to normalize normals because
they were normalized , but here, the normals have been interpolated, so their
values have changed, and the normalization is obligatory.

Secondly, we have to pass the interpolated vertex position in order to know the
true fragment position by computing the exact vectors from light or camera to
the fragment.

In this shader there are many possible optimizations. For example, move back
the attenuation factor computation to the vertex shader and pass it interpolated.
Moving calculus from the fragment shader to the vertex shader always has the
same result: it improves the speed (unless you have more vertices than
fragments, but that is very unusual) and reduces the quality.

uniform sampler2D texture;
uniform vec3 CAMERA_POSITION;
varying vec3 normal;
varying vec3 position;

void main()
{
 vec4 specular = vec4(0.0);
 vec4 diffuse;
 vec3 norm = normalize(normal); //Important: after interpolation normal modulus != 1.
 vec3 lightVector = gl_LightSource[0].position.xyz - position;
 float dist = length(lightVector);
 float attenuation = 1.0 / (gl_LightSource[0].constantAttenuation +
 gl_LightSource[0].linearAttenuation * dist +
 gl_LightSource[0].quadraticAttenuation * dist * dist);

 lightVector = normalize(lightVector);
 float nxDir = max(0.0, dot(norm, lightVector));
 diffuse = gl_LightSource[0].diffuse * nxDir * attenuation;

 if(nxDir != 0.0)
 {
 vec3 cameraVector = normalize(CAMERA_POSITION - position.xyz);
 vec3 halfVector = normalize(lightVector + cameraVector);
 float nxHalf = max(0.0,dot(norm, halfVector));
 float specularPower = pow(nxHalf, gl_FrontMaterial.shininess);
 specular = gl_LightSource[0].specular * specularPower * attenuation;
 }
 vec4 texColor = texture2D(texture, gl_TexCoord[0].st);
 gl_FragColor = gl_LightSource[0].ambient +
 (diffuse * vec4(texColor.rgb,1.0)) +
 (specular * texColor.a);
}

TyphoonLabs’ GLSL Course 5/25

Let’s see the difference between per pixel lighting and per vertex lighting:

Per vertex lighting Per pixel lighting

The difference is obvious, but the best thing is that the tessellation size of the
mesh doesn’t matter for per pixel lighting. Still, there is a drawback: per pixel
lighting shader is much more expensive than per vertex.

Here is this shader complete:

Notice the nice specular effect, and the dirty surface obscuring some parts.

TyphoonLabs’ GLSL Course 6/25

Here are some screenshots showing how the different light components affect
the final render:

Ambient = (51,51,51,); Diffuse = Specular = (255,255,255);
Front Material Shininess = 64 Light Position = (0,0,2)

Per Vertex Lighting

Ambient Diffuse

Ambient + Diffuse Ambient + Diffuse * texture

TyphoonLabs’ GLSL Course 7/25

Specular Specular * gloss

Diffuse + Specular Diffuse * texture + Specular

TyphoonLabs’ GLSL Course 8/25

Per Pixel Lighting

Ambient Diffuse

Ambient + Diffuse Ambient + Diffuse * texture

Specular Specular * gloss

TyphoonLabs’ GLSL Course 9/25

Diffuse + Specular Diffuse * texture + Specular

Choose for yourself which lighting model is better.

TyphoonLabs’ GLSL Course 10/25

Bump Mapping

Bump mapping is probably the most famous lighting effect. What is bump
mapping? To answer this question, an explanation of shading models is in
order. Let’s see what happens with each one:

Vertex: Light: Normal:

Until now, we’ve only implemented Goraud and Phong shading; now it's time to
do some bump mapping.

In order to have enough information for our shader to be able to compute bump
mapping lighting effects, we need to define a “normal map.” A normal map is a
texture that holds the normals that must be applied to every fragment of a base
texture. That is, if we have a base texture, we also need its bump map.

The real maths needed to create a normal map are beyond the purposes of this
document, and we will explain the process in a high-level language. A normal
map can be built two ways: first, with a high poly model (there are plug-ins for
the most common DCC applications that can compute the normals of a 3D high
tessellated model and put them into a texture file) and secondly, having the
height map of the model (or a height map for a base texture). A height map is

Flat shading Goraud shading

Only the first normal of the triangle is used
to compute lighting in the entire triangle.

The light intensity is computed at each
vertex and interpolated across the surface.

Phong shading Bump mapping

Normals are interpolated across the
surface, and the light is computed at each
fragment.

Normals are stored in a bumpmap texture,
and used instead of Phong normals.

triangle

TyphoonLabs’ GLSL Course 11/25

nothing more than a greyscale texture that holds the height of every pixel. For
example:

Base texture Height map

With some math tricks (i.e. taking derivatives on adjacent texels to get the
normal at each texel), a height map can be turned into a normal map.

Normal Map

The normals are scaled and translated (because a normal can have negative
values, and a GL_UNSIGNED_BYTE texture can’t either) to the range [0,255]
and then encoded into RGB pixels (127.5 * (normal XYZ + 1.0) � RGB ubyte).
Then, when we read the normal map (it is automatically scaled and translated to
[0,1], as all textures are, into a fragment shader), we only need to do this: vec3
normal = texture2D(myNormalMap, texcoord.st).xyz * 2.0 – 1.0; and we will
have the normal in the range [-1,+1] again and ready to be used.

There is one important thing before continuing, which makes this very complex.
Those normals are not in the same space as the light vector, so we need to
compute the light vector in the vertex shader, translate to the same space that
the normals are in, and pass this light vector interpolated to the fragment

TyphoonLabs’ GLSL Course 12/25

shader. But what new space is this, and how we can translate our light vector to
this space?

It is called “Tangent Space,” and it is defined for each face of the mesh. We
need this space because it allows us to keep the normals unchanged. For
example, if we store the normals in object space, when we rotate the model, we
have to rotate the normals too, to maintain coherency. However, with the
normals relatives to each face, this is not needed. Those normals are
independent of the model orientation and position.

In order to build this Tangent Space, we need to define an orthonormal per-
vertex basis, which will define our tangent space. To build this basis we need
three vectors. We already have one of them: the vertex Normal. The other
vector has to be tangent to the surface at the vertex (that’s why this space is
called Tangent Space). This vector is the Tangent vector. The last one can be
obtained with the cross product of the normal and the tangent vector, and is
called the Binormal vector. The computation of the tangent vector is quite
complicated. It won't be explained here, but Shader Designer provides both
Tangent and Binormal attributes automatically, as well as providing normals and
texture coordinates.

To convert our incoming light vector to tangent space we need to build a matrix
that holds the three vectors and multiply by it.

Vector S = surface local vector, Vector O = object space vector

Our object space vector will be in tangent space.

Now we must setup our variables and textures. First, load two textures with the
textures dialog. Place in texture unit 0 the base texture (for example,
mur_Ambiant.bmp) and place in texture unit 1 the normal map

 Tx Ty Tz

mat3 TBN = Bx By Bz

 Nx Ny Nz

 Tx Ty Tz

 Sx, Sy, Sz = Ox, Oy, Oz * Bx By Bz

 Nx Ny Nz

TyphoonLabs’ GLSL Course 13/25

(mur_NormalMap.bmp). Create two uniforms for these two textures, as well as
the CAMERA_POSITION predefined uniform.
In order to get a relevant (but not very realistic) specular effect, type 64 into the
front material shininess. Next put the light at (0,0,2) and the diffuse contribution
to (255, 255, 128) (a little yellow).

Those values are not too realistic, but are there to increase the bump effect, for
teaching purposes.

Because Shader Designer automatically computes the tangent and binormal
attributes, there are no more steps.

Now, let’s code our vertex shader for the bump mapping effect

[Vertex shader]

Here, the data is prepared to feed the fragment shader. First, we will compute
the usual variables (vertex position and texture coordinates), then create our
TBN matrix with the tangent and binormal data. Finally, we compute the light
vector in tangent space.

attribute vec3 tangent;
attribute vec3 binormal;

varying vec3 position;
varying vec3 lightvec;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
 position = gl_Vertex.xyz;
 mat3 TBNMatrix = mat3(tangent, binormal, gl_Normal);
 lightvec = gl_LightSource[0].position.xyz - position;
 lightvec *= TBNMatrix;
}

TyphoonLabs’ GLSL Course 14/25

[Fragment shader]

The first thing to notice here is that the attenuation computation has been
removed, because we want this shader to be as simple as possible.

The rest of the shader is fairly simple. First, we read the base texel and the
normal for this texel. Then we scale and translate it to the range [-1,1] (* 2.0 –
1.0 scale and bias).

The only difference with this shader and the last one (per pixel lighting) is the
way we compute the light vector and the normal. In the per pixel shader, the
light vector was in object space, and the normal was interpolated. Here the light
vector is in tangent space, and the normal is extracted from a texture. For
everything else, the computations remain the same.

uniform sampler2D base;
uniform sampler2D normalMap;
uniform vec3 CAMERA_POSITION;
varying vec3 position;
varying vec3 lightvec;

void main()
{
 vec3 norm = texture2D(normalMap, gl_TexCoord[0].st).rgb * 2.0 - 1.0;
 vec3 baseColor = texture2D(base, gl_TexCoord[0].st).rgb;

 float dist = length(lightvec);

 vec3 lightVector = normalize(lightvec);
 float nxDir = max(0.0, dot(norm, lightVector));
 vec4 diffuse = gl_LightSource[0].diffuse * nxDir;

 float specularPower = 0.0;
 if(nxDir != 0.0)
 {
 vec3 cameraVector = normalize(CAMERA_POSITION - position.xyz);
 vec3 halfVector = normalize(lightVector + cameraVector);
 float nxHalf = max(0.0,dot(norm, halfVector));
 specularPower = pow(nxHalf, gl_FrontMaterial.shininess);
 }
 vec4 specular = gl_LightSource[0].specular * specularPower;

 gl_FragColor = gl_LightSource[0].ambient +
 (diffuse * vec4(baseColor.rgb,1.0)) +
 specular;
}

TyphoonLabs’ GLSL Course 15/25

Here are some screenshots of the bump map shader, though the best way to
notice this effect is with moving lights. Use the rotate light feature to see it, and
play with the diffuse and specular components of gl_FragColor, to see how it
affects them individually (for example, gl_FragColor = diffuse *

vec4(baseColor,1.0);).

Notice the ‘volume’ feeling Looks like plastic? Reduce specular and

add a gloss map

TyphoonLabs’ GLSL Course 16/25

Simple Parallax Mapping shader

We’ve seen two advanced lighting shaders that can add a great deal of
complexity and realism to our scenes, but when the camera gets closer to the
surface, it becomes evident that the surface is plain. Neither bump mapping nor
per pixel lighting can fix that. Here we will learn an amazingly simple and cheap
shader that increases the realism of our scenes by giving volume to our
surfaces. This shader is known by many names: parallax shader, offset
mapping, and texel displacement shader to name a few. We will call this shader
“parallax shader” for now.

When we sample a texture over a primitive, we take the texture coordinates and
map the texture in a one-to-one fashion.

Texture coordinates:
Texel:
Point on the triangle surface where the texel is applied:

For every texel, the “rays” are parallel; this is one-to-one mapping.

Now, if we could have information about the height of every texel, using the
camera vector, we could make a displacement in higher texels to create a sort
of ‘perspective effect.’ Let’s learn how to achieve this.

First, we need two things: the base texture and its height map.

Triangle

Texture

OFFSET

Polygon

Real surface, represented with the height map

T: Actual:

Incorrect

Eye

T: Displaced:

Correct

A

B

P

To Tn

TyphoonLabs’ GLSL Course 17/25

To achieve the desired effect we have to sample texel B, not texel A, so let’s
see how to compute this offset in a cheap way.

To compute a texture coordinate offset at a point P, the eye vector must first be
normalized to produce a normalized eye vector V. The height h at the original
texture coordinate To is read from the height map. The height is then scaled by
a scale factor s and biased by a bias b in order to map the height from the
range {0.0, 1.0} to a range that better represents the physical properties of the
surface being simulated.

The new scaled and biased height hsb is given by hsb = h · s + b.

An offset is then computed by tracing a vector parallel to the polygon from the
point on the surface directly above P to the eye vector. This new vector is the
offset and can be added to To to produce the new texture coordinate Tn.

Tn = To + (hsb · V{x, y})

The new texture coordinate is used to index a regular texture map and any
other maps applied to the surface.

This could seem too complex, but if you think about it carefully, you will see that
it is actually fairly simple.

Final considerations:

• The computations in the fragment shader must be in tangent space (the
eye vector has to be in the same space as the height).

•

[Vertex shader]

This vertex shader looks very similar to the bump map vertex shader, but here
we are converting the camera vector, instead of the light vector, to tangent
space.

attribute vec3 tangent;
attribute vec3 binormal;
uniform vec3 CAMERA_POSITION;
varying vec3 eyeVec;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;

 mat3 TBNMatrix = mat3(tangent, binormal, gl_Normal);
 eyeVec = CAMERA_POSITION - gl_Vertex.xyz;
 eyeVec *= TBNMatrix;
}

TyphoonLabs’ GLSL Course 18/25

[Fragment shader]

First, we have to read the height from the heightmap texture, perform the scale
and bias, and then complete the computations to get the new texture
coordinates. Finally, we use those texture coordinates to access the base
texture.

This is a very pretty shader, and very cheap, but doesn’t include lighting
calculations. How we can mix this parallax shader with a bump mapping shader
to get a stunning effect? This is easy too. Use newCoords to access the bump
map and go with the usual lighting calculations. These newCoords could be
used to access any other map, like a gloss map.

There is one thing that we haven't mentioned yet: the scale and bias factors.
They should be filled in manually for a top-notch final appearance. Two good
values to start with are: scale = 0.04 and bias = 0.02.

Place a uniform for these two values and play with the slider widget until you
find an ideal shader.

uniform sampler2D basetex;
uniform sampler2D heightMap;
uniform vec2 scaleBias;
varying vec3 eyeVec;

void main()
{
 float height = texture2D(heightMap, gl_TexCoord[0].st).r;
 //Our heightmap only has one color channel.
 float v = height * scaleBias.r - scaleBias.g;
 vec3 eye = normalize(eyeVec);
 vec2 newCoords = texCoord + (eye.xy * v);

 vec3 rgb = texture2D(basetex, newCoords).rgb;
 gl_FragColor = vec4(rgb, 1.0);
}

TyphoonLabs’ GLSL Course 19/25

As happens with the bump mapping shader, this looks better when there is
some kind of motion (camera and/or mesh motions). A static screenshot can’t
convey the effect entirely.

TyphoonLabs’ GLSL Course 20/25

Mandelbrot Fractal Shader (Flow Control)

Until now, we haven’t used many of the most important tools in every language:
flow control and loops. To illustrate these tools we will write a shader that draws
the fractal Mandelbrot set.

The Mandelbrot set is defined as a recursive function based on imaginary
numbers. We will use the plane ST (the one defined by the texture coordinates)
to represent those imaginary numbers.

The function itself is:

• Z0 = 0 + 0i;

• Zn+1= Z2
n + C

One point is defined to be in the Mandelbrot set if its |Z| >= 2.0 (to avoid the
square root, we will use this expression: |Z| *|Z| >= 4.0). If at any moment during
the iterations, the |Z| *|Z| is greater than or equal to 4.0, we will end the loop and
this point will be written with a linear interpolation (a gradient) of two colors
(uniform variables) based on the number of iterations. If we reach the limit of the
iterations (another uniform value), then this point may be outside the
Mandelbrot set, and will be drawn with a black color.

[Vertex shader]

We’ve chosen the texture coordinates to parametrize our surface. By default,
the texture coordinates are in the range [0,1], so we are going to remap this
space to [-2.5,+2.5] .

varying vec3 position;
void main()
{
 position = vec3(gl_MultiTexCoord0 - 0.5) * 5.0;
 gl_Position = ftransform();
}

TyphoonLabs’ GLSL Course 21/25

[Fragment shader]

Uniform variables table:
Uniform name Initial value Slider min value Slider max value

maxIterations 50 1 128

center 0,0 -2.5 +2.5

outerColor1 (1,0,0) Color widget Color widget

outerColor2 (0,1,0) Color widget Color widget

zoom 1 1 Choose one

The only point that must be mentioned here is the center and zoom uniforms.
These calculations are done to move the shader playing with the sliders. They
are simply other scale and bias factors.

varying vec3 position;
uniform int maxIterations;
uniform vec2 center;
uniform vec3 outerColor1;
uniform vec3 outerColor2;
uniform float zoom;

void main()
{
 float real = position.x * (1.0/zoom) + center.x;
 float imag = position.y * (1.0/zoom) + center.y;
 float cReal = real;
 float cImag = imag;

 float r2 = 0.0;
 int iter;

 for (iter = 0; iter < maxIterations && r2 < 4.0; ++iter)
 {
 float tempreal = real;
 real = (tempreal * tempreal) - (imag * imag) + cReal;
 imag = 2.0 * tempreal * imag + cImag;
 }

 // Base the color on the number of iterations.
 vec3 color;
 if (r2 < 4.0)
 color = vec3(0.0);
 else
 color = mix(outerColor1, outerColor2, fract(float(iter)*0.05));

 gl_FragColor = vec4 (clamp(color, 0.0, 1.0), 1.0);
}

TyphoonLabs’ GLSL Course 22/25

Here is a screenshot of one section of the Mandelbrot set computed in real
time. It had been translated and scaled.

TyphoonLabs’ GLSL Course 23/25

An Advanced Illumination Model

In this shader, we will mix all that we’ve learned so far about illumination
techniques. We are going to write a shader that mixes bump mapping, parallax
mapping, and gloss mapping. Sound difficult? Not if you understood the
previous shaders.

First we need at least four texture maps to compute this effect: the base color,
the normal map, the height map, and the gloss map. Using a smart
arrangement, we can store in one texture file the base color in the RGB
channels and the gloss map in the alpha channel. In the other texture, we can
store the normals in the RGB channels and the height map in the alpha channel
(in the textures folder, there are two texture files like those: parallaxgloss.tga for
the base+gloss data, and normalheight.tga for the others). Use these lighting
values for light 0: front material shininess = 64, light position at (0,0,2), and the
uniforms of the last shaders (CAMERA_POSITION, samplers, and scaleBias).
We are now ready to begin the shader.

 [Vertex shader]

As you can see, we only mixed and rearranged the parallax and bump mapping
shaders.

attribute vec3 tangent;
attribute vec3 binormal;

uniform vec3 CAMERA_POSITION;
varying vec3 eyeVec;
varying vec3 lightVec;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
//----------------- Compute TBN Matrix ------------------
 mat3 TBNMatrix = mat3(tangent, binormal, gl_Normal);
//----------------- Compute Eye vector ---------------
 eyeVec = CAMERA_POSITION - gl_Vertex.xyz;
 eyeVec *= TBNMatrix;
//----------------- Compute Light vector ---------------
 lightVec = gl_LightSource[0].position.xyz - gl_Vertex.xyz;
 lightVec *= TBNMatrix;
}

TyphoonLabs’ GLSL Course 24/25

[Fragment shader]

That's all there is to it. We’ve computed the displaced texture coordinates and
used them with the resting texture fetches. We’ve also used the interpolated
tangent space camera vector instead of the CAMERA_POSITION based vector,
and at the end, we used the gloss map stored in the alpha channel of the base
texture.

uniform sampler2D baseAndGloss;
uniform sampler2D normalAndHeight;
uniform vec2 scaleBias;

varying vec3 eyeVec;
varying vec3 lightVec;

void main()
{
//------------- Compute displaced texture coordinates----------
 float height = texture2D(normalAndHeight , gl_TexCoord[0].st).a;
 float v = height * scaleBias.r - scaleBias.g;
 vec3 eye = normalize(eyeVec);
 vec2 newCoords = gl_TexCoord[0].st + (v * eye.xy);
//------------- End of compute displaced texture coordinates-----

 vec3 norm = texture2D(normalAndHeight, newCoords).rgb * 2.0 - 1.0;
 vec4 baseColor = texture2D(baseAndGloss,newCoords);

 float dist = length(lightVec);

 vec3 lightVector = normalize(lightVec);

 float nxDir = max(0.0, dot(norm, lightVector));
 vec4 diffuse = gl_LightSource[0].diffuse * nxDir;

 float specularPower = 0.0;
 if(nxDir != 0.0)
 {
 vec3 cameraVector = eyeVec;
 vec3 halfVector = normalize(lightVector + cameraVector);
 float nxHalf = max(0.0,dot(norm, halfVector));
 specularPower = pow(nxHalf, gl_FrontMaterial.shininess);
 }
 vec4 specular = gl_LightSource[0].specular * specularPower;

 gl_FragColor = (diffuse * vec4(baseColor.rgb,1.0)) +
 vec4(specular.rgb * baseColor.a, 1.0);
}

TyphoonLabs’ GLSL Course 25/25

Here are two screenshots of the rendered shader: one with the gloss map, and
another without it. Notice that the parallax effect is best seen while you are
moving the mesh; with static screenshots it isn’t noticed as much.

gl_FragColor = (diffuse *
vec4(baseColor.rgb,1.0)) +

vec4(specular.rgb *
baseColor.a,1.0);

gl_FragColor = (diffuse *
vec4(baseColor.rgb,1.0)) +
vec4(specular.rgb,1.0);

