
Pipeline
The official ARB Newsletter

OpenGL Pipeline, The Official ARB Newsletter | q3 2006, Issue 001 Page 1

Issue 001
Q3 2006

Full PDF print edition

A Message from the ARB Secretary

Welcome to the first issue of OpenGL Pipeline, the official
newsletter of the OpenGL Architecture Review Board. Welcome
— and goodbye — because this will probably be the last issue!

Now that I have your attention: this doesn’t mean that the
newsletter is going away. But the ARB itself is going away! Why?
Where? How? What does this mean for OpenGL standardization?
Read on.

When Kurt Akeley and Mark Segal created OpenGL in the early
1990s, the 3D industry was very different. Graphics hardware was
restricted to workstations and servers costing tens of thousands
of dollars and up. There was no 3D games industry (Id’s DOOM
wouldn’t even come out for a few more years). And hardware was
very, very restricted in what it could do.

The ARB was set up to govern OpenGL, drawing on a group of
high-end workstation and simulator manufacturers: DEC, Evans
and Sutherland, HP, IBM, SGI, and others. But in the late 1990s,
graphics hardware started to get cheaper, pervasive, and eventu-
ally much more capable, thanks to a new generation of compa-
nies like 3dfx, 3Dlabs, ATI, and NVIDIA. The ARB membership has
reflected this change. Most of the innovations in OpenGL today
come from those “consumer graphics” companies.

Now 3D acceleration is moving to cell phones, and OpenGL
is there, too, as OpenGL ES, a subset of OpenGL created in the
Khronos Group. Khronos is an entity similar to the ARB, but more
widely focused, developing authoring (Collada), digital media/
imaging (OpenMAX and OpenML), 3D (OpenGL ES), 2D (OpenVG),
and sound (OpenSL ES) APIs.

We’ve decided that the future health of OpenGL — in all its
forms — will be best served by moving OpenGL into Khronos,
too. There are many advantages, such as:

The OpenGL and OpenGL ES groups can communicate under
the same set of intellectual property rules. IP rules are to stan-
dards like dental checkups are to you: unpleasant, but essential to
avoid pain in the future.

 • OpenGL and OpenGL ES might converge back into a

single API. Mobile devices have grown more powerful
and added back many features missing from OpenGL ES
1.0. And with programmable graphics pipelines com-
mon, we may be ready to phase out redundant and
legacy features from OpenGL.

 • The OpenGL ARB Working Group can work closely
with other APIs in Khronos. For example, we might
eventually replace the GLX/WGL/AGL APIs with EGL, a
cross-platform equivalent developed in Khronos.

 • The OpenGL ARB Working Group and the rest of Khro-
nos can pool efforts on SDKs and documentation. For
example, the OpenGL extension registry will grow into
a registry for all the Khronos APIs.

 • Finally, OpenGL and Khronos can more efficiently
share administrative, logistical, and website support
from the Gold Standard Group.

From a developer’s viewpoint, there’ll be little change. The
opengl.org website and boards will continue, though we may
merge the underlying webhost with khronos.org. The standards
process will operate much as it does today, although we will co-
ordinate our releases and announcements with other Khronos
APIs.

Not much will change in our day-to-day operation, either.
Khronos and ARB processes are very similar. Other Khronos mem-
ber companies will be able to join in our working groups.

Merging is a complicated process and will take months to
complete, but is well underway. So, the next quarterly issue of
“OpenGL Pipeline” will probably be published by the Khronos
Group, not the ARB, and will probably be expanded to cover
OpenGL ES and perhaps other Khronos APIs. We’ll talk more about
the status of the merger at the SIGGRAPH OpenGL BOF Session.

It’s been my privilege and my pleasure to serve as the OpenGL
ARB Secretary since joining SGI in 1997. Now I’m looking forward
to a new stage in the evolution of OpenGL. Come along for the
ride!

Jon Leech
ARB Secretary

A Message from the ARB Secretary 1
A Welcome Message from the Ecosystem Working Group. 2
Free OpenGL Debug Tools for Academic Users 2
Superbuffers Working Group Update 3

New Texture Functions [...] to Avoid Ugly Artifacts 3
Improved Synchronization Across GPUs and CPUs [...]. 5
OpenGL ARB & Khronos Group SIGGRAPH 2006 Schedule 5

In This Issue:

Pipeline
The official ARB Newsletter

OpenGL Pipeline, The Official ARB Newsletter | Q3 2006, Issue 001 Page 2

A Welcome Message from the
Ecosystem Working Group

“Rumors of my demise have been greatly exaggerated.”
— Mark Twain

Welcome to the first edition of OpenGL Pipeline, the quarterly
newsletter covering all things the OpenGL standards body has
“in the pipeline.” Each issue will feature status updates from the
various active working groups, along with a handful of thoughtful
articles, event announcements, and product spotlights. Then if
there’s any room leftover, we’ll throw in a semi-informative ram-
bling or two. All we can promise is that this publication will be
worth every penny you’ve paid for it.

The Ecosystem Working Group was formed in March of this
year. Its charter is to tackle “everything else.” We leave the heavy
lifting — debating new OpenGL features, generating new APIs,
and writing extension specs — to the other highly skilled work-
ing groups. They are the rock stars. In contrast, the Ecosystem
WG is the unsung hero working backstage to increase the impact
of all those new features. We are the wind beneath their wings,
if you will.

According to the American Heritage Dictionary, the word
ecosystem means “an ecological community together with its en-
vironment, functioning as a unit.” To us in the Ecosystem WG it
means all of the resources on the periphery serving as a develop-
ment environment to make OpenGL more useful or accessible to
you, the community. We started by conducting a poll on opengl.
org to find out what you were most interested in our tackling first.
Was it reference materials? Tutorials & sample code? Tools & utili-
ties? A test suite? No. 67% of you chose “OpenGL SDK: a single
SDK sponsored by the ARB, endorsed by all vendors, with some/
all of the above.” In other words, you want it all. We get it.

Ecosystem WG activities over the last quarter have included
the following: planning for the launch of an OpenGL SDK, estab-
lishing a modern toolchain for generating reference documenta-
tion, and revamping naming convention guidelines for the other
working groups to utilize when creating future APIs. Work next
quarter will focus on generating OpenGL 2.1 reference materials
and starting to piece together the SDK, soliciting contributions
from the OpenGL community at large.

The second most popular response to the poll was “Better
communications: what has the ARB been doing and what are its
future plans?” which segues nicely into this newsletter. Regard-
less of the poll, you may find yourself asking, “Why, after all these
years, is the OpenGL standards body finally opening up and shar-
ing with its audience, its devoted developers, its enthusiastic end-
users, its people?” It must be a maturity thing. It took us a solid
14+ years to shed our youthful shyness and find a voice. The last
decade was just an awkward phase. We’re over it now. This news-
letter is just the beginning of OpenGL’s long anticipated coming
of age.

“I’m not dead yet!” — Monty Python

Benj Lipchak
ATI, Ecosystem Working Group Chair

Free OpenGL Debug Tools
for Academic Users

Here is some great news for students and academic OpenGL
users! The OpenGL ARB and Graphic Remedy have crafted an
Academic Program to make the full featured gDEBugger OpenGL
debug toolkit available for use in your daily work and research
— free of charge!

gDEBugger, for those
of you who are not famil-
iar with it yet, is a powerful
OpenGL and OpenGL ES

debugger and profiler delivering one of the most intuitive OpenGL
development toolkits available for graphics application develop-
ers. gDEBugger helps you save precious debugging time and
boost your application’s performance. It traces application activi-
ty on top of the OpenGL API to provide the necessary information
to find bugs and to optimize application rendering performance.

The ARB—Graphic Remedy Academic Program will run for
one year during which time any OpenGL developer who is able to
confirm they are in academia will receive an Academic gDEBugger
License from Graphic Remedy at no cost. This license will be valid
for one year and will include all gDEBugger software updates as
they become available. Academic licensees may also optionally
decide to purchase an annual support contract for the software at
the reduced rate of $45 (or $950 for an academic institution).

There are also a limited number of free licenses available for
non-commercial developers who are not in academia.

gDEBugger is rapidly developing a strong following. It is al-
ready being used in many universities and by graphics hardware
vendors such as NVIDIA and ATI. It is being put to use in the
realms of game development, film, visual simulations, medical
applications, military and defense applications, CAD, and several
other markets. There is no need to make any changes to your
source code or recompile your application. Simply run your appli-
cation in gDEBugger and start tuning it. gDEBugger works with
all current graphic hardware products. It supports NVIDIA GPU
performance counters via NVPerfKit, NVIDIA GLExpert driver re-
ports, ATI GPU Performance Metrics, the latest version of OpenGL
and many additional OpenGL and WGL extensions. It is available
for the Windows operating system with a Linux version under de-

���������

http://www.gremedy.com/screenshots.php?pipeline
http://www.gremedy.com/?pipeline

Pipeline
The official ARB Newsletter

OpenGL Pipeline, The Official ARB Newsletter | Q3 2006, Issue 001 Page 3

velopment. The Windows and future Linux versions are part of
the ARB—Graphic Remedy Academic Program. gDEBugger ES,
which supports OpenGL ES, is available for purchase separately.

Graphic Remedy, the makers of gDEBugger, specializes in
software applications for the 3D graphics market, specifically
tools for 3D graphics developers. The company’s mission is to de-
sign innovative tools that make 3D graphics programming faster
and easier, to save programmers time and money, and to improve
graphics application performance and reliability. The company
is a Contributor member in the OpenGL ARB and in the Khronos
Group.

For further information, visit:
http://academic.gremedy.com/?pipeline

Avi Shapira
Graphic Remedy

Superbuffers Working Group Update

As you might have heard, the scope of the Superbuffers Work-
ing Group has broadened considerably. After we finished the
EXT_framebuffer_object extension, which you all know and love
(I hope!), we started working on adding some missing functional-
ity. Some of you expressed interest in features like rendering to
one and two component render targets, as well as being able to
mix attachments of different dimensions and even different for-
mats. But most importantly, you wanted to be able to find out
how to set up a framebuffer object that is guaranteed to be sup-
ported by the OpenGL implementation your application is run-
ning on. In other words, how can you set up a framebuffer object
so that the dreaded GL_FRAMEBUFFER_UNSUPPORTED error
will not occur? We worked on a solution for this, but started to
realize that this was really hard due to some choices we made in
EXT_framebuffer_object. Looking ever deeper, we realized that
the current object model in OpenGL is, in large part, to blame for
this. As a result, we are now working on a new object model for
OpenGL. You might have seen the presentation at GDC. A sum-
mary is described here:

http://www.gamedev.net/columns/events/gdc2006/ar-
ticle.asp?id=233

The goals of the new object model are several. First, we want
to provide top rendering performance. The current object model
has performance cost associated with a name lookup every time
an object name is passed to the OpenGL driver. This cost is only
going to increase due to the widening gap between CPU and GPU
performance. Second, there is a performance cost every time you
make a draw call (glBegin, glDrawArrays, etc.). The OpenGL
driver needs to perform a non-trivial amount of validation work
before starting to draw. This is especially important if the draw
call only consists of a few primitives. Third, we want to eliminate
difficult race conditions which arise when sharing objects across
multiple OpenGL contexts. For example, what happens when
you change the filter mode of a texture object in one context
while also using that texture object in another context? Last, but

not least, we want to make the new object model simpler to use.
State-based errors are a pain to deal with. Say, for example, that
one part of your code calls glActiveTexture, another part of
your code binds a texture object, and a third part of your code
sets the filter mode for that texture object — at least, you hope.
The active texture state might not be what you wanted it to be at
that time. We’re going to change this model of binding objects
just to set a parameter. In the new object model, any command
that sets a parameter of an object will take a handle to that object.
No more confusion! Furthermore, object creation will, if success-
ful, always return a handle to the newly created object. The ap-
plication can no longer make up a name for an object. This is a
key component of the new object model, and will help us achieve
the goals just outlined.

We will be posting updates to www.opengl.org whenever
we have something to share. Watch that space!

Barthold Lichtenbelt
NVIDIA, Superbuffers Working Group Chair

New Texture Functions with Awkward
Names to Avoid Ugly Artifacts

One problem with many of the extension specs that we face is
that they are too often short on motivating examples. Even when
there are examples, they suffer from dreaded ASCII art. With this
newsletter, I can not only put in a few more examples, I can re-
place the dreaded ASCII art with the less dreaded programmer
art.

Note, these example procedural shaders will alias. And since
they will alias, why not use an aliased source texture as well?

Figure 1 – Source texture – aliasing yellow and blue stripes!

So let’s start with a trivial shader: apply this texture to a quad.
The quad has texture coordinates myTC that are passed in from
the vertex shader. myTC coordinates are 0.0, 0.0 at the lower left
corner and 1.0, 1.0 at the upper right corner.

// Fragment Shader 1 – simple texture
varying vec2 myTC;
uniform sampler2D myStripeMap;

http://academic.gremedy.com/?pipeline
http://www.gamedev.net/columns/events/gdc2006/article.asp?id=233
http://www.gamedev.net/columns/events/gdc2006/article.asp?id=233
http://www.opengl.org

Pipeline
The official ARB Newsletter

OpenGL Pipeline, The Official ARB Newsletter | Q3 2006, Issue 001 Page 4

void main(void)
{
 gl_FragData[0] = texture2D(myStripeMap, myTC);
}

The technical director asks for a shader that replaces the left
side of the texture with lime green. You write the shader (know-
ing better than to ask why) and add a new control, mySlider.
When myTC.s is less than mySlider, the color is green. When
myTC.s is greater than or equal to mySlider, the color is the
source texture.

// Fragment Shader 2 – left green/right textured
varying vec2 myTC;
uniform sampler2D myStripeMap;
uniform float mySlider;

const vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
void main(void)
{
 if (myTC.s < mySlider)
 gl_FragData[0] = green;
 else
 gl_FragData[0] = texture2D(myStripeMap, myTC);
}

A quick check with mySlider set to 0.5 and everything looks
great!

Figure 2 – The textured quad when mySlider = 0.5

You are about to ship the shader off to the technical director,
but you try a value a bit larger than 0.5. Where did the vertical
gray stripe come from?

Figure 3 – Sometimes there’s a vertical gray strip.

The problem is that the texture fetch is inside varying control
flow. A mipmapped texture fetch or an anisotropic fetch will cal-
culate an implicit derivative for lambda or the line of anisotropy.
Derivatives (explicit or implicit) inside of varying control flow are
undefined! Your graphics card happens to either get an answer
that sometimes seems right when the texels are far from the con-
ditional. But it also seems to get them very wrong near the condi-
tional, and you guess that the derivatives are very very large near
the conditional. The large derivatives near the conditional drive
the texture fetches to the bottom of your mipmap pyramid. That’s
why you see the gray vertical stripe.

Note that undefined derivatives mean that different imple-
mentations can get very different answers. In fact, you test your
shader on an older system and find out that the older system hap-
pens to always give you the “right” answer!

You rewrite the shader to move the texture fetch outside of
control flow and wish there was a better way.

// Fragment Shader 3 – with old texture functions
varying vec2 myTC;
uniform sampler2D myStripeMap;
uniform float mySlider;

const vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
void main(void)
{
 vec4 texel = texture2D(myStripeMap, myTC);
 if (myTC.s < mySlider)
 gl_FragData[0] = green;
 else
 gl_FragData[0] = texel;
}

Figure 4 – the correct picture

With a new extension under development, you have another
choice besides moving the texture fetch outside of control flow.

An extension proposed in the GLSL Working Group, ARB_
shader_texture_lod, adds new built-in texture functions that
allow the shader writer to explicitly supply the derivatives. You
can calculate the derivatives outside of control flow and fetch the
texel inside of control flow.

// Fragment Shader 4 – with new texture functions
// NOT YET APPROVED AT THE TIME OF THIS WRITING!
#extension ARB_shader_texture_lod require

Pipeline
The official ARB Newsletter

OpenGL Pipeline, The Official ARB Newsletter | Q3 2006, Issue 001 Page 5

varying vec2 myTC;
uniform sampler2D myStripeMap;
uniform float mySlide;

const vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
void main(void)
{
 vec2 dPdx = dFdx(myTC);
 vec2 dPdy = dFdy(myTC);
 if (myTC.s < mySlide)
 gl_FragData[0] = green;
 else
 gl_FragData[0] =
 texture2DGradARB(myStripeMap, myTC,
 dPdx, dPdy);
}

Shader 3 and Shader 4 will both get the correct answers on all
implementations, but the latter may be more efficient on some
implementations.

In summary, existing texture functions may need to calculate
implicit derivatives for mipmapped texture fetches or anisotro-
pic texture fetches. Derivatives inside of varying control flow are
undefined. New texture functions are introduced by ARB_shad-
er_texture_lod with explicit derivative parameters. This allows a
shader writer to move the derivatives outside of varying control
flow while keeping the texture fetch inside of control flow.

Bill Licea-Kane
ATI, GLSL Working Group Chair

Improved Synchronization Across
GPUs and CPUs — No More glFinish!

The Async Working Group recently finished the ARB_sync
specification. It provides a synchronization model that enables a
CPU to synchronize with a GPU OpenGL command stream across
multiple OpenGL contexts and multiple CPU threads. This exten-
sion, for example, allows you to find out if OpenGL has finished
processing a GL command without calling glFinish. As you
know, glFinish is a heavyweight operation that you really
should not call more than once per frame. Calling it is so expen-
sive because it drains all commands that OpenGL has buffered up
before resuming processing.

This extension also allows you, for example, to synchronize
rendering in one context with rendering in another context with-
out calling glFinish. Say you are rendering to a texture in one
context while another context needs to use the result of that ren-
dering. You do this by inserting a fence right after the rendering
to texture commands in the one context and waiting for the fence
to complete in the other context. Again, there is no need to call
glFinish!

A link to the actual extension and a discussion are here:
http://www.opengl.org/discussion_boards/ubb/ultimatebb.
php?ubb=get_topic;f=3;t=014377. Please let us know how you
would use this extension, what you think is good about it, and

what needs some work.

Currently the Async Working Group is transforming this ex-
tension into the new object model that the superbuffers Working
Group is working on. We are also starting to look at extending
the ARB_sync extension to provide synchronization with, for ex-
ample, each vertical retrace (vblank) and adding the capability to
figure out at what time exactly a fence completed. Another topic
on our agenda is to look at so-called ‘predicated rendering.’ Think
of this as an occlusion query test, where the result of the test au-
tomatically controls whether a set of geometry is rendered by the
GPU, without any CPU intervention.

Barthold Lichtenbelt
NVIDIA, Async Working Group Chair

OpenGL ARB & Khronos Group
SIGGRAPH 2006 Schedule

All Events take place at the Boston Convention and Exhibit
Center. Come visit Khronos at Booth #611 on the main floor!

Khronos & OpenGL ES Tech Talks (DevU)
Room: Room 206A

Date: Wednesday, 2 August

Time: 10am - 3:30pm

OpenGL BOF
Room: Room 206A

Date: Wednesday, 2 August

Time: 4pm - 6pm

COLLADA BOF & Social Event
Room: Room 206A

Date: Wednesday, 2 August

Time: 6pm - 8pm

OpenGL ES BOF
Room: Room 251

Date: Thursday, 3 August

Time: 10am - 12 noon

COLLADA Tech Talk
Room: Room 251

Date: Thursday, 3 August

Time: 12 noon - 2pm: (4 x 30 minute presentations
from SCE, NVIDIA, Feeling, Softimage)

http://www.opengl.org/discussion_boards/ubb/ultimatebb.php?ubb=get_topic;f=3;t=014377
http://www.opengl.org/discussion_boards/ubb/ultimatebb.php?ubb=get_topic;f=3;t=014377

