OpenGL Shader DeS|gn Manual 1.5

12 June 2004

Introduction

The future of graphics programming is here and we got the tools you
need. We present the OpenGL Shader Designer. A shader development
IDE created for writing vertex and fragment (pixel) shaders in the OpenGL
Shading Language (GLSL). This is the official manual for the IDE. We have
written this as a guide that takes you trough the steps of writing a simple
multi-texture shader. It will explain everything from adding textures to
passing uniforms and using varying variables. The goal of this manual is
not to learn how to write shaders, it’s to learn using the IDE. To learn
more about the actual shaders, check the tutorials. They are available
from the OpenGL Shader Designer group on the start menu and the Help
- Tutorials menu in the IDE.

We have included lots of resources to aid you in your shader development.
Textures are located in the “textures folder”, material presets in
“materials”, light presets in “lights”, glsl docs in “docs” and some sample
shaders from 3d Labs in the “shaders” folder.

When installing the OpenGL Shader Designer, a new program group is
created on your start menu. This group contains shortcuts to the program
executable, this manual and the tutorials.

This manual will be updated on a regular basis, so check the site every
now and then. There screenshots are not guaranteed to be from the latest
build, but the differences should not be big.

We've included a feature to get info from the current driver. Use this to
inspect your specs (if you submit bugs, this info would be great). You’'ll
find it under Help -> Driver caps.

If you have any comments or suggestions, please send them to
bugreport@typoonlabs.com.

12 June 2004

Creating a new project and getting to know the IDE

To create a new project, select New from the File menu. Type in the name
you want for your project and save it. The Shader Designer creates a
fragment shader and a vertex shader for you.

You should now be looking at something like this:

&) shaderDesigner VERSION: 1.5. Project: C:\Program Files\TyphoonLabs\ShaderDesigner\shaders\testshader.gdp: TR - 3 == x|
Fie Edit View Project Buid Settings Help

TN DEEERE Ei.\l:l Jo< %Iﬁﬁlﬁ
[Shader Render og| qpx‘ 4 b x |[Light States 7
L d main () =fJuignto =l
T 4 e
s ¥ Bl Back Material
BackMatAmbient Il 51,5151
BackMatDiffuse [204, 204, 204
BackMatEmission I oo0
BackMatshininess]
BackMatSpecular W ooo0
Bl Front Material
FrontMatAmbient I 515151
FrontMatDiffuse [204,204, 204
FrontMatEmission M oo0
FrontMatShininess 0
FrantMatspecular N oo0
B Misc
LightModelAmbient Single[] Array
Bl Moving Light(0)
Distance 4
Rotation False
Speed 0.05
El point
[Toxtrs Preview Ll PointConstant i
Foi n 1
Poi 0
Poi 0
Pointsize 1
PointSizeMax 1
FointsizeMin 0
B Selected light
Ambient M o.00 |
Constantéttenuation 1
Diffuse [] 255,255,255
Enabled True
LinearAttenuation 0
Fosition single[] Array
QuadraticAttenuation | 0
Specular [] 255,255,255
SpotCutoff 180
SpotDirection Single[] Array
_A| spotexponent]
of
| niform Variables O 1 | [Results og
[~ |
(én:].j\ g; ggme nt Shader: e
oK. Ambient color forthe light
| J
Linking al h d £
Link success ~| @ Light States ertex States

The IDE with a new project loaded.

This is the main IDE. Every part of the editor is placed in it's own panel.
You can attach and detach each single one and place them where you see
fit.

You’'ve got access to OpenGL states, material and light settings to your
right. They are hid in sliding panels, so just move your cursor over them
to see them. To change a value in the grid, you'll just type in a new value
in the appropriate field. A special note about colors and alpha values:
When setting a alpha value on a color in the grid you’ll have to do it
manually at the moments. Just add the alpha component before the three
others. IE: you have a red color {255, 0, 0} and want to set the alpha to
50%. Change it to {128, 255, 0, 0}. We know that this isn’t the best way
to do this, and we are working on a color editor that makes this much
easier.

In the middle of the screen you’ll find the code box. This is where you'll
write the actual shader code. At the top of the code window you’ll see
some tabs. This is an overview over the shader files in the current project.

In the upper left corner you’ll see the preview pane. It gives a real-time
preview of the shader you are working on. You can change the view by
using the mouse. Press down the left mouse button and drag to rotate,
press the right and drag to zoom. If you want smooth movement, hold
down shift while moving. Lights are represented by small spheres colored
with the diffuse component assigned to that light source.

Right under the preview pane you'll see texture previews. It's just a
simple overview over the textures assigned to the current shader project.
A combo box let’s you choose texture unit. To bring up texture properties
for the selected texture unit, just double-click the preview.

The uniform variable overview is located under the texture preview pane.
Uniforms are variables sent from the host application (you'll find more info
on those in the tutorials). Right clicking this window brings up a context
menu with a few choices. You can add uniforms by clicking the “Add
Uniform” button. Select type, name and value(s), and the optional widget.
Once you press OK it will be added to the list. To modify an existing
variable, highlight the one you want to edit and select "Modify Uniform”.
To delete it, press “"Delete Uniform”.

We've added widgets for uniforms in version 1.5. To utilize them, just
select type in the create / modify dialog. We have two different kids of
widgets in this release. First out is the Color Slider. It let’s you change a
color uniform and get real-time previews. Double-click the color preview
to bring up the standard color picker. Slide bar is a customizable slider for
scalar values. You can set minimum value, maximum value and step.
Changes to the passed uniform are updated real-time just like the color
slider.

Under the uniform view you have the compilation output window. It will
tell you about errors during shader compilation or linking. To see the line
that causes the error, just double-click on the error line in the log, and the
cursor will be moved to the line.

The View menu has settings that apply for shader preview. Here you can
choose between different preview meshes, enable vertex normals in
preview, preview the shader full-screen and take a snapshot. The
snapshot will be stored in the folder called “snapshots”.

The Project menu lets you manage texture units, perspective settings and
add environment. The texture unit dialog is quite forward. Set the number
of texture units you want to use, choose the files and press accept. The

Shader Designer automatically creates uniform samplers for the textures.
The Perspective menu is also quite simple. Type in the field of view you
want to use, set a aspect ratio and set the near and far clipping planes.
The reset button sets the values to default. The Environment menu lets
you add a background image or a skybox to the preview pane. This is
useful when developing shaders that are partially transparent and so on.
You can also disable shader rendering.

The build menu is not much to talk about. "Compile project” compiles and
links the shaders in the project. “"Clear compilation window” clears the
output window.

The Help menu shows you this file, the about dialog, the tutorials and lets
you decide how much tips you want on your tool tips.

Textures . Loading and
ol using textures
Under the project

e menu you’ll see
T@"W “Textures...”. This
Min Filter: = . .
e]oLNEAR =] dialog is used to
Mag Filter:| ==
wraps: [GLREFEAT =] set up textures for
viap T |GLFEPEAT 5] your shader
WhepR: [GLREPEAT 7] project. At the top
you choose how
[Custom Texture A 5 .
—Setings many texture units
D Crozse U 2 TU 3 you want to use.
:e':;f'k . To assign a texture
o] E'_I to the currently
Filehame: |- \PROJECTS (RELEA _ | selected unit,
~CubeMap FileNames ——————— press the [...]
= button that's
e located right after
S | “FileName”, or
= i doubleclick on the
= [] preview box for
“Z : the unit you are
_I Refresh L Y
&mt| Textures Cancel assigning a texture

to. Once you've
located the file, accept and press “"Refresh Textures” and check that the

correct texture got assigned to the correct texture unit. To scroll down
press the arrow buttons. When you are all set, press Accept to return to
the main window. Remember to add these lines to the vertex and/or pixel
shader to gain access to the texture units.

uniform sampler2D TextureUnit0;
uniform sampler2D TextureUnit1;

If you load any texture plug-ins they’ll be available trough the “"Choose
plugin” and “Run plugin” buttons. The output will be previewed just like
textures you load.

Hotkeys

There are also hotkeys available fro easy access to common dialogs and
functions:

Ctrl + N New project

Ctrl + O Open project

Ctrl + S Save project

Ctrl + Z Undo

Ctrl +Y Redo

Ctrl + X Cut

Ctrl + C Copy

Ctrl + Vv Pasyr

Ctrl + T Textures dialog

Ctrl + P Perspective settings
Ctrl + E Environment settings
Ctrl + M Texture plug-ins
Ctrl + L Attrib plugins

Ctrl + space Intellisense

F2 Take snapshot
F4 Compile / Link

Writing and compiling a shader

Now we’ll go trough writing a new shader, adding textures and compiling
it. Create a new project called “firstshader”. Go add two textures to the
project. Add “four.jpg” to texture unit one, and “circle.jpg” to unit two. Let
the states be default.

Now you are ready to start writing your first shader. Select the shader file
called “firstshader.vert” from the tabs above the code box. This is the
vertex shader. The first thing we need to do is to create the main body of
the shader. Type in the following:

void main(void)
{
by

Now add the following lines between the brackets.

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_TexCoord[1] = gl_MultiTexCoord0;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

You've just set the texture coordinates for both texture units and multiplied the
current vertex with the model-view projection matrix. That's all for the vertex shader.

Let’s start at the pixel shader. Select if from the tabs and type in the following:

uniform sampler2D TextureUnit0;
uniform sampler2D TextureUnit1;

void main(void)

{
vec4 valuel = texture2D(TextureUnit0, vec2(gl_TexCoord[0]));
vec4 value2 = texture2D(TextureUnitl, vec2(gl_TexCoord[1]));
gl_FragColor = (valuel+value2) * 0.5;

by

That's all. The first two lines are samplers for the texture units. The vec4 lines
extract the color of the current texture fragments, and the gl_FragColor line sets the
color of the fragment being written. For a better explanation of the shader code, see
the tutorials.

NOTE: The meshes we supply with the Shader Designer has only one set of texture
coordinates. That’s the reson why we use gl_TexCoord[0] when looking up in unit 1.
vec4 value2 = texture2D(TextureUnitl, vec2(gl_TexCoord[0]));

Press F4 to compile the project and update the preview pane. You should now see
something like this:

& shaderDesigner VERSION: 1.5. Project: C:\Program Files\TyphoonLabs\latest\tutorials\shaders\multitexture.odp = : el | & %]
File Edit View Project Buid Setngs Help

IO FEEBREE ARNA O oo <|DE &

| <IDX| . 4 b x| [Light States 7
1] uniform sampler?D TextureUnitd: = | =l
2, uniform sampler?D TextureUnitl ; ~ oiw
S =)
4 void main(void) El Back Material
58 { BackMatAmbient [l 51,51,51
& vecd valuel = texture2D(TextureUnitd, vec? (gl TexCoord[0]}); BackMetDiffuse] 204, 204,204
7 vecd value2 = texture2D(TextureUnitl, vec? (gl TexCoord[0])); SR B 000
- BackMatshininess 0
E] gl FragColor = (valuel+value2) * 0.5; BackMatspecclar [0,0,0
ol a El Front Material
FrontMatambient [l 51,51,51
FrontMatDiffuse [] 204, 204, 204
FrontMatzmission [l 0. 0,0
FrontMatShininess 0
rrontmatspecular [l 0.0, 0
Bl Misc
LightModelAmbient Single[] Array
El Moving Light(0)
Distance a
Rotation False |
Speed 0.05
El pomt
PointConstart 1
Poi 1
Poin 0
Poi 0
Pointsize 1
PointSizeMax 1
PointSizeMin 0
B Selected light
Ambient M o000
ConstantAttenuatio 1
Diffuse [] 255, 255,255
Enabled True
LinearAttenuation 0
Position single[] Array
1| quadraticAttenuatic 0
Specular [] 2s5, 255,255
SpotCutoff 180
SpotDirection Single[] Array
SpotExponent @
o
[Unifarm Variables 0 1 |[Results og
[# 1d: 18, Type: int, Name: Texturelinit0, Values: 0 =]
ureUnit1, Values: 1 [1
ompiling Fragment Shaders...
wltitexture. frag Rotation
K Enable / Disable rotating light. Light0 is used
I
Linking all shaders.... I
Link successful =

The IDE with a multi-texture project loaded.
Plug-ins

The OpenGL Shader Designer has plug-in support for texture plug-ins and
vertex attribute plug-ins. They are both accessed trough the Plug-in menu
under Project. To add a plug-in, simply locate the file and press “Add plug-
in”. When it comes to the usage of plug-ins it can be very different from
plug-in to plug-in. Some are transparent; others provide dialogs and
advanced GUI’s. Check the documentation for the plug-in of current
interest for information on how it works.

x|| Using the included tangent /
binormal plugin

Vertex Attrib plug-ins are stored as .dap
files in the “Plugins” folder. To add a
MeshMendertangerts & binomals =] | plug-in to the current project, open the
PepNE Vertex Attrib Plugin dialog (CTRL + L).
attribute vec3 tangent: Press the [...] button and locate the file
irbuke vec3 binoma called meshmender.dap. Click “Open”
and then “Load plugin”. If everything

~| | succeeded you’ll now have a short

Filename;
|D:‘~F‘ ROJECTS (RELEASEMOpenGL Sh |

Plugin Flugin

description of the plug-in and it’s usage in the output. It's the plug-in
authors responsibility to provide a understandable and informative
description here. In this case, to access tangents and binormals you’ll
have to add “attribute vec3 tangent” and “attribute vec3 binormal” to your
vertex shader code. These variables will automatically be populated by the
plug-in.

