
TyphoonLabs’ GLSL Course 1/1

OpenGL Shading Language
Course

Chapter 3 – Basic Shaders

By
Jacobo Rodriguez Villar
jacobo.Rodriguez@typhoonlabs.com

TyphoonLabs’ GLSL Course 2/2

CHAPTER 3: Basic Shaders

INDEX

 Introduction 2
First Basic Shader 2
 Simple Shader 1 2
 Simple Shader 2: Using Varying Variables 6
Using Built-in Uniforms and Attributes 8
Texturing and Multitexturing (Vertex Attributes) 12
Discard Shader and Subroutines 17
Simple Illumination Model 1 20
Simple Illumination Model 2: Per Vertex Specular & Glossines 25

TyphoonLabs’ GLSL Course 3/3

INTRODUCTION
In this chapter we will explain some basic shaders, showing the basic operations of the
OpenGL Shading Language and how to achieve some simple effects. We’ll also cover the
access to to OpenGL states from shaders, and we'll show how the state values can be set
from the OpenGL Shader Designer IDE. We will present a detailed step-by-step guide on
both shader construction and useage of the Shader Designer IDE.

First we will focus on the syntax of GLSL and the operations used. The shaders we will
make are mostly implementations of simple algorithms. In the next chapter, “Advanced
Shaders,” we will focus on more complex algorithms, so knowing the basic GLSL syntax
and the use of operations will serve as a pre-requisite for that chapter.

First Basic Shaders
This section consists of two step-by-step guides to implement two basic shaders using
uniforms and varying variables.

Simple Shader 1

This shader is the simplest shader that we are able to write; that is, a mesh will be drawn
with a plain color and we will play with the vertex shader parameters.

First, create an empty project called “simple1.” This action will create the .gdp file
containing all OpenGL states that the shader needs. Also, two empty files will be created
and opened by the editor automatically and will have the same name as the project tile,
but their extensions will be .vert and .frag. They will hold the source code for the vertex
and the fragment shader.

Upon project generation, the Shader Designer automatically generates the main body
functions for both the vertex and the fragment shader. They are (as discussed earlier)
named main, they don't have parameters, and the return type is void.

We will compute the homogeneous vertex coordinates and the fragment color in the first
shader as follows:

TyphoonLabs’ GLSL Course 4/4

[Vertex shader]

As said before, ftransform() computes the homogenous vertex coordinates in clip-space
keeping the invariance intact (useful for multipass shaders). We could do gl_Position =
gl_ModelViewProjectionMatrix * gl_Vertex; and the result would be the same, but the
invariance could not be guaranteed.

Important note: gl_ModelViewProjectionMatrix * gl_Vertex IS NOT EQUAL TO
gl_Vertex * gl_ModelViewProjectionMatrix. Remember this from linear algebra:
matrices multiplications are not commutative.

[Fragment shader]

This function is fairly straightforward; it only assigns a pure white color to the fragments.
This would be the result after clicking F4 key (compile) with the torus selected as preview
mesh. For compilation results, see the build log at the bottom of the IDE.

void main()
{
 gl_Position = ftransform();
}

void main()
{
 gl_FragColor = vec4(1,1,1,1);
}

TyphoonLabs’ GLSL Course 5/5

This is a very simple and boring shader; so let's juice it up a bit.

First, create two uniform variables:

•First variable: call it “scale” with type = vec4 and with values = 1,1,1,1. Assign to it the
slider widget and set a minimum value of 0.5 and a maximum value of 3.

•Second variable: call it “color” with type = vec4 and with values = 1,1,1,1. Assign to it
the color slider widget.

Go to the vertex shader and modify the shader like this:

We have changed the ftransform() line for these two because we want scale the vertex in
world coordinates (vec4 pos = gl_Vertex * scale;) and then compute the position in clip-
space (gl_Position = gl_ModelViewProjectionMatrix * pos;).

Go to the fragment shader and modify it as well:

First we will play with the color. Right-click the uniform list window, highlighting the color
variable. A pop-up menu will appear with several choices. Select “Open Widget.” This
should bring up the color widget dialog. As you adjust the sliders you should notice how
the mesh color changes in real time. The color value is updated as it is changed in the
widget.

uniform vec4 scale;
void main()
{
 vec4 pos = gl_Vertex * scale;
 gl_Position = gl_ModelViewProjectionMatrix * pos;
}

uniform vec4 color;
void main()
{
 gl_FragColor = color;
}

TyphoonLabs’ GLSL Course 6/6

Now open the scale widget and try adjusting the values. You can change the scale of each
dimension individually. After some modification the mesh can end up looking like this (yes,
it is still a teapot):

TyphoonLabs’ GLSL Course 7/7

Simple Shader 2: Using Varying Variables

As said before, varying variables (sometimes called interpolators) are variables that are
written in the vertex shader and read in the fragment shader with a perspective-correct
interpolation. The following is a basic example of how to use a varying variable, along with
a shader that uses it to get a real effect.

First, create a new project with the Shader Designer and call it “varyings.gdp.” Then code
the vertex shader:

[Vertex shader]

[Fragment shader]

We are storing the vertex color value from the current vertex in the varying, and reading it
back in the fragment shader. The value we read is interpolated across each primitive
(usually, at each triangle). As a result of this operation we get the famous RGB cube. Here
is a screenshot of the shader applied to the “busto” mesh:

varying vec3 vertex_color;
void main()
{
 gl_Position = ftransform();
 vertex_color = gl_Vertex.xyz; // Example of how to use swizzling.
 // This is the same as vertex_color = vec3(gl_Vertex);
}

varying vec3 vertex_color;
void main()
{
 gl_FragColor = vec4(vertex_color,1.0); // Example of how to use a constructor.
}

TyphoonLabs’ GLSL Course 8/8

As a variation of this shader, you can also “see the normals” encoded as RGB colors. Just
replace gl_Vertex with gl_Normal in the vertex shader:

This shader teaches a few things. First, do you notice how colors are smoothly
interpolated? This is proof that varying variables actually does interpolate the values.
Second, since the vertex positions aren't normalized, shouldn't this shader produce some
unexpected results? Actually, no. GLSL clamps the gl_FragColor values to the range
[0,1].

TyphoonLabs’ GLSL Course 9/9

Using Built-in Uniforms and Attributes

It's now time to learn how to use the built-In attributes and OpenGL states. Here we will
use material properties from the property grid, and combine these values to get a material
(without lighting for now).

First, go to the property grid (default placement is at the right edge of the IDE main
window) and choose colors for the front material fields. For example, here we choose a
pure red color (255, 0, 0) for Front Material Ambient and pure green color (0, 255, 0) for
the diffuse component.

The following vertex shader source shows how to access the diffuse component of the
front material, and uses it as value for gl_FrontColor:

[Vertex shader]

We are computing the vertex position, but most important in this example, we are
assigning the green color the vertex color. We will perform some modifications to this
vertex shader later.

The fragment shader only sets the color of the current fragment to the color of the vertex.

[Fragment shader]

The values in gl_Color and gl_SecondaryColor will be derived automatically by the
system from gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and
gl_BackSecondaryColor based on which face is visible.

In this case, it will hold a pure green color because we are assigning the same color to
each vertex. If we had assigned a different color to gl_FrontColor we would see a smooth
interpolation across the primitive (as in the previous shader).

Let’s do a simple combination of the two built-in uniforms modified:

void main()
{
 gl_FrontColor = gl_FrontMaterial.diffuse;
 gl_Position = ftransform();
}

void main()
{
 gl_FragColor = gl_Color;
}

TyphoonLabs’ GLSL Course 10/10

[Vertex shader]

This will produce a yellow mesh, because (255,0,0) + (0,255,0) = (255,255,0) (yellow).

This shader isn’t really useful, as it does not produce any effects worth talking about, but it
does show how to access the built-in states in OpenGL. Setting up light states and
properties is very similar to using the states and properties for materials.

As a final modification for this shader, let’s add some noise to the final color. At this point,
the knowledge of how Perlin Noise works is assumed, but just in case, here is a brief
explanation:

Perlin Noise consists of an efficient computation of pseudo-random values. These values
are continuous between one value and its neighbors, and for a starting seed, Perlin always
generates the same values. There are many ways of getting Perlin Noise in the fragment
shader; one of them is by using a texture that holds the noise values, while another is
using the built-in noise[1|2|3|4] functions. We will be using the latter (notice: not all cards
supports this kind of noise, through a built-in function).

Now, let’s get dirt on our teapot.

void main()
{
 gl_FrontColor = gl_FrontMaterial.diffuse + gl_FrontMaterial.ambient;
 gl_Position = ftransform();
}

TyphoonLabs’ GLSL Course 11/11

Modify the vertex shader by adding this line:

[Vertex shader]

varying vec3 position;
void main()
{
 position = gl_Vertex.xyz;
 gl_FrontColor = gl_FrontMaterial.diffuse + gl_FrontMaterial.ambient;
 gl_Position = ftransform();
}

TyphoonLabs’ GLSL Course 12/12

[Fragment shader]

Our mesh color will be modulated by the noise value after we’ve converted it to greyscale.
This is the result after modulation:

Many 3D cards does not support noise functions, so if you do not get this shader working,
don’t worry, check your compilation log to see if there are any ‘noise’ unknown symbols (or
something like that)

varying vec3 position;
void main()
{
 vec2 col = (noise2(position.xy) * 0.5) + 0.5;
 // Noise returns values in the range [-1,1], we need map them to [0,1].
 float val = (col.x+col.y) / 2.0;
 // Convert the noise values to a ‘fake’ greyscale.
 gl_FragColor = gl_Color * vec4(val, val, val, 1);
 gl_FragColor.a = 1.0; // We do not want a transparent teapot.
}

TyphoonLabs’ GLSL Course 13/13

Texturing and Multitexturing (Vertex Attributes)

It’s time to take a peek at some more useful features. We discussed samplers earlier, and
now take a closer look at them and how to access a texture trough a sampler. Procedural
generated shaders are very interesting, and we will take a closer look at them later, along
with some more complex ones.

First is texture access in the fragment shader. The following explains how to load a texture
with Shader Designer in order to have it available for the shader.

Go to the textures dialog, and select ‘1’ in the “Texture units” spin button (the topmost of
the dialog). This will enable the first texture unit for us. Select GL_TEXTURE_2D in the
target field, GL_LINEAR for both Min and Mag filters, and GL_REPEAT for both clamp
fields (wrap_S and wrap_T). For an OpenGL programmer, those texture settings are very
common, so it should not be a problem to select the appropriate settings. Now we need to
choose the texture file. Once you have all texture parameters filled, press the Refresh
Textures button. If all goes well, you should see a thumbnail preview of the texture that
was loaded. If you don’t see it, it’s probably caused by a unsupported texture format
(Shader Designer allows .TGA, .BMP, .JPG, .PNG, and many more file formats, using
RGB, RGBA, BGR, BGRA, or LUMINANCE pixel formats).

When done, click Accept, and the texture will be ready to use in the shader. Now, let’s
write our first texturing shader.

Add a new uniform variable (you should already know how to do this). Call it tex, and give
a value of 0 and a type of int. We use zero as value because our texture is placed in the
texture unit zero.

We will use two methods to pass the texture coordinates. First we will use a custom
interpolator (a varying variable), and then a built-in interpolator.

[Vertex shader]

varying vec2 texCoords;
void main()
{
 gl_Position = ftransform();
 texCoords = gl_MultiTexCoord0.st;
// This attribute holds the texture coordinates issued with OpenGL
glTexCoord2 calls for the texture unit 0.
}

TyphoonLabs’ GLSL Course 14/14

[Fragment shader]

Press F4, and you should see something like this (depending on the texture chosen):

Here are the shaders using the built-in texture coordinates interpolator:

[Vertex shader]

[Fragment shader]

varying vec2 texCoords;
uniform sampler2D tex;
void main()
{
 gl_FragColor = texture2D(tex, texCoords);
}

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_MultiTexCoord0;
}

uniform sampler2D tex;
void main()
{
 gl_FragColor = texture2D(tex, gl_TexCoord[0].st);
}

TyphoonLabs’ GLSL Course 15/15

This will produce exactly the same result as the previous method, but using the built-in
texture interpolators is considered the standard.

With all of this still fresh in our heads, let’s get started on multi-texturing. As an OpenGL
programmer, you should know that the only way to combine textures without shaders is
through blending and multiple passes (though limited by the blending modes), or by using
the texture combiner. With shaders, you can combine the textures any way you wish. Let’s
see some examples.

First, we need more than one texture, so add another one with the textures dialog and add
another uniform (name tex2, type = int, value = 1).

Because we only need one UV set (and the Shader Designer only provides one UV set per
mesh), we can use the same texture coordinates for the two textures. However, let's make
the shader a bit more complex. For texture ‘tex,’ use the same UV set as the last example,
but for texture ‘tex2,’ modify the UV set. The modification is a simple scale by a uniform
value: add another uniform called 'scale' and give it a type of vec2 and a value of 1,1 (give
it a custom widget with a min = 0 and max = 4). Then modify the shader like this:

[Vertex shader]

[Fragment shader]

uniform vec2 scale;
void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0].st = gl_MultiTexCoord0.st;
 gl_TexCoord[1].st = gl_MultiTexCoord0.st * scale;
}

uniform sampler2D tex;
uniform sampler2D tex2;
void main()
{
 vec4 value1 = texture2D(tex, gl_TexCoord[0].st);
 vec4 value2 = texture2D(tex2, gl_TexCoord[1].st);
 gl_FragColor = value1 + value2;
}

TyphoonLabs’ GLSL Course 16/16

Open the ‘scale’ widget and play around a bit with it. You should be able to see how the
texture is stretched/enlarged in both directions:

As you can see, We used a brick texture and a fire texture, and both are added.

The line gl_FragColor = value1 + value2; is the core of the shader; here you can do
whatever you want, including addition, subtraction, interpolation, bump mapping,
combining only certain texture components, etc.

Before we end this example, let’s throw in another effect. We’ll animate the fire texture
based on time from init by using some predefined uniforms that Shader Designer provides.
Let’s implement a simple animation in the horizontal axis.

We only need to modify the vertex shader because we only need to modify the texture
coordinates.

First of all, delete the ‘scale’ uniform, since we don’t need it anymore. Then go to the
uniform dialog and select the TIME_FROM_INIT predefined variable from the list. This
variable increases its value in each frame, so it is perfect for our purposes.

[Vertex shader]

//Uniform vec2 scale:
uniform int TIME_FROM_INIT;
void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0].st = gl_MultiTexCoord0.st;
 float offset = float(TIME_FROM_INIT) * 0.001;
 gl_TexCoord[1].t = gl_MultiTexCoord0.t;
 gl_TexCoord[1].s = gl_MultiTexCoord0.s + offset;
}

TyphoonLabs’ GLSL Course 17/17

The reduction of the TIME_FROM_INIT is needed because this variable holds the
milliseconds elapsed since the program starts, which is a ,large number to add to the
texture coordinates. As an idea, you can set up a uniform to control the speed of the
animation, but do not use fixed values like 0.001.

At this point you know all about texturing with GLSL. You can use textures 1D, 2D, 3D,
and cubemaps, using the textures dialog and the texture access built-in functions.

TyphoonLabs’ GLSL Course 18/18

Discard Shader and Subroutines

In certain situations we will have fragments that we want discarded; that is, we don’t want
them to be updated in the frame buffer. For the color buffer we can use the alpha test or
alpha blending, but the other buffers will be updated (stencil, depth, etc.) unless we use
discard. Using discard we can save some processing power by returning to an early stage
of our shader, avoiding later computations, and giving our meshes a “transparency” on
many parts.

In this example we will draw a yellowish grid based on the texture coordinates to discard
some fragments. We will also introduce the use of subroutines.

Our vertex shader only needs to compute the vertex position and the texture coordinates.
In order to be homogeneous and follow the standard, we multiply the texture coordinates
by the right texture matrix. By doing this we can be sure that any changes made to the
texture matrix in the host application are included in the computations in the shader.

NOTE: This step is only to show how to access the texture matrix (for academic purposes)
and if you don’t need it (because your host doesn’t use the texture matrix), this step can be
skipped.

[Vertex shader]

Our fragment shader has more code this time. We need to know when to discard the
fragment, so we need to do a test, for which we’ll use the “if” statement. Since we will be
discarding fragments based on their texture coordinates, we must decide when we will
discard them. For this example, this criterion is when the second decimal cipher is greater
than a given threshold. To achieve this, we modify the texture coordinates by scaling them
by 10.0 and then drop the integer part with the built-in fract function.

To introduce the use of subroutines, we’ll move the vector comparison into a new function
in a separate source file. Click on the ‘New Fragment Shader” toolbar button and write this:

[fp1.frag Fragment shader]

Like in C, a function must be declared before using it, so we have to write its prototype
(aka: declare it).

void main()
{
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
 gl_Position = ftransform();
}

bool greater(in vec2 v1, in vec2 v2)
{
 return all(greaterThan(v1,v2));
}

TyphoonLabs’ GLSL Course 19/19

[Fragment shader]

As you can see, we’ve setup two uniform variables, one for the mesh color and one for the
threshold. Give an initial value for last one of (0.13,0.13) and use a custom widget with
minimum limit of zero and maximum limit of 1, then, play with it.

This shader should produce an output like this:

uniform vec2 threshold;
uniform vec3 color;
bool greater(in vec2 v1, in vec2 v2);

void main()
{
 vec2 ss = fract(gl_TexCoord[0].st * 10.0);
 if (greater(ss, threshold))
 discard;
 gl_FragColor = vec4 (color, 1.0);
}

TyphoonLabs’ GLSL Course 20/20

Notice that the lines of the back side are not shown. To see them, disable the backface
culling in the vertex states panel. It will then look something like this:

TyphoonLabs’ GLSL Course 21/21

Simple Illumination Model

It is time to add lights to our shaders. This topic requires a bit of math knowledge, in terms
of how to build a fast illumination model as close as possible to its physical behavior. We’ll
go through the basic models and then build more sophisticated models (bump mapping for
example) later on.

At this point we assume that you are familiar with how OpenGL lights works, the usual
OpenGL lighting models, and the different lights that OpenGL provides. In this shader we
will implement Goraud (per-vertex) lights and later extend it to per-pixel lighting.

There are three types of lights: Directional Light, Point Light, and Spot Light. We will
implement only the first two of them for now.

Directional Light Point Light Spot Light

Note: Because this is a basic example, we are not concerned about surface material or
specular components. We only use a texture as a base material.

In this case I will show the fragment shader first, because it will be used along the
following lighting examples.

[Fragment shader]

This is a very simple method (but not the best method) for implementing lighting, but for
our test it is good enough. In the vertex shader we will compute the diffuse light
contribution, depending on the type of light and the light parameters, at each vertex. This
value will be interpolated and passed to the fragment shader. There, the texture will be
modulated by the light contribution.

Light direction

Cut-off angle

uniform sampler2D texture;
varying vec4 diffuse;

void main()
{
 vec4 texColor = texture2D(texture, gl_TexCoord[0].st);
 gl_FragColor = (gl_LightSource[0].ambient + diffuse) * texColor;
}

TyphoonLabs’ GLSL Course 22/22

What is the light's diffuse component? Light can be reflected by a surface in a variety of
ways. One of these ways is the diffuse reflection.

The value of the light's diffuse component increases as the light vector and the normal
decrease their angle, reaching its maximum when they are parallel and minimum when
they are perpendicular.

Looking the graph:

• A: Angle between normal and light vector is less than 90º, so there should be light,
but only with a little power, because the angle is close to 90º.

• B: Here the light must be maximum, because this point directly faces the light point
(angle ~= 0º).

• C: Here there should not be any diffuse light contribution, because the angle is
greater than 90º. This means that this point is not visible from the light point.

Our main goal here is finding a normalized value (range [0,1]) to modulate the diffuse color
using the following: diffuse_contribution = diffuse_color * diffuse_power; where if
diffuse_power = 0, black color is applied, and if diffuse_power = 1, diffuse color is applied.

The dot product is our friend. To clarify, the dot product is the scalar product between two
vectors, and its formula (one of several you can find in any algebra book) is:

a · b = |a| * |b| * cos(angle_between_vectors)

If a and b vectors are normalized, the dot product means:

a · b = 1 * 1 * cos(angle);

The cosine function always return a value in the range [-1,+1].

Surface: Axis X: Axis Y:
Light vector: Normal:

C
B

A

TyphoonLabs’ GLSL Course 23/23

The nxDir formula: nxDir = max(0.0, dot(normal, lightVector)); means:

•nxDir will have a value > 0 if the angle between the vector is between 0º and 90º
•If the angle is greater than 90º, the max function will clamp the value to 0.

With this value we know in which way the diffuse contribution affects to a surface point.

Let’s move on to the directional light vertex shader.

[Vertex shader]

Brief explanation:

Directional lights rays are defined relative to the origin, so a directional light with a
‘position’ of xyz really means that the director light ray parts from xyz and goes to (0,0,0)
(remember that all other rays are parallel to this one), so our light vector is xyz - (0,0,0). In
other words, the light vector has the same value as the light position.

After the usual computations of the vertex position and texture coordinates, we need to
know the vector and the vertex normal. Shader Designer provides meshes with smooth
normals (per vertex, not per face) which are normalized, so renormalization is not
necessary. The light positions are given in world coordinates (that’s how Shader
Designer works), so we do not need to do computations on those either. If they
weren’t given in world space we would have to transform them by the normal
matrix, since the object and the lights must be in the same space before making any
computations. REMEMBER MULTIPLY LIGHTS BY THE NORMAL MATRIX BEFORE
NORMALIZATION IF YOUR LIGHT POSITIONS DOESN’T COME IN WORLD
COORDINATES. Remember this, because all following shaders in this course will
receive the light position in world coordinates, but in your real application, it most
likely wont happen.

Ambient colors, diffuse colors, and position are filled with the values from the property grid
(lighting states). Insert the value of (51,51,51) to the light0’s ambient component (51
[0,1] = 0.2) and a yellowish color for the diffuse component (255,255,128). Place the light

varying vec4 diffuse;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;

 //vec3 normal = gl_NormalMatrix * gl_Normal; // Usually your lights won't be in
world space, so you have to multiply the normal by the normal matrix to have it in
world space.
 vec3 normal = gl_Normal; // Normals are expected to be normalized. If they are not,
do it here.
 vec3 lightVector = normalize(gl_LightSource[0].position.xyz);
 float nxDir = max(0.0, dot(normal, lightVector)); // Normal x light direction.

 diffuse = gl_LightSource[0].diffuse * nxDir;
}

TyphoonLabs’ GLSL Course 24/24

at (0,0,3) to give the direction for the light rays.

It is now time to compute the two light components that we are going to use (ambient and
diffuse) and pass them to the fragment shader by using varying variables. Ambient is quite
simple; just use the value filled in by the property grid with gl_LightSource[0].ambient.
For the diffuse component we need do some computations. First the light direction: this is
done with a dot product of the normal and light position in world coordinates.

The shader rendering should look like this:

Now let's see how point lights works, and implement them into a shader.

The vertex shader for our point light is this:

[Vertex shader]

varying vec4 diffuse;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
 /* vec3 normal = gl_NormalMatrix * gl_Normal; // Usually your lights won't be in world
space, so you have to multiply the normal by the normal matrix to have it in world space */
 vec3 normal = gl_Normal; // Normals are expected to be normalized. If they are not, do it
here.

 vec3 lightVector = gl_LightSource[0].position.xyz - gl_Vertex.xyz;
 float dist = length(lightVector);

 float attenuation = 1.0 / (gl_LightSource[0].constantAttenuation +
 gl_LightSource[0].linearAttenuation * dist +
 gl_LightSource[0].quadraticAttenuation * dist * dist);

 lightVector = normalize(lightVector);
 float nxDir = max(0.0, dot(normal, lightVector)); // Normal x light direction.
 diffuse = gl_LightSource[0].diffuse * nxDir * attenuation;
}

TyphoonLabs’ GLSL Course 25/25

The biggest differences between directional lights and points light are the attenuation
computation and the light vector. Light vector is computed as the difference between the
light position and the incident vertex position (since the light and the vertex are both in the
same space, there is no need for any kind of transformation to another system). By doing it
this way, we get radial vectors to the light position (remember that directional light rays are
parallel, not radial).

This is a render with point light and the following parameters: ambient color = (0,0,0);
diffuse color = (255,255,255); light position = (0,0,2); linear attenuation = 1, constant
attenuation = 0. The rest of the light states are the default values.

Light position

Surface

TyphoonLabs’ GLSL Course 26/26

Simple Illumination Model 2 (Per Vertex Specular & Glossiness)

We’ve just taken a look at a basic illumination shader. It computed light and little more. It
did not cover criteria like specularity and glossiness. Specular hightlights are an interesting
feature, as they are view-dependent. Take a shiny object (a metal plate, for example) and
hold it close to a lamp. Hold the plate still, but move your head while looking at it. Notice
how the light highlight moves according to your head position. This highlight is called the
“specular term” of a light, and depends on three factors: the light, the surface material, and
the viewer position. This part was left out of the previous shader because it is a bit harder
than the previous concepts. However, with ambient and diffuse understood, specular is
easier to explain.

Before we start coding let's initialize a few things. First, add the texture “./textures/
parallaxgloss.tga.” It has the base colors in RGB components, as well as a gloss map in
the alpha channel. A gloss map is a map that holds only 0 or 1 (0, 255), and will help us
decide what parts of the surface are dirty and won’t be affected by specular component.
Remember to setup the uniform with the texture unit too. We’ll use the following light
parameters: FrontMatShininess = 64, Ambient = (0,0,0), Diffuse = specular =
(255,255,255).

Let’s start with the fragment shader.

[Fragment shader]

This is almost the same shader as in the last examples, but it receives the interpolated
specular component, and the texture is divided in two parts: the RGB one and the gloss
one (alpha component). This gloss might be multiplied by the specular factor in order to
avoid it if the gloss map is 0 (we do not want specular contribution over dirty surfaces:
gloss = 0 dirty).

uniform sampler2D texture;
varying vec4 diffuse;
varying vec4 specular;

void main()
{
 vec4 texColor = texture2D(texture, gl_TexCoord[0].st);
 gl_FragColor = gl_LightSource[0].ambient +

(diffuse * vec4(texColor.rgb,1.0)) +
 (specular * texColor.a);

}

TyphoonLabs’ GLSL Course 27/27

Now let’s start with the topic of this example: computing the specular contribution in the
vertex shader.

Specular contribution works very similarly to diffuse, but with three differences: a) the
specular strength depends on the surface material, not only on the light; b) specular is
view–dependent, that is, it changes if the relative observer position to the observed object
changes; and c) the specular reflection is very gathered at a reduced area of the surface.

Let's see how to factor in those three points:

a: We will use material properties to compute the specular contribution
(gl_FrontMaterial.shininess).

b and c: Instead of using the light vector and the normal to see if there is contribution,
we will use a new vector, formed by the camera vector and the light vector (half vector).

Because the specular contribution is small and gathered, we can’t use the measure given
by the normal and the light vector. Instead, we will compute a vector that is in the middle of
those two vectors: halfVector = normalize(cameravector + lightvector);. Using it in the
max/dot formula, we get our modulation value, but another step is needed. We also need
to control how powerfull and gathered the specular reflection is, so we raise this value with
a material property: shininess (the higher the shininess, the less the specular power). At
the end we do not want specular contribution if the point is not viewable from the light
point, so we will enclose all into a conditional

TyphoonLabs’ GLSL Course 28/28

[Vertex shader]

This shader uses the basecode from the last shader, and adds some new lines at the end
to compute the specular contribution. The first noticeable change is the addition of a
predefined uniform variable, the camera position (in world coordinates). We need it to
compute the camera vector and the half vector, which are both needed for the specular
reflection. We can also compute the camera position programmatically. Any point in view
space can be multiplied by the inverse of the modelview matrix to obtain its position in
world space, and the camera position in view space is (0,0,0), so if we multiply (0,0,0) by
the inverse of modelview, we get the camera position in world space as well.

varying vec4 diffuse;
varying vec4 specular;
uniform vec3 CAMERA_POSITION;

void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;

 vec3 normal = gl_Normal;
 vec3 lightVector = gl_LightSource[0].position.xyz - gl_Vertex.xyz;
 float dist = length(lightVector);
 float attenuation = 1.0 / (gl_LightSource[0].constantAttenuation +
 gl_LightSource[0].linearAttenuation * dist +
 gl_LightSource[0].quadraticAttenuation * dist *
dist);

 lightVector = normalize(lightVector);
 float nxDir = max(0.0, dot(normal, lightVector));
 diffuse = gl_LightSource[0].diffuse * nxDir * attenuation;

 //-----------------NEW CODE TO COMPUTE SPECULAR TERM----------------
 //-----------------NEW CODE TO COMPUTE SPECULAR TERM----------------
 float specularPower = 0.0;
 if(nxDir != 0.0)
 {
 // Programatic way
 //vec3 cameraPosition = vec3(gl_ModelViewMatrixInverse * vec4(0,0,0,1.0));
 //cameraPosition = normalize(cameraPosition - gl_Vertex.xyz);
 vec3 cameraVector = normalize(CAMERA_POSITION - gl_Vertex.xyz);
 vec3 halfVector = normalize(lightVector + cameraVector);
 float nxHalf = max(0.0,dot(normal, halfVector));
 specularPower = pow(nxHalf, gl_FrontMaterial.shininess);
 }
 specular = gl_LightSource[0].specular* specularPower * attenuation;
}

TyphoonLabs’ GLSL Course 29/29

The specular illumination model needs three vectors: one that goes from the light to the
surface, one that goes from the camera to the vertex, and a vector called halfVector (the
normalized sum of the other two). Let’s see a figure:

We need to know all those vectors. LightVector have been computed in earlier shaders
and it is there already there for us, but we don’t know the others:

The half vector is crucial because it provides us with useful information. For example, it
gives us the size of the highlight according to the camera and light positions. We obtain
this information this way:

The nxHalf variable has the same meaning as nxDir: it informs us of the direction and
power of the contribution (more than 90º with the normal = no specular at all), depending
on the surface (the normal) and the ‘lightVector’ (for specular we use the halfVector, not
the real lightVector).

SURFACE

Light vector View vector NormalHalf vector

vec3 cameraVector = normalize(CAMERA_POSITION - gl_Vertex.xyz);
vec3 halfVector = normalize(lightVector + cameraVector);

float nxHalf = max(0.0,dot(normal, halfVector));
float specularPower = 0.0;
if(nxDir != 0.0)
 specularPower = pow(nxHalf, gl_FrontMaterial.shininess);
specular = gl_LightSource[0].specular * specularPower * attenuation;

TyphoonLabs’ GLSL Course 30/30

To clarify, let's say the dot product is the scalar product between two vectors, and its
formula (one of them) is this:

a · b = |a| * |b| * cos(angle_between_vectors)

If a and b vectors are normalized, the dot product means:

a · b = 1 * 1 * cos(angle);

The cosine function always returns a value in the range [-1,+1].

The nxDir formula: nxDir = max(0.0, dot(normal, lightVector)); means:

• nxDir will have a value > 0 if the angle between the vector is between 0º and 90º.
• If the angle is greater than 90º the max function will clamp the value to 0.

This gives us a measurable way of computing whether a point is lit or not (an angle > 90º
between the normal and the lightvector means that the point doesn’t receive light).

With this value we choose if there is specular contribution and, if so, how much. We also
use this value to compute the strength of the specular contribution (according to the
surface properties; in this case, we only take care of the shininess exponent).

Let's go over some interesting screenshots.

Completed shader: Point light with ambient, diffuse, specular, and gloss mapping. You can
see the specular highlight obscured by the gloss map:

TyphoonLabs’ GLSL Course 31/31

Shader without gloss map; full specularity is applied:

You may be asking why you should exert so much effort to do the same thing that OpenGL
does by itself with the function fixed pipeline, and you are right. OpenGL can do this
without problems with just a few calls to glLightfv. However, that method has a large
problem. It is per-vertex lighting, which means that the final quality depends on how many
triangles have our mesh. With poor tessellation, it would look something like this (without
textures, for clarity):

This is a terrible illumination model! But don’t worry; we’ve done all the work up to this
point and know how light contributions can be computed. The process is the same, no
matter if we do it in the vertex shader (per vertex lighting) or in the fragment shader (per
pixel lighting).

Per vertex lighting consist of computing the light contributions on a per vertex basis, and
passing those contributions, interpolated through the primitive, to the fragment shader. Per
pixel lighting is almost the same, but with one major difference: the value passed from the

TyphoonLabs’ GLSL Course 32/32

vertex shader, via an interpolator, to the fragment shader, is the vertex normal, and all
lighting computations are done in the fragment shader with this interpolated normal. With
per pixel lighting, we only need to do a few small changes to get a great-looking
illumination. The following chapter will cover this.

