
TyphoonLabs’ GLSL Course 1/1

OpenGL Shading Language
Course

Chapter 2 – GLSL Basics

By
Jacobo Rodriguez Villar
jacobo.Rodriguez@typhoonlabs.com

TyphoonLabs’ GLSL Course 2/2

Chapter 2: GLSL Basics

INDEX

Introduction 2
GLSL Language 2

Mechanisms Borrowed from C++ 2

Character Set 2
 Pre-processor Keywords 3
 Comments 3
 Variables and Types 4
 Type Descriptions 4
 Type Qualifiers 9
 Operators and Preference 10
 Subroutines 10
 Flow Control 11
 Built-in Variables 11
 Built-in Constants 14
 Built-in Attributes 14
 General Built-in Uniform States 15
 Varying Variables 18
 Built-in Functions 19

TyphoonLabs’ GLSL Course 3/3

Introduction
This chapter will attempt to summarize the entire GLSL 1.10.59 specification.

GLSL itself is a C-like language, which borrows features from C++. Knowledge of C is
assumed, so the fundamentals and basics of that language will not be explained further
(with exception to the parts that differ between C and C++).

GLSL Language

Mechanisms Borrowed from C++:

• Function overloading based on argument types.
• Declaration of variables where they are required, instead of at the beginning of each

block.

Character Set
The character set used for GLSL is a subset of ASCII, and includes the following
characters:

1º The letters a-z, A-Z, and the underscore (_).
2º The numbers 0-9.
3º The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled

brackets (< and >), square brackets ([and]), parentheses ((and)), braces ({ and }
), caret (^), vertical bar (|), ampersand (&), tilde (~), equals (=), exclamation point (!),
colon (:), semicolon (;), comma (,), and question mark (?).

4º The number sign (#) for pre-processor use.
5º White space: the space character, horizontal tab, vertical tab, form feed, carriage-

return, and linefeed.

The character set is case-sensitive, and there are no characters or string data types, so no
quotation characters are included.

Also, the language does not allow any pointer types or any kind of pointer arithmetic.

TyphoonLabs’ GLSL Course 4/4

Pre-processor Keywords
Operates as is standard for C++ pre-processors.
#define Operates as is standard for C++ pre-processors.
#undef Operates as is standard for C++ pre-processors.
#if Operates as is standard for C++ pre-processors (only for integer and #defined types).
#ifdef Operates as is standard for C++ pre-processors.
#ifndef Operates as is standard for C++ pre-processors.
#else Operates as is standard for C++ pre-processors.
#elif Operates as is standard for C++ pre-processors (only for integer and #defined types).
#endif Operates as is standard for C++ pre-processors.

#error
error will cause the implementation to put a diagnostic message in the shader’s
information log. The message will be the tokens following the #error directive, up to the
first new line. The implementation must then consider the shader to be ill-formed.

#pragma

#pragma allows implementation-dependent compiler control. Tokens following #pragma
are not subject to pre-processor macro expansion.
The following pragmas are defined as part of the language:
#pragma optimize(on)
#pragma optimize(off)
#pragma debug(on)
#pragma debug(off)

#extension

For default, any extension to the language must be enabled using this keyword:
#extension extension_name : behaviour
#extension all : behaviour
 [Frame1] The initial state of the compiler is as if the directive
#extension all : disable
was issued, telling the compiler that all error and warning reporting must be done
according to this specification, ignoring any extensions.
Macro expansion is not done on lines containing #extension directive.

#version

Used to declare the GLSL version against the shader. Written (#version number), where
number must be 110 for this specification’s version of the language (following the same
convention as __VERSION__ above), in which case the directive will be accepted with
no errors or warnings. Any number less than 110 will cause an error to be generated.
Macro expansion is not done on lines containing #version directive.

#line

#line must have, after macro substitution, one of the following two forms:
#line line or #line line source-string-number
where line and source-string-number are constant integer expressions. After processing
this directive (including its new-line), the implementation will behave as if it is compiling at
line number line+1 and source string number source-string-number. Subsequent source
strings will be numbered sequentially, until another #line directive overrides that
numbering.

defined
The defined operator can be used in either of the following ways:
defined identifier or
defined (identifier)

__LINE__ __LINE__ will substitute a decimal integer constant that is one more than the number of
preceding newlines in the current source string.

__FILE__ __FILE__ will substitute a decimal integer constant that says which source string number
is currently being processed.

__VERSION__
__VERSION__ will substitute a decimal integer reflecting the version number of the
OpenGL shading language. The version of the shading language described in this
document will have __VERSION__ substitute the decimal integer 110.

Comments
Comments are delimited by /* and */, or by // and a new-line. The begin comment
delimiters (/* or //) are not recognized as delimiters when inside a comment, meaning
nesting does not exist.

Variables and types
These are the basic GLSL types:

TyphoonLabs’ GLSL Course 5/5

GLSL data type C data type Description
bool int A conditional type, taking on values of true or false.
int int Signed integer.
float float Single floating-point scalar.
vec2 float [2] Two component floating-point vector.
vect3 float [3] Three component floating-point vector.
vec4 float [4] Four component floating-point vector.
bvec2 int [2] Two component Boolean vector.
bvec3 int [3] Three component Boolean vector.
bvec4 int [4] Four component Boolean vector.
ivec2 int [2] Two component signed integer vector.
ivec3 int [3] Three component signed integer vector.
ivec4 int [4] Four component signed integer vector.
mat2 float [4] 2×2 floating-point matrix.
mat3 float [9] 3×3 floating-point matrix.
mat4 float [16] 4×4 floating-point matrix.

sampler1D int Handle for accessing a 1D texture.
sampler2D int Handle for accessing a 2D texture.
sampler3D int Handle for accessing a 3D texture.

samplerCube int Handle for accessing a cubemap texture.
sampler1DShadow int A handle for accessing a 1D depth texture with comparison.
Sampler2DShadow int A handle for accessing a 2D depth texture with comparison.

Type Descriptions

Booleans
To make conditional execution of code easier to express, the type bool is supported.
There is no expectation that hardware directly supports variables of this type. It is a
genuine Boolean type, holding only one of two values (either true or false). Two keywords,
true and false, can be used as Boolean constants.

Integers
Integers are mainly supported as a programming aid. At the hardware level, real integers
would aid in the efficient implementation of loops and array indices, and in referencing
texture units. However, there is no requirement that integers used within the language can
map to integer types used within hardware. It is not expected that underlying hardware has
full support for a wide range of integer operations. Because of their intended (limited)
purpose, integers are limited to 16 bits of precision, plus a sign representation in both the
vertex and fragment languages. There is no automatic promotion from int to float (so
int a=1.0; would cause an error, for example).

Floats
Floats are available for use within a variety of scalar calculations. Floating-point variables
are defined as follows: float a = 1.8;

Vector types
GLSL includes data types for generic 2, 3, and 4 component vectors of floating-point
values, integers, or booleans. Defining vectors as part of the shading language allows for
direct mapping of vector operations on graphics hardware that is capable of doing vector
processing. In general, applications will be able to take better advantage of the parallelism
in graphics hardware by doing computations on vectors rather than on scalar values.

TyphoonLabs’ GLSL Course 6/6

Vector elements can be accessed in several ways:

For example, using vec4 myVector; we can access myVector’s elements in the usual
way:

myVector[1] = 6.4;

Another way of accessing the elements is to use the struct subscript:

myVector.y = 6.4 or myVector.s = 6.4;

When using a struct subscript, we have the following access names for the indices (they
are synonyms):

[0] [1] [2] [3] Useful when element looping is required.
x y z w Useful when accessing vectors that represent points.
s t p q Useful when accessing vectors that texture coordinates.
r g b a Useful when accessing vectors that represent colors.

Accessing components beyond those declared for the vector type is an error, meaning:

The component selection syntax allows multiple components to be selected by appending
their names (from the same name set) after the period character (.):

The order of the components can be changed or replicated via sizzling:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4
v4.rgb; // is a vec3
v4.b; // is a float
v4.xy; // is a vec2
v4.xgba; // is illegal - the component names do not come from the same set

vec2 pos;
pos.x // is legal
pos.z // is illegal

TyphoonLabs’ GLSL Course 7/7

Component group notation can occur on the left-hand side of an expression:

Some examples of vector type construction:

Examples:

Matrices
GLSL supports 2×2, 3×3, and 4×4 matrices of floating-point numbers. Matrices are read-
from and written-to the column in major order.

Example matrix declarations:

Matrices are based on vectors, so syntax like optMatrix[2]=vec3(1.0,1.0,1.0); is
allowed.

For example, initializing the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;

vec3 (float) // initializes each component of a vec3 with the float
vec4 (ivec4) // makes a vec4 from an ivec4, with component-wise conversion
vec2 (float, float) // initializes a vec2 with 2 floats
ivec3 (int, int, int) // initializes an ivec3 with 3 ints
bvec4 (int, int, float, float) // initializes with 4 Boolean conversions
vec2 (vec3) // drops the third component of a vec3
vec3 (vec4) // drops the fourth component of a vec4
vec3 (vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3 (float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4 (vec3, float)
vec4 (float, vec3)
vec4 (vec2, vec2)

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0

TyphoonLabs’ GLSL Course 8/8

Initializing a matrix can be achieved by specifying vectors, or specifying all 4, 9, or 16
floats for mat2, mat3, and mat4 respectively. The floats are then assigned to elements in
column major order.

There are many possibilities here, as long as enough components are present to initialize
the matrix. However, construction of a matrix from other matrices is currently reserved for
future use.

Samplers
Sampler types (like sampler2D) are effectively opaque handles to textures. They are
used with the built-in texture functions to access textures, and can only be declared as
function parameters or uniforms. Samplers are not allowed to be used as operands within
expressions, nor can they be assigned within. As uniforms, they are initialized through the
OpenGL API using int type.

Note:
Samplers represent texture units, not texture objects. In order to use a texture within a
shader, it must first be bound to a texture unit, and then the tex unit number must be
passed to the shader. Some cards only have few texture units (for example, the GeForce
FX5200 hardware only has four). If we only have access to GL_MAX_TEXTURE_UNITS
textures within the shader this will not be an ideal situation.

However, this perceived limitation is not entirely correct:

A texture unit is composed of an image, a matrix, an interpolator, and a coordinate
generation processor. Though we are limited by the number of texture images available,
we are not limited by the number of texture units. This number can be obtained by
querying GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB (with a FX5200 this
number is 16). Graphics cards usually have more texture images than texture units.

mat2(vec2, vec2);
mat3(vec3, vec3, vec3);
mat4(vec4, vec4, vec4, vec4);

mat2(float, float,
 float, float);

mat3(float, float, float,
 float, float, float,
 float, float, float);

mat4(float, float, float, float,
 float, float, float, float,
 float, float, float, float,
 float, float, float, float);

TyphoonLabs’ GLSL Course 9/9

The GLSL extensions (both vertex and fragment) specify that in order to set a texture to a
texture image, the texture unit does not have to be enabled. The following example shows
how to set-up texures within OpenGL, for use with uniform samplers:

Structures
User-defined types can be created by aggregating pre-defined types into a structure using
the struct keyword. For example:

Here, light becomes the name of the new type, and lightVar becomes a variable of type
light. To declare variables of the new type, simply use its name:

Arrays
Variables of the same type can be aggregated into arrays by declaring a name followed by
brackets ([]) enclosing an optional size. When an array size is specified within a
declaration, it must be an integral constant expression greater than zero.

All basic types and structures can be formed into arrays:

for(int I = 0;I< my number of textures;I++)
{
 glActiveTextureARB(GL_TEXTURE0_ARB + I);
 glBindTextureARB(GL_TEXTURE_2D,my_texture_array[I]);

 // glEnable(GL_TEXTURE_2D); this command is not needed

 int location = glGetUniformLocationARB(myProgramObject, mySamplerNameArray[I]);
 glUniform1iARB(location, I);
}
glActiveTextureARB(GL_TEXTURE0_ARB);

float frequencies[3];
uniform vec4
lightPosition[4];
light lights[];
const int numLights = 2;
light lights[numLights];

struct light
{
 float intensity;
 vec3 position;
} lightVar;

light lightVar2;

TyphoonLabs’ GLSL Course 10/10

Type Qualifiers
Variable declarations can be accompanied by zero or more qualifiers:

<none> Local read/write memory, or an input parameter to a function.
const A compile-time constant, or a function parameter that is read-only.
attribute Linkage between a vertex shader and OpenGL for per-vertex data (to define

attributes).
uniform Value does not change across the primitive being processed; uniforms form

the linkage between a shader, OpenGL, and the application.
varying Linkage between a vertex shader and a fragment shader for interpolated

data.
in For function parameters passed into a function.
out For function parameters passed back out of a function, but not initialized for

use when passed in.
inout For function parameters passed both into and out of a function.

Here are some rules for these qualifiers:

• Global variables can only use the qualifiers const, attribute, uniform, or
varying. Only one may be specified.

• Local variables can only use the qualifier const.
• Function parameters can only use the in, out, inout, or const qualifiers.
• Function return types and structure fields do not use qualifiers.
• Data types for communication from one execution of a shader to the next (to

communicate between fragments or between vertices) do not exist. This would
prevent parallel execution of the same shader on multiple vertices or fragments.

Example:

 attribute vec3 tangent;

attribute vec3 binormal;
uniform sampler2D bump_map;
const int val = 0;
void ComputeSomeVector(in vec3 input, out vec3 result);
void transformVector(inout vec3 vector);
varying float lightIntensity;
varying vec4 texture_coord_aux;
ivec3 variable;

TyphoonLabs’ GLSL Course 11/11

Operators and Preference
Operator and preference are very similar to C and C++, but with some restrictions:

• There is no pointer operator or de-reference operator.
• There is no sizeof operator.
• Bits-wise operations are illegal: no shift left/right (<< or >>), no exclusive/inclusive

or (^, |).
• Modulus operation is illegal (%).
• Unary NOT (~) is illegal.

Subroutines
As indicated previously, a valid shader is a sequence of global declarations and function
definitions. An example of function declaration could be:

• returnType must be present and include a type. Each type* must include a type
and can optionally include the qualifier in, out, inout, and/or const.

• Arrays are allowed as arguments, but not as return types. When arrays are

declared as formal parameters, their size must be included. An array is passed to a
function by using the array name without any sub-scripting or brackets. The size of
the array argument passed within must match the size specified in the formal
parameter declaration.

• Structures are also allowed as arguments. The return type can also be structure.

Functions can be overloaded, as long as the argument list differs. For example, the built-in
dot product function has the following prototypes:

The function main is used as the entry point to a shader. The shader does not need to
have a main method, as one of the other shaders within the linked set will have one.

// Prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

// A function is defined like:
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // Do some computation.
 return returnValue;
}

float dot (float x, float y);
float dot (vec2 x, vec2 y);
float dot (vec3 x, vec3 y);
float dot (vec4 x, vec4 y);

TyphoonLabs’ GLSL Course 12/12

This function accepts no arguments, returns no value, and must be declared as type
void..

Flow Control
GLSL provides the same mechanisms for flow control as C does, except that GLSL
doesn’t have the switch structure or goto statement. The rest is enumerated here:

• for
• while
• do – while
• if
• if – else
• ?: (selection)
• continue
• break
• return;
• return expression;
• discard (only allowed within fragment shaders) can be used to abandon the

current fragment operation. This keyword causes the fragment to be discarded and
ceases buffer updates. It would typically be used within a conditional statement:

Built-in Variables

GLSL provides a set of variables and constants to access the OpenGL fixed function
states, such as light parameters (position, diffuse, and color). Some of these variables are
mandatory and need to be written (i.e gl_Position and gl_FragColor), while others are
read-only (uniform built-in variables).

Vertex Shader Special Built-in Variables
gl_Position is only available within vertex shaders, and is intended for writing the
homogeneous vertex position. Shaders need to write this variable to be valid, and it can be
written at any time during shader execution. It may also be read-back by the shader after
being written. This value will be used by the primitive assembly, clipping, culling, and other
fixed functionality operations that operate on primitives after vertex processing has
occurred. Compilers may generate a diagnostic message if they detect that gl_Position
has not written, or was read before being written, but not all such cases are detectable.
Results are undefined if a vertex shader is executed and does not write gl_Position.

gl_PointSize is only available within vertex shaders, and is intended to write the size of
the point to be rasterized (measured in pixels).

gl_ClipVertex is only available within vertex shaders, and provides a place for vertex
shaders to write the coordinates to be used with the clipping planes. The user must ensure
the clip vertex and user clipping planes are defined in the same coordinate space. User
clipping planes only function correctly under linear transform, though what happens under
non-linear transform is undefined.

If(texture.a > 0.5)
 discard;

TyphoonLabs’ GLSL Course 13/13

The built-in vertex shader variables for communicating with fixed functionality are
intrinsically declared with the following types:

If gl_PointSize or gl_ClipVertex are not written to, their values are undefined. Any
of these variables can be read back by the shader after writing to them to retrieve what
was written. Reading them before writing the results is undefined behavior. If they are
written to more than once, the last value written is the one that is used/assumed.

These built-in variables have a global scope.

vec4 gl Position; // Must be written to.
float gl_PointSize; // May be written to.
vec4 gl_ClipVertex; // May be written to.

TyphoonLabs’ GLSL Course 14/14

Fragment Shader Built-in Variables
There are three variables that can be written by the fragment shader, though only one is
mandatory (unless the discard keyword is executed):

gl_FragData[*] is only allowed if the extension GL_ARB_draw_buffer is
implemented in the current GLSL implementation. If it is implemented, the symbol
GL_ARB_draw_buffer must be defined as 1 within the fragment shader.

Usually, gl_FragColor is the variable that will be written, unless the shader uses MRT
(multiple rendering targets).

• gl_FragColor refers to the current fragment that will appear within the framebuffer.
• gl_FragData[*]; refers to the current fragment that will appear within the indexed

buffer.
• gl_MaxDrawBuffers is a built-in constant that holds the maximum number of buffers

available to be written to.
• gl_FrontFacing holds a boolean value that tells if the current fragment corresponds

to a front face or to a back face.

Writing to gl_FragDepth will establish the depth value to be used for the fragment being
processed. If depth buffering is enabled, and a shader does not write a gl_FragDepth
value, then the fixed function value for depth will be used as the fragment’s depth value. If
a shader statically contains a write to gl_FragDepth, then it is responsible for always
writing it, meaning if a path writes gl_FragDepth, then all paths must write to it as well.
Otherwise, the value of the fragment’s depth may be undefined for executions of the
shader that take that path.

gl_FragCoord is available as a read-only variable from within fragment shaders and
holds the window relative x, y, z coordinates, along with the 1/w values for the fragment.
This value is the result of the fixed functionality that interpolates primitives after vertex
processing to generate fragments. The z component is the depth value that would be used
for the fragment’s depth, should the shader not write to gl_FragDepth.

vec4 gl FragCoord; // May be written to.
bool gl_FrontFacing; // May be written to.
float gl_FragDepth; // May be written to.

One of these must be written:
vec4 gl_FragColor;
vec4 gl_FragData[gl_MaxDrawBuffers];
// gl_FragData[0] is a synonym of gl_FragColor if GL_ARB_draw_buffers or
GL_ATI_draw_buffers extension is present.

TyphoonLabs’ GLSL Course 15/15

Built-in Constants
These constants are available from both vertex and fragment shaders. The displayed
values are the minimum required for a successful GLSL implementation:

Built-in Attributes
The following attribute names are built into the GLSL language, and can be used from
within vertex shaders to access the current values of attributes declared by OpenGL:

const int gl MaxLights = 8;
const int gl_MaxClipPlanes = 6;
const int gl_MaxTextureUnits = 2;
const int gl_MaxTextureCoords = 2;
const int gl_MaxVertexAttribs = 16;
const int gl_MaxVertexUniformComponents = 512
const int gl_MaxVaryingFloats = 32;
const int gl_MaxVertexTextureImageUnits = 0;
const int gl_MaxCombinedTextureImageUnits = 2;
const int gl_MaxTextureImageUnits = 2;
const int gl_MaxFragmentUniformComponents = 64
const int gl_MaxDrawBuffers = 1; // Proposed ARB_draw_buffers.

attribute vec4 gl Color; // Filled with glColorxx OpenGL call.
attribute vec4 gl_SecondaryColor; // Filled with glSecondaryColorxx OpenGL call.
attribute vec3 gl_Normal; // Filled with glNormalxx OpenGL call.
attribute vec4 gl_Vertex; // Filled with glVertexxx OpenGL call.

// gl_MultiTexCoordx are filled with the glTexCoordxx or glMultiTexCoordxx OpenGL call.
attribute vec4 gl_MultiTexCoord0;
attribute vec4 gl_MultiTexCoord1;
attribute vec4 gl_MultiTexCoord2;
attribute vec4 gl_MultiTexCoord3;
attribute vec4 gl_MultiTexCoord4;
attribute vec4 gl_MultiTexCoord5;
attribute vec4 gl_MultiTexCoord6;
attribute vec4 gl_MultiTexCoord7;

attribute float gl_FogCoord; // Filled with glFogCoordxx OpenGL call.
// All of these values can be filled also, using all types of vertex arrays (VBO, VAR,
etc.) .

TyphoonLabs’ GLSL Course 16/16

General Built-in Uniform States
These states are initialized using standard OpenGL calls, or derived from them:

uniform mat4 gl ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];
uniform mat3 gl_NormalMatrix; // Transpose of the inverse of the upper leftmost 3x3
of gl_ModelViewMatrix.
uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];
uniform mat4 gl_ModelViewMatrixTranspose;
uniform mat4 gl_ProjectionMatrixTranspose;
uniform mat4 gl_ModelViewProjectionMatrixTranspose;
uniform mat4 gl_TextureMatrixTranspose[gl_MaxTextureCoords];
uniform mat4 gl_ModelViewMatrixInverseTranspose;
uniform mat4 gl_ProjectionMatrixInverseTranspose;
uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];

// Normal scaling.
uniform float gl_NormalScale;

// Depth range in window coordinates.
struct gl_DepthRangeParameters
{
 float near;
 float far;
 float diff; // far - near
};
uniform gl_DepthRangeParameters gl_DepthRange;

uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];

struct gl_PointParameters
{
 float size;
 float sizeMin;
 float sizeMax;
 float fadeThresholdSize;
 float distanceConstantAttenuation;
 float distanceLinearAttenuation;
 float distanceQuadraticAttenuation;
};
uniform gl_PointParameters gl_Point;

TyphoonLabs’ GLSL Course 17/17

struct gl MaterialParameters
{
 vec4 emission; // Ecm
 vec4 ambient; // Acm
 vec4 diffuse; // Dcm
 vec4 specular; // Scm
 float shininess; // Srm
};
uniform gl_MaterialParameters gl_FrontMaterial, gl_BackMaterial;

struct gl_LightSourceParameters
{
 vec4 ambient; // Acli
 vec4 diffuse; // Dcli
 vec4 specular; // Scli
 vec4 position; // Ppli
 vec4 halfVector; // Derived: Hi
 vec3 spotDirection; // Sdli
 float spotExponent; // Srli
 float spotCutoff; // Crli (range: [0.0,90.0], 180.0)
 float spotCosCutoff; // Derived: cos(Crli) (range: [1.0,0.0],-1.0)
 float constantAttenuation; // K0
 float linearAttenuation; // K1
 float quadraticAttenuation;// K2
};
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters
{
 vec4 ambient; // Acs
};
uniform gl_LightModelParameters gl_LightModel;

// Derived state from products of light and material.
struct gl_LightModelProducts
{
 vec4 sceneColor; // Derived. Ecm + Acm * Acs
};
uniform gl_LightModelProducts gl_FrontLightModelProduct, gl_BackLightModelProduct;

struct gl_LightProducts
{
 vec4 ambient; // Acm * Acli
 vec4 diffuse; // Dcm * Dcli
 vec4 specular; // Scm * Scli
};
uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights],
gl_BackLightProduct[gl_MaxLights];

TyphoonLabs’ GLSL Course 18/18

More information on the other uniform states GLSL states can be found at:
http://oss.sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf

uniform vec4 gl TextureEnvColor[gl MaxTextureImageUnits];
uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];

struct gl_FogParameters
{
 vec4 color;
 float density;
 float start;
 float end;
 float scale; // Derived: 1.0 / (end - start)
};
uniform gl_FogParameters gl_Fog;

TyphoonLabs’ GLSL Course 19/19

Varying Variables
Unlike user-defined varying variables, the built-in varying variables don’t have a strict one-
to-one correspondence between the vertex language and the fragment language. Two
sets are provided, one for each language. Their relationship is described below:

Vertex Shader Varying Variables
The following built-in varying variables are writable from vertex shaders. The one that
should be written to (if any) should link to a corresponding fragment shader or fixed
pipeline which uses it or a state derived from it. Otherwise, behavior is undefined:

Fragment Shader Varying Variables
The following varying variables are readable from fragment shaders. gl_Color and
gl_SecondaryColor are the same names as the attributes passed to the vertex shader.
However, there is no name conflict, as the attributes are visible only within vertex shaders,
and the following are only visible in a fragment shader:

The fragment shader values gl_Color and gl_SecondaryColor will be automatically
derived from the system through gl_FrontColor, gl_BackColor,
gl_FrontSecondaryColor, and gl_BackSecondaryColor, based on the visible face.

varying vec4 gl FrontColor;
varying vec4 gl_BackColor;
varying vec4 gl_FrontSecondaryColor;
varying vec4 gl_BackSecondaryColor;
varying vec4 gl_TexCoord[]; // At most will be gl_MaxTextureCoords.
varying float gl_FogFragCoord;

varying vec4 gl Color;
varying vec4 gl_SecondaryColor;
varying vec4 gl_TexCoord[]; // At most will be gl_MaxTextureCoords.
varying float gl_FogFragCoord;

TyphoonLabs’ GLSL Course 20/20

Built-in Functions
GLSL defines an assortment of built-in convenience functions for scalar and vector
operations. Many of these built-in functions can be used in more than one type of shader,
but some are intended to provide a direct mapping to hardware, and as such are only
available for specific types of shaders.

The built-in functions fall into three main categories:

• They expose some necessary hardware functionality in a convenient way, such as
accessing texture maps. There is no way in the language for these functions to be
emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user
to write, but is very common and may have direct hardware support. It is a very
difficult problem for the compiler to map expressions into complex assembler
instructions.

• They represent an operation that graphics hardware will likely be able to accelerate
at some point. Trigonometry functions would fall into this category, for example.

When using the built-in functions specified below, the input arguments (and corresponding
output) can be float, vec2, vec3, vec4, or genType as used as the argument. For any
specific use of a function, the actual type has to be the same for all arguments and for the
return type. This is similar to mat, which can be a mat2, mat3, or mat4.

Trigonometric Functions

Exponential Functions

genType radians (genType degrees)
genType degrees (genType radians)
genType sin (genType angle)
genType cos (genType angle)
genType tan (genType angle)
genType asin (genType x)
genType acos (genType x)
genType atan (genType y, genType x)
genType atan (genType y_over_x)

genType pow (genType x, genType y)
genType exp (genType x)
genType log (genType x)
genType exp2 (genType x)
genType log2 (genType x)
genType sqrt (genType x)
genType inversesqrt (genType x)

TyphoonLabs’ GLSL Course 21/21

Common Functions

Geometric Functions

genType abs (genType x)
genType sign (genType x)
genType floor (genType x) // Returns a value equal to the nearest integer that is
less than or equal to x.
genType ceil (genType x) // Returns a value equal to the nearest integer that is
greater than or equal to x.
genType fract (genType x) // Returns x – floor (x).
genType mod (genType x, float y) // Modulus. Returns x – y . floor (x/y).
genType mod (genType x, genType y) // Modulus. Returns x – y . floor (x/y).
genType min (genType x, genType y)
genType min (genType x, float y)
genType max (genType x, genType y)
genType max (genType x, float y)
genType clamp (genType x, genType minVal, genType maxVal)
genType clamp (genType x, float minVal, float maxVal) // Note that colors and depths
written by fragment shaders will be clamped by the implementation after the fragment
shader runs.
genType mix (genType x, genType y, genType a)
genType mix (genType x, genType y, float a) // Returns x * (1 – a) + y * a, i.e., the
linear blend of x and y.
genType step (genType edge, genType x)
genType step (float edge, genType x) // Returns 0.0 if x < edge, otherwise it returns
1.0.
genType smoothstep (genType edge0, genType edge1, genType x)
genType smoothstep (float edge0, float edge1, genType x) // Returns 0.0 if x <= edge0
and 1.0 if x >= edge1 and performs smooth Hermite interpolation between 0 and 1 when
edge0 < x < edge1. This is useful in cases where you would want a threshold function
with a smooth transition. This is equivalent to: genType t; t = clamp ((x – edge0) /
(edge1 – edge0), 0, 1); return t * t * (3 – 2 * t);

float length (genType x)
float distance (genType p0, genType p1)
float dot (genType x, genType y)
vec3 cross (vec3 x, vec3 y)
genType normalize (genType x)
genType faceforward (genType N, genType I, genType Nref)
genType reflect (genType I, genType N)
genType refract(genType I, genType N, float eta)
vec4 ftransform() // For vertex shaders only. This function will ensure that
the incoming vertex value will be transformed in a way that produces exactly
the same result as would be produced by OpenGL’s fixed functionality
transform. It is intended to be used to compute gl Position (gl Position =
ftransform();).

TyphoonLabs’ GLSL Course 22/22

Matrix Functions
The following functions work on operating component-wise over the vectors. For vector
results, use the following built-in functions: bvec is a placeholder for one of bvec2,
bvec3, or bvec4; ivec is a placeholder for one of ivec2, ivec3, or ivec4; and vec is
a placeholder for vec2, vec3, or vec4. In all cases, the sizes of the input and return
vectors for any particular call must match.

bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)
//Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)
//Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec x, ivec y)
//Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)
//Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(bvec x, bvec y)
//Returns the component-wise compare of x == y.

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(bvec x, bvec y)
//Returns the component-wise compare of x != y.

bool any(bvec x)
//Returns true if any component of x is true.

bool all(bvec x)
//Returns true only if all components of x are true.

bvec not(bvec x)
//Returns the component-wise logical complement of x.

TyphoonLabs’ GLSL Course 23/23

Texture Lookup Functions

Texture lookup functions are available to both vertex and fragment shaders. However,
LOD (level of detail) is not computed by fixed functionality for vertex shaders, so there are
some differences in operation between vertex and fragment texture lookups. The functions
in the table below provide access to textures through samplers, as setup through the
OpenGL API. Texture properties such as size, pixel format, number of dimensions, filtering
method, number of mip-map levels, and depth comparison are also defined through
OpenGL. These properties are taken into account when the texture is accessed via the
built-in functions defined below.

The bias parameter is optional for fragment shaders, and is not accepted in a vertex
shader. If bias is present, it is added to the calculated LOD prior to performing the texture
access operation. If the bias parameter is not provided, then the implementation
automatically selects the LOD. For textures that are not mip-mapped, the texture is used
directly. If the textures are mip-mapped and running within a fragment shader, the LOD
computed by the implementation is used to do the texture lookup. If running on the vertex
shader, then the base texture is simply used. The built-in suffixes with Lod are allowed
only within vertex shaders. lod is directly used as the level of detail..

One Dimension Textures

vec4 texture1D (sampler1D sampler, float coord [, float bias])

vec4 texture1DProj (sampler1D sampler, vec2 coord [, float bias])

vec4 texture1DProj (sampler1D sampler, vec4 coord [, float bias])

vec4 texture1DLod (sampler1D sampler, float coord, float lod)

vec4 texture1DProjLod (sampler1D sampler, vec2 coord, float lod)

vec4 texture1DProjLod (sampler1D sampler, vec4 coord, float lod)

Use the texture coordinate
coord to perform a texture
lookup within the 1D
texture currently bound to
sampler. For the
projective (Proj) versions,
the texture coordinate
coords is divided by the
last component of coord.

Two Dimensions Textures

vec4 texture2D (sampler2D sampler, vec2 coord [, float bias])

vec4 texture2DProj (sampler2D sampler, vec3 coord [, float bias])

vec4 texture2DProj (sampler2D sampler, vec4 coord [, float bias])

vec4 texture2DLod (sampler2D sampler, vec2 coord, float lod)

vec4 texture2DProjLod (sampler2D sampler, vec3 coord, float lod)

vec4 texture2DProjLod (sampler2D sampler, vec4 coord, float lod)

Use the texture coordinate
coord to perform a texture
lookup within the 2D
texture currently bound to
sampler. For the
projective (Proj) versions,
the texture coordinate
coords is divided by the
last component of coord.
The third component of
coord is ignored for the
vec4 coord variant.

TyphoonLabs’ GLSL Course 24/24

Three Dimensions Textures

vec4 texture3D (sampler3D sampler, vec3 coord [, float bias])

vec4 texture3DProj (sampler3D sampler, vec4 coord [, float bias])

vec4 texture3DLod (sampler3D sampler, vec3 coord, float lod)

vec4 texture3DProjLod (sampler3D sampler, vec4 coord, float lod)

Use the texture coordinate
coord to perform a texture
lookup within the 3D
texture currently bound to
sampler. For the
projective (Proj) versions,
the texture coordinate is
divided by coord.

Cube Map Textures

vec4 textureCube (samplerCube sampler,
 vec3 coord
 [, float bias])

vec4 textureCubeLod (samplerCube sampler,
 vec3 coord,
 float lod)

Use the texture coordinate coord to perform a
texture lookup within the cube-map texture
currently bound to sampler. The direction of
coord is used to select which face to perform a 2-
dimensional texture lookup on, as described within
section 3.8.6 of the OpenGL 1.4 specification.

Shadow Textures

vec4 shadow1D (sampler1DShadow sampler,
 vec3 coord [, float bias])

vec4 shadow2D (sampler2DShadow sampler,
 vec3 coord [, float bias])

vec4 shadow1DProj (sampler1DShadow sampler,
 vec4 coord [, float bias])

vec4 shadow2DProj (sampler2DShadow sampler,
 vec4 coord [, float bias])

vec4 shadow1DLod (sampler1DShadow sampler,
 vec3 coord, float lod)

vec4 shadow2DLod (sampler2DShadow sampler,
 vec3 coord, float lod)

vec4 shadow1DProjLod(sampler1DShadow sampler,
 vec4 coord, float lod)

vec4 shadow2DProjLod(sampler2DShadow sampler,
 vec4 coord, float lod)

Use the texture coordinate coord to perform
a depth comparison lookup on the depth
texture bound to sampler, as described in
section 3.8.14 of the OpenGL 1.4
specification. The 3rd component of coord
(coord.p) is used as the R value. The
texture bound to sampler must be a depth
texture, or the results are undefined. For the
projective (Proj) version of each built-in
variable, the texture coordinate is divided by
coord, giving a depth value (R) of
coord.p/coord.q. The second component
of coord is ignored for the “1D” variants.

.

TyphoonLabs’ GLSL Course 25/25

Fragment Processing Functions
Fragment processing functions are only available within shaders intended for use on the
fragment processor. Derivatives may be expensive (from a computation point-of-view)
and/or numerically unstable. Therefore, an OpenGL implementation may approximate the
true derivatives by using a fast, though not entirely accurate, derivative computation:

genType dFdx (genType p)

Returns the derivative within x, using local differencing for
the input argument p.

genType dFdy (genType p)

Returns the derivative within y, using local differencing for
the input argument p. These two functions are commonly
used to estimate the filter width used to anti-alias
procedural textures.

genType fwidth (genType p)
Returns the sum of the absolute derivative within x and y,
using local differencing for the input argument p, i.e:
return = abs (dFdx (p)) + abs (dFdy (p));

Noise Functions
Noise functions are available to both vertex and fragment shaders. Other than the
following, we will take a further look at noise within a later chapter.

float noise1 (genType x) Returns a 1D noise value based on the input value x.
vec2 noise2 (genType x) Returns a 2D noise value based on the input value x.
vec3 noise3 (genType x) Returns a 3D noise value based on the input value x.
vec4 noise4 (genType x) Returns a 4D noise value based on the input value x.

