
 

TyphoonLabs’ GLSL Course                                  1/29 

 
 
 
 
 

 
 

OpenGL Shading Language 
Course 

 
Chapter 1 – Introduction to GLSL 

 
 
 

By 
Jacobo Rodriguez Villar 
jacobo.Rodriguez@typhoonlabs.com 

 
 

 



 

TyphoonLabs’ GLSL Course                                  2/29 

CHAPTER 1: INTRODUCTION 
 
 

INDEX 
 

 
 
 
 
 
 
 

An Introduction to Programmable Hardware 3 
Brief History of the OpenGL Programmable Hardware Pipeline 3 
Fixed Function vs. Programmable Function 5 

Programmable Function Scheme 6 
 

Fixed Function Scheme 7 

Shader 'Input' Data 7 

Uniform Variables 7 
 

Vertex Attributes 9 
 Varying Variables 10 
Shader 'Output' Data 12 

Vertex Shader 12 
 

Fragment Shader 12 
Simple GLSL Shader Example 13 
Shader Designer IDE 16 
 User Interface 16 
 Toolbar 17 
 Menu 17 
 State Properties 22 
  Light States 22 
  Vertex States 24 
  Fragment States 25 
 Code Window 26 
 Uniform Variables Manager 27 



 

TyphoonLabs’ GLSL Course                                  3/29 

An Introduction to Programmable 
Hardware 
 
 

Brief history of the OpenGL Programmable Hardware Pipeline 
 
 
2000 
Card(s) on the market: GeForce 2, Rage 128, WildCat, and Oxygen GVX1 
 
These cards did not use any programmability within their pipeline.  There were 
no vertex and pixel shaders or even texture shaders. The only programmatically 
think was the register combiners. Multi-texturing and additive blending were 
used to create clever effects and unique materials.  
 
2001 
Card(s) on the market: GeForce 3, Radeon 8500 
 
With GeForce 3, NVIDIA introduced programmability into the vertex processing 
pipeline, allowing developers to write simple 'fixed-length' vertex programs 
using pseudo-assembler style code. Pixel processing was also improved with 
the texture shader, allowing more control over textures. ATI added similar 
functionality including some VS and FS extensions (EXT_vertex_shader and 
ATI_fragment_shader) Developers could now interpolate, modulate, replace, 
and decal between texture units, as well as extrapolate or combine with 
constant colors. They could perform some other basic pixel operations. 
 
2002 
Card(s) on the market: GeForce 4 
 
NVIDIA's GeForce 4 series had great improvements in both the vertex and the 
pixel stages. It was now possible to write longer vertex programs, allowing the 
creation of more complex vertex shaders. 
  
2003 
Card(s) on the market: GeForce FX, Radeon 9700, and WildCat VP 
 
The GeForce FX and Radeon 9700 cards introduced 'real' pixel and vertex 
shaders, which could use variable lengths and conditionals. Higher-level 
languages were also introduced around the same time, replacing the asm-
based predecessors. All stages within the pixel and vertex pipeline were now 
fully programmable (with a few limitations). 
 
3Dlabs shipped their WildCat VP cards, which allowed for 'true' vertex and 
fragment (pixel) shaders with loops and branching, even in fragment shaders. 
These were the first cards to fully support the OpenGL Shading Language 
(GLSL). 
 
Until now, all vertex and pixel programming was done using a basic asm-based 
language called 'ARB_fp' (for fragment programs) or 'ARB_vp' (for vertex 



 

TyphoonLabs’ GLSL Course                                  4/29 

programs). Programs written in this language were linear, without any form of 
flow control or data structure. There were no sub-routines and no standard 
library (containing common functions). It basically processed arithmetic 
operations and texture access, and nothing more.  
 
With the creation of GLSL, graphics cards could take advantage of a high level 
language for shaders. With a good compiler, loops and branches could be 
simulated within hardware that natively didn't support them. Many functions 
were also introduced, creating a standard library, and subroutines were added; 
GLSL pushed the hardware to its limits. 
 
2004 
Card(s) on the market:  WildCat Realizm, GeForce 6, and ATI x800 cards 
 

These cards are the latest generation of programmable graphics 
hardware. They support a higher subset of GLSL, including direct texture 
access from vertex shaders, large program support, hardware-based noise 
generation, variable-length arrays, indirect indexing, texture dependent reading, 
sub-routines, and a standard library for the most common functions (like dot, 
cross, normalise, sin, cos, tan, log, sqrt, length, reflect, refract, dFdx, dFdy, 
etc.). They can also use a long list of built-in variables to access many OpenGL 
states (like gl_LightSource[n].position, gl_TexCoord[n], gl_ModelViewMatrix, 
gl_ProjectionInverseMatrix, etc.). Data structures are supported as well through 
C-like structs.



 

TyphoonLabs’ GLSL Course                                  5/29 

Fixed Function vs. Programmable Function 
 
Before programmable function pipelines, developers had to use the fixed 
function pipeline, which offered no magical vertex or pixel shaders. 
 
The fixed vertex stage consisted of clip-space vertex computations, per-vertex 
normal, and all other common of per-vertex operations such as color material, 
texture coordinate generation, normal transformation, and normalisation.  
 
The fixed fragment stage handled tasks such as interpolate values (colors and 
texture coordinates), texture access, texture application (environment mapping 
and cube mapping), fog, and all other per-fragment computations. 
 
These fixed methods allowed the programmer to display many basic lighting 
models and effects, like light mapping, reflections, and shadows (always on a 
per-vertex basis) using multi-texturing and multiple passes. This was done by 
essentially multiplying the number of vertices sent to the graphic card (two 
passes = x2 vertices, four passes  = x4 vertices, etc.), but it ended there. 
 
With the programmable function pipeline, these limits were removed. All fixed 
per-vertex and per-fragment computations could be replaced by custom 
computations, allowing developers to do vertex displacement mapping, 
morphing, particle systems, and such all within the vertex stage. Per-pixel 
lighting, toon shading, parallax mapping, bump mapping, custom texture 
filtering, color kernel applications, and the like could now be controlled at the 
pixel stage. Fixed functions were now replaced by custom developer programs. 
 
There are many advantages to a programmable pipeline. For example, some 
fixed functionalities could be disabled for simple shaders, producing a greater 
performance gain. Additionally, some CPU-based offline renders could now be 
calculated faster through the use of more complex shaders (imagine 3DSMax 
with hardware-based rendering, so scenes that usually take hours or even days 
to calculate are now displayed within a fraction of the time).  
 
Another field where the programmable pipeline could be useful is as a co-
processor to the CPU. Work on this area has already begun, and can be found 
at the General-Purpose Computation using Graphics Hardware (GPGPU) 
homepage (http://www.gpgpu.org). Many examples can be found here, 
including sound processors, fluid simulations, signal processing, computational 
geometry, imaging, scientific computing, and stream processing.



 

TyphoonLabs’ GLSL Course                                  6/29 

Fixed Function Scheme 
 
 
 
 
 

 
 
 

 
 

 

R 
 

A 
 

S 
 

T 
 

E 
 

R 
 
I 
 

Z 
 

A 
 

T 
 
I 
 

O
 

N 

Input: 
Vertices

T&L 
fixed 

computations

Input: 
Textures

 

Fixed texture 
stages 

Final per-
fragment 

computations: 
Fog 

Alpha test 
Depth test 
Stencil test 

Output to 
framebuffer 

Geometry 
Stage 

(per-vertex 
level) 

Raster Stage  
(per-pixel 

level) 

Coordinate 
transformation 

to viewport 
system 



 

TyphoonLabs’ GLSL Course                                  7/29 

Programmable Function Scheme 
 

Programmable Fragment Processors 
Custom texture application, 

Custom pixel data combinations, 
Bump/parallax mapping 

NPR, GPGPU,  
Advanced lighting effects 

 

T&L fixed 
computations 

Coordinate 
transformation 

to viewport 
system 

Input: 
Textures 

Fixed texture 
stages 

Final per-
fragment 

computations 
Fog 

Alpha test 
Depth test 

Output 
to 

framebu
ffer  

Geometry 
Stage 
(per-

vertex 
level) 

Raster 
Stage  

(per-pixel 
level) 

R
 

A
 

S
 

T 
 

E
 

R
 
I 
 

Z 
 

A
 

T 
 
I 
 

O
 

N

Programmable 
Vertex 

Processors  
 

T&L custom 
computations: 

Per-pixel lighting,  
displacement 

mapping, 
particle systems, 

etc. 

Input: 
Vértices 



 

TyphoonLabs’ GLSL Course                                  8/29 

Shader 'Input' Data 
 
Programmers can write self-contained standalone shaders, which don’t require 
any extra data to run, in order to produce desired results  
  
Shaders (both vertex and fragment) usually obtain some input values, such as 
textures, limit and timing values, colors, light positions, tangents, bi-normals, 
and pre-computed values, which are used to compute the final vertex 
position/fragment color for any given surface. 
  
Uniform Variables 
Uniform variables can use one of the GLSL-defined types. These read-only 
values (which should be treated as constants, as they cannot be changed) are 
then passed from the host OpenGL application to the shader. 

 
GLSL data type C data 

type 
Description 

bool int Conditional type, taking on values of true or false. 
int int Signed integer. 

float float Single floating-point scalar. 
vec2 float [2] Two component floating-point vector. 
vect3 float [3] Three component floating-point vector. 
vec4 float [4] Four component floating-point vector. 
bvec2 int [2] Two component Boolean vector. 
bvec3 int [3] Three component Boolean vector. 
bvec4 int [4] Four component Boolean vector. 
ivec2 int [2] Two component signed integer vector. 
ivec3 int [3] Three component signed integer vector. 
ivec4 int [4] Four component signed integer vector. 
mat2 float [4] 2×2 floating-point matrix. 
mat3 float [9] 3×3 floating-point matrix. 
mat4 float [16] 4×4 floating-point matrix. 

sampler1D int Handle for accessing a 1D texture. 
sampler2D int Handle for accessing a 2D texture. 
sampler3D int Handle for accessing a 3D texture. 

samplerCube int Handle for accessing a cubemap texture. 
sampler1DShadow int Handle for accessing a 1D depth texture with comparison. 
sampler2DShadow int Handle for accessing a 2D depth texture with comparison. 

 

 



 

TyphoonLabs’ GLSL Course                                  9/29 

From the host application, values could be passed to the shader as follows: 
 

location = glGetUniformLocationARB(program,”light0Color”); 
float color[4] = {0.4f,0,1,1}; 
glUniform4fARB(location ,color ); 

 
The shader must first declare the variable before it can be used, which can be 
done as follows: 
 

uniform vec4 light0Color; 

 
If the variable light0Color is queried by the shader, it would return the value 

{0.4, 0, 1, 1}. 
 
Textures must also be passed via uniforms. When passing textures, the 
developer must send an integer, which represents the texture unit number. For 
example, passing 0 would tell the shader to use GL_TEXTURE0, and so on: 
 

glActiveTexture(GL_TEXTURE0); 
glBindTexture(GL_TEXTURE_2D, mytexturebaseID); 
location = glGetUniformLocationARB(program, ”baseTexture”); 
glUniform1iARB(location, 0); // Bind baseTexture to TU 0. 
 
glActiveTexture(GL_TEXTURE1); 
glBindTexture(GL_TEXTURE_2D, mytexturebumpID); 
location=glGetUniformLocationARB(program, ”bumpTexture”); 
glUniform1iARB(location, 1); // Bind bumpTexture to TU 1. 

 
The uniforms are declared as sampler2D within the shader (though the actual 
texture unit will be discussed at a later point): 
 

uniform sampler2D baseTexture; 
uniform sampler2D bumpTexture; 

 
Vertex Attributes 
These variables can only be used within vertex shaders to pass per-vertex 
values. There are two types of attributes: defined and generic. 
 
 Defined attributes are normals, texture coordinates, per-vertex color 
materials, etc. Even the vertex position is a vertex attribute. 
 

Generic attributes are those which the developer defines for meshes, like 
tangents, bi-normals, particle properties, and skinning information (bones).  
 
When the developer creates a mesh, they must specify the ‘Vertex Format.’ 
This format is a collection of vertex attributes which will be sent to the vertex 
shader (like position, color, normal, texture coordinate, and tangent). For 
defined attributes, we have standard OpenGL functions like glVertex3f, 

glNormal3f, glColor, and glTexCoord2f. For generic attributes, we have 

the glVertexAttrib call. 
 
The method for passing generic attributes is a little different. The 
GL_ARB_vertex_program extension holds a number of slots where attributes 



 

TyphoonLabs’ GLSL Course                                  10/29 

can be placed. These slots are shared between the defined and generic 
attributes, meaning defined slots can be overwritten and their attribute lost. 
Defined attributes always use the same slot numbers, so you can choose which 
one to overwrite, or use a free slot (you can ask OpenGL for a free slot). 

  
The following code could be used to pass a generic attribute to a shader 
through a given slot: 
 

int slot = 9; //A random slot. 
glBindAttribLocationARB(program, slot, “fooAttribute”); 
glBegin(GL_TRIANGLES); 

glVertexAttrib3fARB(slot,2,3,1); 
glVertex3f(0,1,0); 
glNormal3f(1,0,0); 

 
glVertexAttrib3fARB(slot,2,1,1); 
glVertex3f(0,0,1); 
glNormal3f(1,0,0); 

 
glVertexAttrib3fARB(slot,2,3,2); 
glVertex3f(1,0,0); 
glNormal3f(1,0,0); 

glEnd(); 

 
To access the attribute from the vertex shader, the variable has to be declared 
as follows: 
 

attribute vec3 fooAttribute; 

 
Attributes only can be declared with float, vec2, vec3, vec4, mat2, mat3, and 
mat4. Attribute variables cannot be declared as arrays or structures. 

 
Vertex arrays can also be used to pass attributes, with calls like 
glVertexAttribPointerARB, glEnableVertexAttribArrayARB, 

glBindAttribLocationARB and glDisableVertexAttribArrayARB. 
See the appendix for how to use these generic vertex attribute calls. 

 
Varying Variables 
It is possible for a vertex shader to pass data to a fragment shader by use of 
another type of variable. Varying variables will be written by the vertex shader 
and read into the fragment shader (though the actual variable within the vertex 
shader will not be passed). The fragment shader will then receive the 
perspective-corrected and interpolated (across the primitive’s surface) value of 
the variable written by the vertex shader. The best example of varying variables 
(sometimes called interpolators) is texture coordinates. Texture coordinates are 
established by the vertex shader, loaded as vertex attributes, and then written 
into varying variables in order to pass an interpolated value in a perspective-
correct fashion into the fragment shader.



 

TyphoonLabs’ GLSL Course                                  11/29 

For example: 
 
[Vertex shader] 

 
 
[Fragment shader]

varying vec2 myTexCoord; 
uniform sampler2D myTexture; 
void main() 
{ 
   //Use myTexCoord by any way, for example, to access a texture. 
   gl_FragColor = texture2D(myTexture, myTexCoord); 
} 

 

varying vec2 myTexCood; 
void main() 
{ 
  // We compute the vertex position as the fixed function does. 
  gl_Position = ftransform(); 
  // We fill our varying variable with the texture 
  //coordinate related to the texture unit 0 (gl_MultiTexCoord0 refers to the TU0   
  //interpolator). 
 
  myTexCoord = vec2(gl_MultiTexCoord0);   
} 

 



 

TyphoonLabs’ GLSL Course                                  12/29 

Shader 'Output' Data 
 
Vertex Shader 
The main objective of the vertex shader is to compute the vertex position within 
the clip-space coordinates. To do this, GLSL's built-in gl_Position variable 

can be used (which has a vec4 type) in one of two ways: 
 

a) gl_Position = ftransform();  
This is usually the best way, as ftransform() keeps the invariance within a 
built-in fixed function. 

 
       b)  gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 

This will compute the correct vertex position, as it multiplies the vertex 
position (gl_Vertex) by the model-view which is once again multiplied 

by the projection matrix (gl_ModelViewProjectionMatrix is a built-

in uniform mat4 variable, which holds the result of 

gl_ModelViewMatrix * gl_ProjectionMatrix). However, this 
will not keep the invariance within a fixed function, and could prove 
problematic in multi-pass algorithms. 

  
Fragment Shader 
The main objective of a fragment shader is to compute the final color (and 
optionally, depth) of the fragment being computed. To do this, GLSL's built-in 
gl_FragColor variable can be used (which also has a vec4 type): 
 
 gl_FragColor = vec4(1, 0, 0, 0); 

 
The above example will write a pure red color with an alpha value of 0 to the 
framebuffer. 
 
There are more values that can be written within the vertex and fragment 
shaders, like information relating to clipping plane(s), point parameters. and 
fragdepth, but all of these are optional. 
 
If a vertex shader doesn’t contain a gl_Position variable, it won’t compile, 

and instead will simply generate compilation errors instead. The same is true of 
fragment shaders if gl_FragColor is not used. These two variables are 

absolutely mandatory for a successful shader. 
 
 



 

TyphoonLabs’ GLSL Course                                  13/29 

Simple GLSL Shader Example 
 
We will now create a simple shader using TyphoonLabs' OpenGL Shader 
Designer (SD) IDE. This example will consist of a uniform variable with one 
color, and apply that color to a pre-defined mesh. 

 
Open SD and select File > New Shader Project from the main menu. This will 
create a new workspace, adding both an empty vertex and fragment shader to 
the project while resetting all fields back to their defaults. 

 
Right-click within the 'Uniform Variables' window (bottom-left area of the user 
interface) and select New Uniform from the context menu. Once the 'Uniform 
Editor' dialog appears, enter the following values: 
 
Variable name: meshColor 
Variable type: float[3] 
Widget: Color sliders 
Variable values: (see screenshot below) 
 

 
 
 
Now press Accept, which will close the current dialog and apply your changes. 
 
Select the 'New.Vert' tab within SD's main user interface and enter the following 
code: 
 

 

 
 

void main() 
{ 
   gl_Position = ftransform(); 
} 

 



 

TyphoonLabs’ GLSL Course                                  14/29 

We don’t need anything else inside the vertex shader besides the correct 
position of the vertex within clip coordinates (handled by the built-in 
ftransform() function). 

 
Select the 'New.Vert' tab within SD's main user interface and enter the following 
code: 
 
 

 
 
 
 
 
 
 
The line uniform vec3 meshColor; allows us to access the values held 

within our uniform variable, which we then use in the line gl_FragColor = 

vec4(meshColor,1.0);. We must use the vec4 constructor, as 

gl_FragColor is a vec4 type variable, meaning this constructor will construct 

a vec4 variable for the first three components equal to the meshColor, with 

1.0 as an alpha value. 
 
Our shader example is now finished. Select Build > Compile Project from the 
main menu to view the results. If no errors were generated, a green-colored 
mesh should appear within the 'Preview' window (top left-hand corner of the 
user interface). If that is not the case, check the uniform variable and compiler 
output to see where the problem lies. 

 
You can easily change the color of the shader result by right-clicking the 
meshColor variable within the 'Uniform Variables' window, then selecting 

Floating Editor from the context menu. A slider-bar widget will now appear, 
allowing you to dynamically control the overall color of the mesh. Other types of 
widgets can also be created, like color pickers and sliding-bars with up to four 
components. 
 

uniform vec3 meshColor; 
void main() 
{ 
  gl_FragColor = vec4(meshColor,1.0); 
} 



 

TyphoonLabs’ GLSL Course                                  15/29 

A meshColor value of 1,0,0 should look something like this (a rotated plane): 

 
 
 
 
 
 



 

TyphoonLabs’ GLSL Course                                  16/29 

Shader Designer IDE 
 
We'll now take a more detailed look at Shader Designer's user interface, 
covering basic operations like simple source file management, uniforms, and 
textures. 
 
User Interface 
 

 

 
 
 
This is the main application window, which is divided into the following sections: 
 



 

TyphoonLabs’ GLSL Course                                  17/29 

Toolbar 
This allows quick access to commonly used operations. Reading from left to 
right, you can select New project, Open project, Save project,etc. 
 

Menu 
This allows you to access the complete feature-set of Shader Designer, 
including the toolbar entries. Some of the new options are: 
 
 Validate will compile shaders using the 3DLabs' generic GLSL compiler. 
This allows developers to write shaders that are compatible with the GLSL 
specification, which is very useful when trying to create portable shaders.  
 
 Project info will display the current project's information (metadata) 
through fields like author, company, license, copyright, comments, and version 
number. 
 

 
 
 
 
 
 
 
 
 
 
 Font will allow you to change the default font used within the code 
window. 
 
 Take snapshot will take a screenshot of the current project. 
 

 



 

TyphoonLabs’ GLSL Course                                  18/29 

 Continuous render toggles the GLSL mode, allowing shaders to be 
disabled. This is useful for cards which run shaders on the CPU (though CPU 
performance is a lot slower than GPU). 
 
 Cut, Copy and Paste is a standard feature, used within the code 
window. 
 
 Driver capabilities will display a window containing the OpenGL 
information of your current graphics card. Here you can look for possible 
limitations, as well as the maximum number of textures and uniforms that your 
card can support. 
 

 
 

 
 
 
 



 

TyphoonLabs’ GLSL Course                                  19/29 

 Environment will configure the background setup of the 'Preview' 
window. You can choose whether to use a plain background (no image), import 
an image, or use a Skybox (a collection of six images forming a cube, which the 
mesh is placed within). With the exception of none, all options require you to 
import one or more images. 
 

 
 
 
 
 
 

 

 

 



 

TyphoonLabs’ GLSL Course                                  20/29 

 Ortho toggles the 'Preview' window between perspective mode and 
orthogonal, the latter of which is useful for imaging shaders or screen-space 
shaders (like Julia and Mandelbrot). 
 
 Perspective allows you to configure the settings used for the 'Preview' 
window's perspective mode. 
 

 

 
 
  

 



 

TyphoonLabs’ GLSL Course                                  21/29 

 
Textures allows you to select the various textures that will be used in 

your shader, as well as configure their parameters. A preview thumbnail is 
provided for all of the images. 
 

 
 
 
As this is one of the most complex dialogs, we'll take a closer look at the 
options:  
 
First, you must select the number of textures you wish to use (this number is 
only limited by your graphic card's capabilities). Then, using each texture's tab, 
import the image(s) using the respective field(s). Next, choose the texture type 
(1D, 2D, etc.) and its filtering/clamping configuration. Use the Refresh Textures 
button to make sure your texture(s) still load, and if all is well, select Accept 
(which will apply your changes and close the dialog). 
 
 

 



 

TyphoonLabs’ GLSL Course                                  22/29 

State Properties 
This area of Shader Designer allows you to control the various OpenGL lighting, 
vertex, and fragment states of your shader, which will be stored/saved with the 
project (GDP) file. 

 
Light States 

  
Back/Front Material allows you to control the material used on the front 

and back faces of the mesh through Ambient, Diffuse, Specular, Emission, and 
Shininess options. 
 
The values can be changed by clicking within the text field and manually editing 
the values, or by clicking the text field and selecting the '...' icon on its right-
hand side. Although the alpha component is not usually visualized, it can be 
entered to the left of the other values (for example, 1,1,1,1), i.e. the ARGB pixel 
format. 
 



 

TyphoonLabs’ GLSL Course                                  23/29 

These fields are also accessible from GLSL using built-in uniform variables: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 General allows you to control the common OpenGL light settings, like 
Ambient, Diffuse, Specular, Position (using world coordinates), Attenuations 
(constant, linear, and quadratic), and Spot (cut-off angle, exponent, and 
direction). If the Enabled property is set to False, these parameters will be 
ignored. 
 
These fields are also accessible from GLSL using built-in uniform variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Misc allows you to control the ambient lighting model. 
 
These fields are also accessible from GLSL using built-in uniform variables: 
 
 

 
 
 
 
 
 

struct gl_MaterialParameters 
{ 
  vec4 emission; // Ecm 
  vec4 ambient; // Acm 
  vec4 diffuse; // Dcm 
  vec4 specular; // Scm 
  float shininess; // Srm 
}; 
uniform gl_MaterialParameters gl_FrontMaterial; 
uniform gl_MaterialParameters gl_BackMaterial; 

struct gl_LightSourceParameters  
{ 
  vec4 ambient; // Acli 
  vec4 diffuse; // Dcli 
  vec4 specular; // Scli 
  vec4 position; // Ppli 
  vec4 halfVector; // Derived: Hi 
  vec3 spotDirection; // Sdli 
  float spotExponent; // Srli 
  float spotCutoff; // Crli  // (range: [0.0,90.0], 180.0) 
  float spotCosCutoff; // Derived: cos(Crli)  // (range: [1.0,0.0],-1.0) 
  float constantAttenuation; // K0 
  float linearAttenuation; // K1 
  float quadraticAttenuation;// K2 
}; 
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights]; 

  

struct gl_LightModelParameters  
{ 
  vec4 ambient; // Acs 
}; 
uniform gl_LightModelParameters gl_LightModel; 

 



 

TyphoonLabs’ GLSL Course                                  24/29 

 Moving light allows you to control Shader Designer's dynamic moving 
light effect, which is sometimes useful for testing bump map-style shaders (or 
other lighting algorithms). The light will rotate around a center at a given speed 
and distance. 
 
 Point allows you to control the point parameters (the 
POINT_PARAMETERS extension is needed for this feature). 
 
These fields are also accessible from GLSL using built-in uniform variables: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Vertex States 
 

 

 
 
 
 
 
 
 
 
 

struct gl_PointParameters  
{ 
  float size; 
  float sizeMin; 
  float sizeMax; 
  float fadeThresholdSize; 
  float distanceConstantAttenuation; 
  float distanceLinearAttenuation; 
  float distanceQuadraticAttenuation; 
}; 
uniform gl_PointParameters gl_Point; 
 



 

TyphoonLabs’ GLSL Course                                  25/29 

 
 General allows you to control culling type used, if enabled. 
 
 Light Model Settings allows you to control three of four possible 
glLightModelfv parameters, GL_LIGHT_MODEL_COLOR_CONTROL (single 
color or separate specular color component), 
GL_LIGHT_MODEL_LOCAL_VIEWER, and  GL_LIGHT_MODEL_TWO_SIDE. 
 
 Polygon Settings allows you to control the drawing mode for both faces 
(front and back) of polygons, using GL_FILL, GL_LINE or GL_POINT. 
 
Fragment States 

 
 
 
 Alpha Test allows you to control the OpenGL alpha test stage, with 
Mode representing alphafunc and Reference representing the clamping 
reference. 
 
 Blending allows you to control the OpenGL blending stage via a blend 
equation (the GL_ARB_imaging extension is needed for this feature) and a 

blendfunc, using dst (for destination) and src (for source) factors. 
  
 Depth test allows you to control the depth test mode and range. 
 
 General allows you to control the framebuffer's default color (RGBA 
mode) and flat or gouraud shading models. 
 



 

TyphoonLabs’ GLSL Course                                  26/29 

Code Window 
 
The code window has some useful features, like intellisense, syntax highlight, 
and tooltips. 



 

TyphoonLabs’ GLSL Course                                  27/29 

Uniform Variables Manager 
 
In order to access this dialog, you will need to right-click within the uniform list 
and choose either New Uniform or Edit: 
 

 
 
Once open, you can select the uniform type, name, amount (array size), 
variable values (each value must be separated by a new line), and the widget to 
be used if changing the value dynamically. 
 
The widget options are as follows: 
 
 None will not use a widget for the uniform. 
 Color sliders can be used for vec3 and vec4 type variables, allowing 
the following control: 

 



 

TyphoonLabs’ GLSL Course                                  28/29 

 
 
Selecting the colored quads will open a standard color-picker dialog: 
 

 
 
 
Right-clicking the uniform variable from within the list and selecting Floating 
editor will allow you to change colors quickly: 
  

 
 
 
 
 
 

 



 

TyphoonLabs’ GLSL Course                                  29/29 

 Slider Bar works in a similar way to the color slider widget, but there are 
no colored boxes, and the user can control the maximum and minimum limits of 
the slider: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Right-clicking the uniform variable from within the list and selecting Floating 
editor will allow you to change colors quickly: 
 

 

 

 


