w
=
Ty
o
o
Q
w
x
Q
()

Vertex Specification
rtex Shading

Tessellation
Geometry
Shading

Ve

gi
9
Q-
x-
8
S
>

Rasterization

Uniforms, Shader ~

Pixel Data

Fragment Shading

Storage, Atomic |

COMPUTE @

SHADERS

Counters, etc.

The OpenGL® Graphics System:

A Specification
(Version 4.5 (Core Profile) - June 29, 2017)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.5): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (©) 2006-2017 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to Khronos. Except as described by these terms, it or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights
Policy, which is Attachment A of the Khronos Group Membership Agreement
available at www.khronos.org/files/member_agreement.pdf. Khronos grants a con-
ditional copyright license to use and reproduce the unmodified specification for
any purpose, without fee or royalty, EXCEPT no licenses to any patent, trade-
mark or other intellectual property rights are granted under these terms. Parties
desiring to implement the specification and make use of Khronos trademarks in
relation to that implementation, and receive reciprocal patent license protection
under the Khronos IP Policy must become Adopters and confirm the implementa-
tion as conformant under the process defined by Khronos for this specification; see
https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, ex-
press or implied, regarding this specification, including, without limitation: mer-
chantability, fitness for a particular purpose, non-infringement of any intellectual
property, correctness, accuracy, completeness, timeliness, and reliability. Under no
circumstances will Khronos, or any of its Promoters, Contributors or Members, or
their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages
for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Vulkan is a registered trademark and Khronos, WebGL, and EGL are trademarks of
The Khronos Group Inc. ASTC is a trademark of ARM Holdings PLC, OpenCL is
a trademark of Apple Inc. and OpenGL is a registered trademark and the OpenGL
ES and OpenGL SC logos are trademarks of Silicon Graphics International used
under license by Khronos. All other product names, trademarks, and/or company
names are used solely for identification and belong to their respective owners.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1L e 1

112 e 1

1.2 What is the OpenGL Graphics System? 2
1.2.1 Programmer’s View of OpenGL 2

1.2.2 Implementor’s View of OpenGL 2

123 OurView 3

1.2.4 Fixed-function Hardware and the Compatibility Profile . . 3

1.2.5 The Deprecation Model 3

1.3 Related APIs 4
1.3.1 OpenGL Shading Language 4

132 OpenGLES 4

1.3.3 OpenGL ES Shading Language 5

134 WebGL 5

1.3.5 Window System Bindings 6

136 OpenCL 7

1.4 FilingBugReports 7
2 OpenGL Fundamentals 8
2.1 ExecutionModelo 8
2.2 Command Syntax 10
2.2.1 Data Conversion For State-Setting Commands 12

2.2.2 Data Conversions For State Query Commands 14

2.3 Command Execution 15
231 Errors 16

2.3.2 Graphics ResetRecovery 18

233 FlushandFinish 20

2.3.4 Numeric Representation and Computation 20

CONTENTS ii

2.3.5 Fixed-Point Data Conversions 24

24 Rendering Commands 26
25 ContextState 26
2.5.1 Generic Context State Queries 27

2.6 Objects and the Object Model 27
2.6.1 Object Management 27

2.6.2 BufferObjects 29

2.6.3 ShaderObjects 29

2.6.4 Program Objects, 29

2.6.5 Program Pipeline Objects 29

2.6.6 TextureObjects 29

2.6.7 SamplerObjects 30

2.6.8 Renderbuffer Objects 30

2.6.9 Framebuffer Objects 30
2.6.10 Vertex Array Objects 31
2.6.11 Transform Feedback Objects 31
2.6.12 Query Objects 31
2.6.13 SyncObjects 31
2.6.14 e 32

3 Dataflow Model 33
4 Event Model 36
4.1 SyncObjectsandFences 36
4.1.1 Waiting for Sync Objects 38

4.1.2 Signaling 40

4.1.3 SyncObject Queries 41

4.2 Query Objects and Asynchronous Queries 42
42.1 Query Object Queries 46

43 Time QUeries v v v it e e e e 49
5 Shared Objects and Multiple Contexts 51
5.1 Object Deletion Behavior 52
5.1.1 Side Effects of Shared Context Destruction 52

5.1.2 Automatic Unbinding of Deleted Objects 52

5.1.3 Deleted Object and Object Name Lifetimes 52

5.2 Sync Objects and Multiple Contexts 53
5.3 Propagating Changes to Objects 53
5.3.1 Determining Completion of Changes to an object 54

5.32 Definitions o 55

OpenGL 4.5 (Core Profile) - June 29, 2017

CONTENTS

533 Rules

6 Buffer Objects

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

Creating and Binding Buffer Objects
6.1.1 Binding Buffer Objects to Indexed Targets
Creating and Modifying Buffer Object Data Stores
6.2.1 Clearing Buffer Object Data Stores
Mapping and Unmapping Buffer Data
6.3.1 UnmappingBuffers.
6.3.2 Effects of Mapping Buffers on Other GL Commands . . .
Effects of Accessing Outside Buffer Bounds
Invalidating BufferData
Copying Between Buffers
Buffer ObjectQueries
6.7.1 Indexed Buffer Object Limits and Binding Queries
Buffer Object State

7 Programs and Shaders

7.1
7.2
7.3

7.4

7.5
7.6

7.7

7.8
7.9
7.10
7.11
7.12

Shader Objects
Shader Binaries
Program Objects
7.3.1 ProgramInterfaces, ...
Program Pipeline Objects
7.4.1 Shader Interface Matching
7.4.2 Program Pipeline Object State
Program Binaries o
Uniform Variables
7.6.1 Loading Uniform Variables In The Default Uniform Block
7.6.2 UniformBlocks.
7.6.3 Uniform Buffer Object Bindings
Atomic Counter Buffers
7.7.1 Atomic Counter Buffer Object Storage
7.7.2 Atomic Counter Buffer Bindings
Shader Buffer Variables and Shader Storage Blocks
Subroutine Uniform Variables
Samplers
Images
Shader Memory Access v it
7.12.1 Shader Memory Access Ordering
7.12.2 Shader Memory Access Synchronization

OpenGL 4.5 (Core Profile) - June 29, 2017

iii

55

57
58
60
63
69
71
76
77
77
77
78
79
81
83

CONTENTS v

7.13 Shader, Program, and Program Pipeline Queries 157
7.14 Required State 166
8 Textures and Samplers 168
8.1 Texture Objects i 169
8.2 SamplerObjects 173
8.3 Sampler Object Queries 178
84 PixelRectangles. Lo 178
8.4.1 Pixel Storage Modes and Pixel Buffer Objects 179

842 e 180

843 e 180

8.4.4 Transfer of Pixel Rectangles 180

e 193

8.5 Texture Image Specification 193
8.5.1 Required Texture Formats 196

8.5.2 Encoding of Special Internal Formats 197

8.5.3 Texture Image Structure 201

8.6 Alternate Texture Image Specification Commands 208
8.6.1 Texture Copying Feedback Loops 215

8.7 Compressed Texture Images 215
8.8 Multisample Textures 223
8.9 BufferTextures 224
8.10 Texture Parameters 228
8.11 Texture Queries o i i it 231
8.11.1 ActiveTexture 231
8.11.2 Texture Parameter Queries 231
8.11.3 Texture Level Parameter Queries 233
8.11.4 Texture Image Queries 235

8.12 Depth Component Textures 241
8.13 Cube Map Texture Selection 242
8.13.1 Seamless Cube Map Filtering 242

8.14 Texture Minification 243
8.14.1 Scale Factor and Level of Detail 243
8.14.2 Coordinate Wrapping and Texel Selection 246
8.143 Mipmapping 251
8.14.4 Manual Mipmap Generation 253
8145 . e 255

8.15 Texture Magnification 255
8.16 Combined Depth/Stencil Textures 255
8.17 Texture Completenesso v ... 255

OpenGL 4.5 (Core Profile) - June 29, 2017

CONTENTS v

9

8.17.1 Effects of Sampler Objects on Texture Completeness . . . 257
8.17.2 Effects of Completeness on Texture Application. 257
8.17.3 Effects of Completeness on Texture Image Specification . 257
8.18 Texture VIewS oL 257
8.19 Immutable-Format Texture Images 262
8.19.1 Behavior of Immutable-Format Texture Images 268
8.20 Invalidating Texture Image Data 268
8.21 Clearing Texture ImageData 269
8.22 Texture State and Proxy State 271
8.23 Texture ComparisonModes 274
8.23.1 Depth Texture Comparison Mode 274
8.24 sRGB Texture Color Conversion 275
8.25 Shared Exponent Texture Color Conversion 276
8.26 Texture Image Loadsand Stores 276
8.26.1 Image UnitQueries 285
Framebuffers and Framebuffer Objects 286
9.1 Framebuffer Overview 286
9.2 Binding and Managing Framebuffer Objects 288
9.2.1 Framebuffer Object Parameters 292
9.2.2 Attaching Images to Framebuffer Objects 293
9.2.3 Framebuffer Object Queries 294
9.2.4 Renderbuffer Objects 299
9.2.5 Required Renderbuffer Formats 303
9.2.6 Renderbuffer Object Queries 304
9.2.7 Attaching Renderbuffer Images to a Framebuffer 304
9.2.8 Attaching Texture Images to a Framebuffer 306
9.3 Feedback Loops Between Textures and the Framebuffer 312
9.3.1 Rendering Feedback Loops. 312
9.3.2 Texture Copying Feedback Loops 313
9.4 Framebuffer Completeness 314
9.4.1 Framebuffer Attachment Completeness 314
9.4.2 Whole Framebuffer Completeness 316
9.4.3 Required Framebuffer Formats 318

9.4.4 Effects of Framebuffer Completeness on Framebuffer Op-
EIatioNS v o e e e e e e e e 319

9.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 319
9.5 Mapping between Pixel and Element in Attached Image 320
9.6 Conversion to Framebuffer-Attachable Image Components 321

OpenGL 4.5 (Core Profile) - June 29, 2017

CONTENTS vi

9.7 Conversionto RGBA Values 321
9.8 Layered Framebuffers 321
10 Vertex Specification and Drawing Commands 324
10.1 Primitive Types 326
10.1.1 Points 326
10.1.2 Line Strips o oo 326
10.1.3 LineLoops 326
10.1.4 Separate Lines 326
10.1.5 . e 327
10.1.6 Triangle Strips 327
10.1.7 TriangleFans 328
10.1.8 Separate Triangles 328
10.1.9 . 328
10.1.10 . . oo e 328
10.1.11 Lines with Adjacency 328
10.1.12 Line Strips with Adjacency 330
10.1.13 Triangles with Adjacency 330
10.1.14 Triangle Strips with Adjacency 331
10.1.15 Separate Patches 332
10.1.16 General Considerations For Polygon Primitives 333
10117 . o e 333

10.2 Current Vertex Attribute Values 333
10.2.1 Current Generic Attributes 333
1022 e 336
10.2.3 Vertex Attribute Queries 336
10.2.4 Required State 336

10.3 Vertex Arrays v o v vt i 336
10.3.1 Vertex Array Objects 336
10.3.2 Specifying Arrays for Generic Vertex Attributes 338
1033 345
10.3.4 Vertex Attribute Divisors 346
10.3.5 Transferring Array Elements 347
10.3.6 Primitive Restart 347
10.3.7 RobustBuffer Access. 348
10.3.8 Packed Vertex Data Formats 348
10.3.9 Vertex Arrays in Buffer Objects 349
10.3.10 Array Indices in Buffer Objects 350
10.3.11 Indirect Commands in Buffer Objects 351

10.4 Drawing Commands Using Vertex Arrays 351

OpenGL 4.5 (Core Profile) - June 29, 2017

CONTENTS

1041
10.5 Vertex Array and Vertex Array Object Queries
10.6 Required State
10.7 e
10.8 .
10.9 Conditional Rendering

11 Programmable Vertex Processing
11.1 Vertex Shaders
11.1.1 Vertex Attributes
11.1.2 Vertex Shader Variables
11.1.3 Shader Execution
11.2 Tessellation,
11.2.1 Tessellation Control Shaders
11.2.2 Tessellation Primitive Generation
11.2.3 Tessellation Evaluation Shaders
11.3 Geometry Shaders
11.3.1 Geometry Shader Input Primitives
11.3.2 Geometry Shader Output Primitives
11.3.3 Geometry Shader Variables
11.3.4 Geometry Shader Execution Environment

12

13 Fixed-Function Vertex Post-Processing
13,1
13.2 Transform Feedback
13.2.1 Transform Feedback Objects
13.2.2 Transform Feedback Primitive Capture
13.2.3 Transform Feedback Draw Operations
13.3 Primitive Queries
13.4 Flatshading
13.5 Primitive Clipping
13.5.1 Clipping Shader Outputs
13.5.2
13.6 Coordinate Transformations

OpenGL 4.5 (Core Profile) - June 29, 2017

vii

362
362
365
365
365
366

368
368
368
374
379
391
393
398
407
412
413
414
415
415

422

CONTENTS viii

14 Fixed-Function Primitive Assembly and Rasterization 443
14.1 Discarding Primitives Before Rasterization 445
142 Invariance oL e 445
14.3 Antialiasing 446

14.3.1 Multisampling, 447
144 Points L 449
14.4.1 Basic Point Rasterization 451
14.4.2 Point Rasterization State 452
14.4.3 Point Multisample Rasterization 452
14.5 Line Segmentso 452
14.5.1 Basic Line Segment Rasterization 453
14.5.2 Other Line Segment Features 455
14.5.3 Line Rasterization State 457
14.5.4 Line Multisample Rasterization 457
14.6 Polygons 458
14.6.1 Basic Polygon Rasterization 458
14.6.2 . . L 461
14.6.3 Antialiasing 461
14.6.4 Options Controlling Polygon Rasterization 461
14.6.5 Depth Offset 462
14.6.6 Polygon Multisample Rasterization 463
14.6.7 Polygon Rasterization State 464
147 e 464
14.8 o e 464
149 Early Per-Fragment Tests 464
149.1 Pixel OwnershipTest 465
1492 ScissorTest Lo 465
14.9.3 Multisample Fragment Operations 467
14.9.4 The Early Fragment Test Qualifier 468

15 Programmable Fragment Processing 469
15.1 Fragment Shader Variables 469
15.2 Shader Execution 470

15.2.1 Texture ACCESS . . . « v v v v v v i 471
1522 ShaderInputs 471
15.2.3 ShaderOutputs 474
15.2.4 Early FragmentTests 478
16 479

OpenGL 4.5 (Core Profile) - June 29, 2017

CONTENTS

17 Writing Fragments and Samples to the Framebuffer
17.1 Antialiasing Application
17.2 Multisample PointFade
17.3 Per-Fragment Operations
17.3.1 AlphaToCoverage
17.3.2
1733 Stencil Test
17.3.4 DepthBufferTest.
17.3.5 Occlusion Queries
17.3.6 Blending
17.3.7 sRGB Conversion
17.3.8 Dithering
17.3.9 Logical Operation
17.3.10 Additional Multisample Fragment Operations
17.4 Whole Framebuffer Operations
17.4.1 Selecting Buffers for Writing
17.4.2 Fine Control of Buffer Updates
17.4.3 Clearing the Buffers
17.4.4 Invalidating Framebuffer Contents
1745

18 Reading and Copying Pixels
18.1 e
18.2 Reading Pixels
18.2.1 Selecting Buffers for Reading
18.2.2 ReadPixels
18.2.3 Obtaining Pixels from the Framebuffer
18.2.4 Conversion of RGBA values
18.2.5 Conversion of Depth values
182.6 . . L e
1827 o
18.2.8 Final Conversion
18.2.9 Placement in Pixel Pack Buffer or Client Memory
183 CopyingPixels
18.3.1 Blitting Pixel Rectangles
18.3.2 Copying Between Images
18.4 Pixel Draw and Read State

19 Compute Shaders
19.1 Compute Shader Variables

OpenGL 4.5 (Core Profile) - June 29, 2017

X

480
480
480
481
481
483
483
484
485
486
493
494
494
495
496
497
501
503
506
508

509
509
509
509
511
512
514
514
514
514
515
517
518
518
521
524

525

CONTENTS X
20 Debug Output 528
20.1 Debug Messages 529
20.2 Debug Message Callback 531
20.3 DebugMessageLog oL 532
20.4 Controlling Debug Messages 532
20.5 Externally Generated Messages 534
20.6 Debug Groups 534
20.7 DebugLabels 536
20.8 Asynchronous and Synchronous Debug Output 537
20.9 Debug Output Queries 538

21 Special Functions 541
211 541
21.2 541
21.3 541
214 541
215 Hints L o 541
21.6 542

22 Context State Queries 543
22.1 Simple Queries 543
22.2 Pointer, String, and Related Context Queries 545
22.3 Internal Format Queries 548
22.3.1 Supported Operation Queries 548

22.3.2 Other Internal Format Queries 552

22.4 Transform Feedback State Queries 559
22.5 Indexed Binding State Queries 560

23 State Tables 561
A Invariance 636
A.1 Repeatability 636
A.2 Multi-pass Algorithms L. 637
A3 InvarianceRules. 637
A.4 Tessellation Invariance 639
A.5 Atomic Counter Invariance 641
A.6 What All ThisMeans 642

B Corollaries 643

OpenGL 4.5 (Core Profile) - June 29,

2017

CONTENTS

C Compressed Texture Image Formats

C.1
C2
C3

RGTC Compressed Texture Image Formats
BPTC Compressed Texture Image Formats
ETC Compressed Texture Image Formats

D Profiles and the Deprecation Model

D.1
D.2

Core and Compatibility Profiles
Deprecated and Removed Features
D.2.1 Deprecated But Still Supported Features
D.2.2 Removed Features

E Version 4.2

E.1
E.2
E.3
E4
E.5

New Features
DeprecationModel
Changed Tokens
Change Log for Released Specifications
Credits and Acknowledgements

F Version 4.3

F.1
F2
EF3
F4
E5
F6
E7

Restructuring
New Features
Deprecation Model
Changed Tokens
Change Log for Released Specifications
Credits
Acknowledgements

G Version 4.4

G.1
G.2
G3
G4
G.S5

New Features
Deprecation Model
Change Log for Released Specifications
Credits
Acknowledgements

H Version 4.5

H.1
H.2
H.3
HA4
H.S

New Features
Deprecation Model
Change Log for Released Specifications
Credits
Acknowledgements

OpenGL 4.5 (Core Profile) - June 29, 2017

X1

645
645
646
646

648
649
649
649
650

655
655
656
656
657
659

662
662
663
664
664
665
672
674

675
675
676
676
687
688

CONTENTS

I OpenGL Registry, Header Files, and ARB Extensions

OpenGL Registry
HeaderFiles
ARB and Khronos Extensions

I.1
1.2
I.3

Index

1.3.1
1.3.2
1.3.3

Naming Conventions
Promoting Extensions to Core Features
Extension Summaries

OpenGL 4.5 (Core Profile) - June 29, 2017

Xii

704
704
704
705
706
706
706

738

List of Figures

3.1

8.1
8.2
8.3
8.4

10.1
10.2
10.3
10.4
10.5

11.1
11.2
11.3
11.4

14.1
14.2
14.3
14.4

17.1

18.1

Block diagram of the GL pipeline.

Transfer of pixel rectangles.
Selecting a subimage fromanimage
A texture image and the coordinates used to accessit.
Example of the components returned for textureGather.

Vertex processing and primitive assembly.
Triangle strips, fans, and independent triangles.
Lines with adjacency.
Triangles with adjacency.
Triangle strips with adjacency.

Domain parameterization for tessellation.
Inner triangle tessellation.
Inner quad tessellation.
Isoline tessellation.

Rasterization.
Visualization of Bresenham’s algorithm.
Rasterization of non-antialiased wide lines.
The region used in rasterizing an antialiased line segment.

Per-fragment operations.

Operation of ReadPixels.

xiii

List of Tables

1.1

2.1
2.2
23

4.1

6.1
6.2
6.3
6.4

6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9
7.10

8.1
8.2

OpenGL ES to OpenGL version relationship. 5
GL command suffixes 12
GL datatypes 13
Summary of GL errors 18
Initial properties of a sync object created with FenceSync. 37
Buffer object binding targets. 59
Buffer object parameters and their values. 59
Buffer objectstate. 66
Buffer object state set by MapBufferRange and MapNamedBuf-

ferRange. 73
Indexed buffer object limits and binding queries 82
CreateShader type values and the corresponding shader stages. . 86
GetProgramResourceiv properties and supported interfaces . . . 106
OpenGL Shading Language type tokens 113
Query targets for default uniform block storage, in components. . 126

Query targets for combined uniform block storage, in components. 126
GetProgramResourceiv properties used by GetActiveUniformsiv. 130
GetProgramResourceiv properties used by GetActiveUniform-

Blockiv. 131
GetProgramResourceiv properties used by GetActiveAtomic-

CounterBufferiv., 132
Interfaces for active subroutines 145
Interfaces for active subroutine uniforms 146
PixelStore* parameters. 179
Pixeldatatypes. 183

X1V

LIST OF TABLES

8.3
8.4
8.5
8.6

8.7
8.8
8.9
8.10
8.11

8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25

8.26

8.27

9.1
9.2
9.3

10.1
10.2

10.3
10.4

Pixel data formats. L.
Swap Bytes bitordering. L.
Packed pixel formats.,
UNSIGNED_ BYTE formats. Bit numbers are indicated for each
COMPONENL. . .« ¢ v v v v e ettt e e e e e e e e e
UNSIGNED_SHORT formats
UNSIGNED_INT formats
FLOAT_UNSIGNED_INT formats
Packed pixel field assignments.
Conversion from RGBA, depth, and stencil pixel components to
internal texture components.
Sized internal color formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Valid texture farget parameters
Internal formats for buffer textures
Texture parameters and their values.
Texture return values.
Selection of cube map images.
Texel location wrap mode application.
Legal texture targets for TextureView.
Compatible internal formats for TextureView
Depth texture comparison functions.
sRGB texture internal formats.
Mapping of image load, store, and atomic texel coordinate compo-
nents to texel numbers. oL Lo
Supported image unit formats, with equivalent format layout
qualifiers.
Texel sizes, compatibility classes, and pixel format/type combina-
tions for each image format.

Buffer selection for default framebuffer attachment queries
Framebuffer attachment points.
Layer numbers for cube map texture faces.

Triangles generated by triangle strips with adjacency.
Vertex array sizes (values per vertex) and data types for generic
vertex attributes L. L
Packed component layout for non-BGRA formats.
Packed component layout for BGRA format.

OpenGL 4.5 (Core Profile) - June 29, 2017

XV

247

275

332

LIST OF TABLES

10.5

10.6

11.1
11.2

11.3

13.1
13.2

15.1

17.1
17.2
17.3
17.4
17.5
17.6

18.1
18.2

18.3
18.4

20.1
20.2
20.3
20.4

21.1

22.1
222

23.1
23.2
233
23.4

Packed component layout for UNSIGNED_INT_10F_11F_11F_-—
REVformat.
Indirect commands and corresponding indirect buffer targets. . . .

Generic attribute components accessed by attribute variables. . . .
Generic attributes and vector types used by column vectors of ma-
trix variables bound to generic attribute index
Scalar and vector vertex attribute types

Transform feedbackmodes
Provoking vertex selection.,

Correspondence of filtered texture components to texture base
COMPONENES. . « « v v vt e e e e et e e e e e e e e e e

RGB and alpha blend equations.
Blending functions. L Lo
Logical operations,
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer

PixelStore parameters.
ReadPixels GL data types and reversed component conversion for-

ReadPixels index masks.
Compatible internal formats for copying

Sources of debug output messages
Types of debug output messages
Severity levels of messages
Object namespace identifiers

Hint targets and descriptions

Contextprofilebits Lo
Internal format targets

State Variable Types.
Current Values and Associated Data
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)

OpenGL 4.5 (Core Profile) - June 29, 2017

Xvi

349
351

369

370

512

LIST OF TABLES Xvii

23.5 Vertex Array Data (not in Vertex Array objects) 566
23.6 Buffer ObjectState 567
23.7 Transformationstate 568
238 Coloring 569
23.9 Rasterization 570
23.10Rasterization (cont.) 571
23.11Multisampling 572
23.12Textures (state per texture unit) 573
23.13Textures (state per texture unit (cont.) 574
23.14Textures (state per texture object) 575
23.15Textures (state per texture object) (cont.) 576
23.16Textures (state per texture image) 577
23.17Textures (state per texture image) (cont.) 578
23.18Textures (state per sampler object) 579
23.19Texture Environment and Generation 580
23.20Pixel Operations o i 581
23.21Pixel Operations (cont.)o 582
23.22Framebuffer Controlo 583
23.23Framebuffer (state per target binding point) 584
23.24Framebuffer (state per framebuffer object) 585
23.25Framebuffer (state per attachment point) 586
23.26Renderbuffer (state per target and binding point) 587
23.27Renderbuffer (state per renderbuffer object) 588
23.28Pixels 589
23.29Pixels (cont.) 590
23.30Shader Object State 591
23.31Program Pipeline Object State 592
23.32Program Object State 593
23.33Program Object State (cont.) 594
23.34Program Object State (cont.) 595
23.35Program Object State (cont.) 596
23.36Program Object State (cont.) 597
23.37Program Object State (cont.) 598
23.38Program Object State (cont.) 599
23.39Program Object State (cont.) 600
23.40Program Interface State 601
23.41Program Object Resource State 602
23.42Program Object Resource State (cont.) 603
23.43Vertex and Geometry Shader State 604
23.44Query Object State 605

OpenGL 4.5 (Core Profile) - June 29, 2017

LIST OF TABLES Xviii

23.45Image State (state per image unit) 606
23.46 Atomic Counter Buffer Binding State 607
23.47Shader Storage Buffer Binding State 608
23.48Transform Feedback State 609
23.49Uniform Buffer Binding State 610
23.50Sync Object State 611
2351Hints L. 612
23.52Compute Dispatch State 613
23.53Implementation Dependent Values 614
23.54Implementation Dependent Values (cont.) 615
23.55Implementation Dependent Values (cont.) 616
23.56Implementation Dependent Version and Extension Support 617
23.57Implementation Dependent Vertex Shader Limits 618
23.58Implementation Dependent Tessellation Shader Limits 619
23.59Implementation Dependent Tessellation Shader Limits (cont.) . . 620
23.60Implementation Dependent Geometry Shader Limits 621
23.61Implementation Dependent Fragment Shader Limits 622
23.62Implementation Dependent Compute Shader Limits 623
23.63Implementation Dependent Aggregate Shader Limits 624
23.64Implementation Dependent Aggregate Shader Limits (cont.) . . . 625
23.65Implementation Dependent Aggregate Shader Limits (cont.) . . . 626
23.66Implementation Dependent Aggregate Shader Limits (cont.) . . . 627
23.67Debug Output State 628
23.68Implementation Dependent Debug Output State 629
23.69Implementation Dependent Values (cont.)
1 These queries return the maximum no. of samples for all internal

formats required to support multisampled rendering. 630
23.70Implementation Dependent Values (cont.) 631
23.71Internal Format Dependent Values 632
23.72Implementation Dependent Transform Feedback Limits 633
23.73Framebuffer Dependent Values 634
23.74Miscellaneous oL oL 635
C.1 Mapping of OpenGL RGTC formats to descriptions. 646
C.2 Mapping of OpenGL BPTC formats to descriptions. 646
C.3 Mapping of OpenGL ETC formats to descriptions. 647
E.1 Newtokennames 657
F1 Newtokennames 665

OpenGL 4.5 (Core Profile) - June 29, 2017

Chapter 1

Introduction

This document, referred to as the “OpenGL Specification” or just “Specification”
hereafter, describes the OpenGL graphics system: what it is, how it acts, and what
is required to implement it. We assume that the reader has at least a rudimentary
understanding of computer graphics. This means familiarity with the essentials
of computer graphics algorithms and terminology as well as with modern GPUs
(Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
Registry, located at URL

http://www.opengl.org/registry/

1.1 Formatting of the OpenGL Specification

Starting with version 4.3, the OpenGL Specification has undergone major restruc-
turing to focus on programmable shading, and to describe important concepts and
objects in the context of the entire API before describing details of their use in the
graphics pipeline.

1.1.1

This subsection is only defined in the compatibility profile.

1.1.2

This subsection is only defined in the compatibility profile.

http://www.opengl.org/registry/

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 2

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is an API (Application Programming Inter-
face) to graphics hardware. The API consists of a set of several hundred procedures
and functions that allow a programmer to specify the shader programs, objects, and
operations involved in producing high-quality graphical images, specifically color
images of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls control drawing geometric objects such as points, lines, and
polygons, but the way that some of this drawing occurs (such as when antialiasing
or multisampling is in use) relies on the existence of a framebuffer and its proper-
ties. Some commands explicitly manage the framebuffer.

1.2.1 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
shader programs or shaders, data used by shaders, and state controlling aspects of
OpenGL outside the scope of shaders. Typically the data represent geometry in two
or three dimensions and texture images, while the shaders control the geometric
processing, rasterization of geometry and the lighting and shading of fragments
generated by rasterization, resulting in rendering geometry into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
OpenGL commands to define shaders, geometry, and textures are made, followed
by commands which draw geometry by transferring specified portions of the geom-
etry to the shaders. Drawing commands specify simple geometric objects such as
points, line segments, and polygons, which can be further manipulated by shaders.
There are also commands which directly control the framebuffer by reading and
writing pixels.

1.2.2 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU
processors. However, OpenGL may be implemented on less capable GPUs, or even
without a GPU, by moving some or all operations into the host CPU.

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL API, while dividing the work for each OpenGL command

OpenGL 4.5 (Core Profile) - June 29, 2017

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 3

between the CPU and the graphics hardware as appropriate for the capabilities of
the GPU.

OpenGL contains a considerable amount of information including many types
of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL. Most of these objects and state are available to the programmer, who can
set, manipulate, and query their values through OpenGL commands. Some of it,
however, is derived state visible only by the effect it has on how OpenGL oper-
ates. One of the main goals of this Specification is to describe OpenGL objects
and context state explicitly, to elucidate how they change in response to OpenGL
commands, and to indicate what their effects are.

1.2.3 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven fixed-function stages that are invoked by a set of specific drawing opera-
tions. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.2.4 Fixed-function Hardware and the Compatibility Profile

Older generations of graphics hardware were not programmable using shaders,
although they were configurable by setting state controlling specific details of their
operation. The compatibility profile of OpenGL continues to support the legacy
OpenGL commands developed for such fixed-function hardware, although they
are typically implemented by writing shaders which reproduce the operation of
such hardware. Fixed-function OpenGL commands and operations are described
as alternative interfaces following descriptions of the corresponding shader stages.

1.2.5 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from
use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix D.

OpenGL 4.5 (Core Profile) - June 29, 2017

1.3. RELATED APIS 4

1.3 Related APIs

Other APIs related to OpenGL are described below. Most of the specifications for
these APIs are available on the Khronos Group websites, although some vendor-
specific APIs are documented on that vendor’s developer website.

1.3.1 OpenGL Shading Language

The OpenGL Specification should be read together with a companion document
titled The OpenGL Shading Language. The latter document (referred to as the
OpenGL Shading Language Specification hereafter) defines the syntax and seman-
tics of the programming language used to write shaders (see chapter 7). Descrip-
tions of shaders later in this document may include references to concepts and
terms (such as shading language variable types) defined in the OpenGL Shading
Language Specification.

OpenGL 4.5 implementations are guaranteed to support version 4.50 of the
OpenGL Shading Language. All references to sections of that specification refer to
that version. The latest supported version of the shading language may be queried
as described in section 22.2.

The core profile of OpenGL 4.5 is also guaranteed to support all previous ver-
sions of the OpenGL Shading Language back to version 1.40. In some implemen-
tations the core profile may also support earlier versions of the OpenGL Shading
Language, and may support compatibility profile versions of the OpenGL Shading
Language for versions 1.40 and earlier. In this case, errors will be generated when
using language features such as compatibility profile built-ins not supported by the
core profile API. The #version strings for all supported versions of the OpenGL
Shading Language may be queried as described in section 22.2.

The OpenGL Shading Language Specification is available in the OpenGL Reg-
istry.

1.3.2 OpenGL ES

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D
graphics on embedded systems such as mobile phones, game consoles, and ve-
hicles. It consists of well-defined subsets of OpenGL. Each version of OpenGL ES
implements a subset of a corresponding OpenGL version as shown in table 1.1.

OpenGL ES versions also include some additional functionality taken from
later OpenGL versions or specific to OpenGL ES. It is straightforward to port code
written for OpenGL ES to corresponding versions of OpenGL.

OpenGL 4.5 (Core Profile) - June 29, 2017

1.3. RELATED APIS 5

OpenGL ES Version | OpenGL Version it subsets

OpenGL ES 1.1 OpenGL 1.5
OpenGL ES 2.0 OpenGL 2.0
OpenGL ES 3.0 OpenGL 3.3
OpenGL ES 3.1 OpenGL 4.3

Table 1.1: OpenGL ES to OpenGL version relationship.

OpenGL and OpenGL ES are developed in parallel within the Khronos Group,
which controls both standards.

OpenGL 4.3 and 4.5 include additional functionality initially defined in
OpenGL ES 3.0 and OpenGL ES 3.1, respectively, for increased compatibility be-
tween OpenGL and OpenGL ES implementations.

The OpenGL ES Specifications are available in the Khronos API Registry at
URL

http://www.khronos.org/registry/

1.3.3 OpenGL ES Shading Language

The Specification should also be read together with companion documents titled
The OpenGL ES Shading Language. Versions 1.00, 3.00, and 3.10 should be read.
These documents define versions of the OpenGL Shading Language designed for
implementations of OpenGL ES 2.0, 3.0, and 3.1 respectively, but also supported
by OpenGL implementations. References to the OpenGL Shading Language Spec-
ification hereafter include both OpenGL and OpenGL ES versions of the Shading
Language; references to specific sections are to those sections in version 4.50 of
the OpenGL Shading Language Specification.

OpenGL 4.5 implementations are guaranteed to support versions 1.00, 3.00,
and 3.10 of the OpenGL ES Shading Language.

The #version strings for all supported versions of the OpenGL Shading Lan-
guage may be queried as described in section 22.2.

The OpenGL ES Shading Language Specifications are available in the Khronos
API Registry.

1.3.4 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES. Developers familiar with OpenGL ES will recognize

OpenGL 4.5 (Core Profile) - June 29, 2017

http://www.khronos.org/registry/

1.3. RELATED APIS 6

WebGL as a shader-based API using the OpenGL Shading Language, with con-
structs that are semantically similar to those of the underlying OpenGL ES API. It
stays very close to the OpenGL ES specification, with some concessions made for
what developers expect out of memory-managed languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.

1.3.5 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

1.3.5.1 GLX - X Window System Bindings

OpenGL Graphics with the X Window System, referred to as the GLX Specification
hereafter, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is available.
The GLX Specification is available in the OpenGL Registry.

1.3.5.2 WGL - Microsoft Windows Bindings
The WGL API supports use of OpenGL with Microsoft Windows. WGL is docu-
mented in Microsoft’s MSDN system, although no full specification exists.

1.3.5.3 MacOS X Window System Bindings

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X window
system, including CGL, AGL, and NSOpenGLView. These APIs are documented
on Apple’s developer website.

1.3.54 EGL - Mobile and Embedded Device Bindings

The Khronos Native Platform Graphics Interface or “EGL Specification” describes
the EGL API for use of OpenGL ES on mobile and embedded devices. EGL im-
plementations supporting OpenGL may be available on some desktop platforms as
well. The EGL Specification is available in the Khronos API Registry.

OpenGL 4.5 (Core Profile) - June 29, 2017

1.4. FILING BUG REPORTS 7

1.3.6 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL buffer and texture objects, and
to coordinate control of and transfer of data between OpenCL and OpenGL. This
allows applications to split processing of data between OpenCL and OpenGL; for
example, by using OpenCL to implement a physics model and then rendering and
interacting with the resulting dynamic geometry using OpenGL.
The OpenCL Specification is available in the Khronos API Registry.

1.4 Filing Bug Reports

Bug reports on the OpenGL and OpenGL Shading Language Specifications can be
filed in the Khronos Public Bugzilla, located at URL
http://www.khronos.org/bugzilla/
Please file bugs against Product: OpenGL, Component: Specification, and the
appropriate version of the specification. It is best to file bugs against the most re-
cently released versions, since older versions are usually not updated for bugfixes.

OpenGL 4.5 (Core Profile) - June 29, 2017

http://www.khronos.org/bugzilla/

Chapter 2

OpenGL Fundamentals

This chapter introduces fundamental concepts including the OpenGL execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 Execution Model

OpenGL (henceforth, “the GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point,
line segment, patch, or polygon. Context state may be changed independently; the
setting of one piece of state does not affect the settings of others (although state and
shader all interact to determine what eventually ends up in the framebuffer). State
is set, primitives drawn, and other GL operations described by sending commands
in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping

2.1. EXECUTION MODEL 9

depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL state or the framebuffer must
be complete before any subsequent command can have any such effects.

Data binding occurs on call. This means that data passed to a GL command
are interpreted when that command is received. Even if the command requires a
pointer to data, those data are interpreted when the call is made, and any subsequent
changes to the data have no effect on the GL (unless the same pointer is used in a
subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects, although
shaders can be written to generate such objects. In other words, OpenGL provides
mechanisms to describe how complex geometric objects are to be rendered, rather
than mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is net-
work transparent. A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state and objects. A client may choose to be
made current to any one of these contexts.

Issuing GL commands when a program is not current to a context results in
undefined behavior.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
Jjects, may be created as desired, A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-

OpenGL 4.5 (Core Profile) - June 29, 2017

2.2. COMMAND SYNTAX 10

trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.3.5.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can be associated with different default framebuffers, and some
context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL is designed to be run on a range of platforms with varying capabilities,
memory, and performance. To accommodate this variety, we specify ideal behavior
instead of actual behavior for certain GL operations. In cases where deviation from
the ideal is allowed, we also specify the rules that an implementation must obey
if it is to approximate the ideal behavior usefully. This allowed variation in GL
behavior implies that two distinct GL implementations may not agree pixel for
pixel when presented with the same input, even when run on identical framebuffer
configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL (by gl, GL_, and GL, respectively), to reduce name clashes with
other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL commands as functions or procedures using
ANSI C syntax. Languages such as C++ and Javascript which allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the

OpenGL 4.5 (Core Profile) - June 29, 2017

2.2. COMMAND SYNTAX 11

command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

and
void GetFloatv(enum pname, float *data);
In general, a command declaration has the form

rtype Name{e1234}{c b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments argl through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);

void Uniformlf(int location, f£loat value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, float v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat v0, float vl,
float v3);

OpenGL 4.5 (Core Profile) - June 29, 2017

2.2. COMMAND SYNTAX 12

Type Descriptor | Corresponding GL Type

b byte
S short
i int
i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping'.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using

! These changes are backwards-compatible at the compilation and linking levels, and are being
propagated to man pages and header files as well.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.2. COMMAND SYNTAX 13

GL Type Description
Bit Width

boolean 8 Boolean

byte 8 Signed two’s complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed two’s complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed two’s complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed two’s complement 16.16
scaled integer

int64 64 Signed two’s complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 4.1)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be large enough to store any CPU ad-
dress. sync is defined as an anonymous struct pointer in the C language bindings
while intptr and sizeiptr are defined as integer types large enough to hold

a pointer.
OpenGL 4.5 (Core Profile) - June 29, 2017

2.2. COMMAND SYNTAX 14

a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point, with or without normalization as described for spe-
cific commands.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows. If more than one step is applicable, all relevant steps are
applied in the following order:

e If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

e If a command returning unsigned integer data is called, such as GetSam-
plerParameterluiv, negative values are clamped to zero.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 15

e If a command returning signed or unsigned integer data is called, such as
GetIntegerv or GetInteger64v, a boolean value of TRUE or FALSE is in-
terpreted as one or zero, respectively. A floating-point value is rounded
to the nearest integer, unless the value is an RGBA color component, a
DepthRange value, or a depth buffer clear value. In these cases, the query
command converts the floating-point value to an integer according to the
INT entry of table 18.2; a value not in [—1, 1] converts to an undefined value.

e If a command returning floating-point data is called, such as GetFloatv or
GetDoublev, a boolean value of TRUE or FALSE is interpreted as 1.0 or
0.0, respectively. An integer value is coerced to floating-point. Single- and
double-precision floating-point values are converted as necessary.

Following these steps, if a value is so large in magnitude that it cannot be
represented by the returned data type, then the nearest value representable using
that type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-
WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f.

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. 1t is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL
contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.3.5.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 16

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects unless otherwise noted; the command which
generates the error is ignored so that it has no effect on GL state or framebuffer
contents. Except as otherwise noted, if the generating command returns a value, it
returns zero. If the generating command modifies values through a pointer argu-
ment, no change is made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the
GL in the presence of errors is subject to change, and extensions to OpenGL may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command.

o If the GL context has been reset as a result of previous GL command, or if
the context is reset as a side effect of execution of a command, a CONTEXT_-
LOST error is generated.

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, an

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 17

INVALID_ENUM error is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value or values pointed to are not
allowable for the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

o If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of CONTEXT_LOST? and OUT_OF_MEMORY" wherever they ap-
ply. However, they apply even if not explicitly described, unless a specific com-
mand describes different behavior. For example, certain commands use a sizei
parameter to indicate the length of a string, and also use negative values of the pa-
rameter to indicate a null-terminated string. These commands do not generate an
INVALID_VALUE error, because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in the Specification.

When a command could potentially generate several different errors (for ex-
ample, when it is passed separate enum and numeric parameters which are both
out of range), the GL implementation may choose to generate any of the applicable
erTors.

Errors based solely on one or more argument values to a command must be
detected before any processing based on current state*.

When an error is generated, the GL may also generate a debug output message
describing its cause (see chapter 20). The message has source DEBUG_SOURCE_ —
API, type DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred

2 CONTEXT_LOST is not described because it can potentially be generated by almost all GL
commands, and occurs for reasons not directly related to the affected commands.

3 OUT_OF_MEMORY is not described because it can potentially be generated by any GL com-
mand, even those which do not explicitly allocate GPU memory.

* This ensures consistent behavior for commands including language which ignores certain pa-
rameters under some conditions, such as giBlitFramebuffer treatment of mask and filter.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION

18

Error

Description

Offending com-
mand ignored?

CONTEXT_LOST

Context has been lost and reset

Except as noted

underflow

by the driver for specific
commands
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID_FRAMEBUFFER_OPERATION | Framebuffer object is not com- | Yes
plete
OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK_UNDERFLOW Command would cause a stack | Yes

Table 2.3: Summary of GL errors

processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
errors generated by a command may be described elsewhere in the specification
than the command itself.

2.3.2 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

e NO_ERROR indicates that the GL context has not been in a reset state since
the last call.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 19

e GUILTY_CONTEXT_RESET indicates that a reset has been detected that is
attributable to the current GL context.

e INNOCENT_CONTEXT_ RESET indicates a reset has been detected that is not
attributable to the current GL context.

e UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown.

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

Reset notification behavior is determined at context creation time, and may be
queried by calling GetIntegerv with pname RESET_NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return NO_ERROR”.

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
the loss of all context state, requiring the recreation of all associated objects. In
this case GetGraphicsResetStatus may return any of the values described above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context®.

After a graphics reset has occurred on a context, subsequent GL. commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

e GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and re-create the context.

e Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application. Such commands include:

SIn this case, it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

SThe values returned by GetGraphicsResetStatus in the different contexts may differ.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 20

— GetSynciv with pname SYNC_STATUS ignores the other parameters
and returns SIGNALED in values.

— GetQueryObjectuiv with pname QUERY_RESULT_AVAILABLE ig-
nores the other parameters and returns TRUE in params.

2.3.3 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the
network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

void Flush(void);

which causes all previously issued GL commands to complete in finite time (al-
though such commands may still be executing when Flush returns).
The command

void Finish(void);

forces all previously issued GL commands to complete. Finish does not return
until all effects from such commands on GL client and server state and the frame-
buffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.4 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined under ”’Floating-Point Com-
putation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and
per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 21

2.3.4.1 Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the details
of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-
point operations are accurate to about 1 part in 10°. The maximum representable
magnitude for all floating-point values must be at least 232, -0 = 0 -z = 0 for
any non-infinite andnon-NaN z. 1 -z =z-1=2. 2 +0 =042 = 2. 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 8. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

2.3.4.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (.5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x AL E=0,M+#0
V=S (-1)9x2F 5 x (1+45), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 22

g {N mod 65536J
32768

o {N mod 32768J
1024

M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

2.3.4.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is
determined by the following:

(0.0, E=0,M=0

- M

271 % &, E=0,M+#0
V=928 (1+8), 0<E<31

Inf, E=31,M=0

NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer /V, then

N
E=|—
5
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 23

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.3.4.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

0.0, E=0,M=0
—14 M _
271 % 22, E=0,M#0
V=321 (1+28), 0<E<31
Inf, E=31,M=0
| NaN, E=31,M+#0

If the floating-point number is interpreted as an unsigned 10-bit integer NV, then

p=|N
32
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or Na/N) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 24

2.3.4.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.3.4.6 General Requirements

Some calculations require division. In such cases (including implied divisions re-
quired by vector normalizations), a division by zero produces an unspecified result
but must not lead to GL interruption or termination.

2.3.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point inte-
ger representation. When the integer is one of the types defined in table 2.2, b is
the required bit width of that type. When the integer is a texture or renderbuffer
color or depth component (see section 8.5), b is the number of bits allocated to that
component in the internal format of the texture or renderbuffer. When the integer is
a framebuffer color or depth component (see section 9), b is the number of bits allo-
cated to that component in the framebuffer. For framebuffer and renderbuffer alpha
components, b must be at least 2 if the buffer does not contain an alpha component,
or if there is only one bit of alpha in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively.

2.3.5.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

C
f:—Qb_l. 2.1

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding

OpenGL 4.5 (Core Profile) - June 29, 2017

2.3. COMMAND EXECUTION 25

floating-point value f is performed using

c
f = max {2b—1 7 —1.0} . (2.2)

Only the range [—2°~1 4 1,2°~1 — 1] is used to represent signed fixed-point
values in the range [—1, 1]. For example, if b = 8, then the integer value —127 cor-
responds to —1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (—128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values’, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

2.3.5.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f' = convert_float_uint(f x (2° —1),b) (2.3)

where convert_float_uint(r,b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ is performed by clamping f to the range [—1, 1], then
computing

f' = convert_float_int(f x (2>~ —1),b) (2.4)

where convert_float_int(r,b) returns one of the two signed two’s-complement
binary integer values with exactly b bits which are closest to the floating-point
value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see

7 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —128 mapped to —1.0, 127 mapped to 1.0, and 0.0 was not
exactly representable.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.4. RENDERING COMMANDS 26

section 2.2.2) and returning integers®, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Rendering Commands

GL commands performing rendering into a framebuffer are sometimes treated spe-
cially by other GL operations such as conditional rendering (see section 10.9).
Such commands are called rendering commands, and include the drawing com-
mands *Draw* (see section 10.4), as well as these additional commands:

o BlitFramebuffer (see section 18.3.1)
e Clear (see section 17.4.3)
e ClearBuffer* (see section 17.4.3.1)

o DispatchCompute* (see section 19)

2.5 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.6. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their
function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL may be hardware dependent, the Specifi-
cation is independent of any specific hardware on which it is implemented. We are
concerned with the state of graphics hardware only when it corresponds precisely
to GL state.

8 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —1.0 mapped to —128, 1.0 mapped to 127, and 0.0 was not
exactly representable.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.6. OBJECTS AND THE OBJECT MODEL 27

2.5.1 Generic Context State Queries

Context state queries are described in detail in chapter 22.

2.6 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,
texture image, and framebuffer memory that is accessed by shaders and directly
by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types
of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.

2.6.1 Object Management
2.6.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

OpenGL 4.5 (Core Profile) - June 29, 2017

2.6. OBJECTS AND THE OBJECT MODEL 28

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

Objects may also be created directly by functions that return a new name or
names representing a freshly initialized object. Some functions return a single ob-
ject name directly whereas others are able to create a large number of new objects,
returning their names in an array. Examples of the former are CreateProgram
for program objects and FenceSync for fence sync objects. Examples of the latter
are CreateBuffers, CreateTextures and CreateVertexArrays for buffers, textures
and vertex arrays, respectively.

2.6.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names
to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.
However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.

2.6.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.3.5. These APIs are responsible for creation and manage-
ment of contexts, and are not discussed further here. More detailed discussion of
the behavior of shared objects is included in chapter 5. Except as defined below
for specific object types, all state in a context is specific to that context only.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.6. OBJECTS AND THE OBJECT MODEL 29

2.6.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory. Under certain circumstances, the data store of a buffer object may
be shared between the client and server and accessed simultaneously by both.

Buffer objects may be shared. They are described in detail in chapter 6.

2.6.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

2.6.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.
Program objects may be shared. They are described in detail in chapter 7.

2.6.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.6.6 Texture Objects

Texture objects or textures include a collection of fexture images built from arrays

OpenGL 4.5 (Core Profile) - June 29, 2017

2.6. OBJECTS AND THE OBJECT MODEL 30

of image elements. The image elements are referred to as fexels. There are many
types of texture objects varying by dimensionality and structure; the different tex-
ture types are described in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

2.6.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture
image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.
Sampler objects may be shared. They are described in detail in chapter 8.

2.6.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered
to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.

Renderbuffer objects may be shared. They are described in detail in chapter 9.

2.6.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer

OpenGL 4.5 (Core Profile) - June 29, 2017

2.6. OBJECTS AND THE OBJECT MODEL 31

and/or texture objects, and are not shared’. They are described in detail in chap-
ter 9.

2.6.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

2.6.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback
mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 13.2.1.

2.6.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the
number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.6.13 Sync Objects

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics

° Framebuffer objects created with the commands defined by the GL_EXT_—

framebuffer_object extension are defined to be shared, while FBOs created with
commands defined by the OpenGL core or GL,_ARB_ framebuffer_object extension are
defined to not be shared. Undefined behavior results when using FBOs created by EXT commands
through non-EXT interfaces, or vice-versa.

OpenGL 4.5 (Core Profile) - June 29, 2017

2.6. OBJECTS AND THE OBJECT MODEL 32

pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.
Sync objects may be shared. They are described in detail in section 4.1.

2.6.14

This subsection is only defined in the compatibility profile.

OpenGL 4.5 (Core Profile) - June 29, 2017

Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Commands are effectively sent through a processing pipeline. Different stages of
the pipeline use data contained in different types of buffer objects.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed, fol-
lowed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from a single input primitive. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for the
next stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or poly-
gon. Each fragment so produced is fed to the next stage that performs operations
on individual fragments before they finally alter the framebuffer. These operations
include conditional updates into the framebuffer based on incoming and previously
stored depth values (to effect depth buffering), blending of incoming fragment col-
ors with stored colors, as well as masking, stenciling, and other logical operations
on fragment values.

Pixels may also be read back from the framebuffer or copied from one portion
of the framebuffer to another. These transfers may include some type of decoding
or encoding.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule

33

34

of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.

OpenGL 4.5 (Core Profile) - June 29, 2017

35

e —

noed |Pxid

A

| esewrame

suonesadQ |oxid

A

._lll

| suoessdouewberyred || Bupu@semna=q |

Japeys andwo)

Aiquiassy [9xid
A

uonedijddy woag

A

yojedsiq

A

uonediddy woag

-

>

A _ abejs a|qewwelbo.d _
Jopeys juswbely _
A _ abe3s uoiouNg paxiy _
_ uonezusisey _ puabay
A
Japeys A1pwoan _
A

-

Japeys *|ea3 uone||assaL _

| 4

*U9D AW UORR|DSSD L _

| 4

>

| 4

.

>
I

Figure 3.1. Block diagram of the GL pipeline.

J9]INd XOMIA

> feeesesseseeetcctttetttctttassasseneenecttttttnel

uonedijddy woag

OpenGL 4.5 (Core Profile) - June 29, 2017

Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

36

4.1. SYNC OBJECTS AND FENCES 37

Property Name Property Value
OBJECT_TYPE SYNC_FENCE
SYNC_CONDITION | condition
SYNC_STATUS UNSIGNALED
SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.

Each sync object contains a number of properties which determine the state of
the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The syNC_STATUS property will be changed to STGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command
void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be

OpenGL 4.5 (Core Profile) - June 29, 2017

4.1. SYNC OBJECTS AND FENCES 38

deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint 64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

OpenGL 4.5 (Core Profile) - June 29, 2017

4.1. SYNC OBJECTS AND FENCES 39

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSyne(sync sync, bitfield flags,
uint 64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block' until sync is signaled”.

sync has the same meaning as for ClientWaitSync.

timeout must currently be the special value TIMEOUT_IGNORED, and is not
used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with pname MAX_SERVER_WAIT_TIMEOUT. There is
currently no way to determine whether WaitSync unblocked because the timeout
expired or because the sync object being waited on was signaled.

flags must be zero.

If an error occurs, WaitSync generates a GL error as specified below, and does
not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT_-—
IGNORED or flags is not zero”.

¢ flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

! The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.

OpenGL 4.5 (Core Profile) - June 29, 2017

4.1. SYNC OBJECTS AND FENCES

4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior?, if ClientWaitSync is called and all of the following are true:

e the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
e sync is unsignaled when ClientWaitSync is called,

e and the calls to ClientWaitSync and FenceSync were issued from the same
context,

then the GL will behave as if the equivalent of Flush were inserted immediately
after the creation of sync.

Additional constraints on the use of sync objects are discussed in chapter 5.

State must be maintained to indicate which sync object names are currently
in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled
or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL 4.5 (Core Profile) - June 29, 2017

40

4.1. SYNC OBJECTS AND FENCES 41

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_—
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if bufSize is negative.

The command
boolean IsSyne(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

OpenGL 4.5 (Core Profile) - June 29, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 42

4.2 Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. Query types supported by the GL include

e Primitive queries with a farget of PRIMITIVES_GENERATED (see sec-
tion 13.3) return information on the number of primitives processed by
the GL. There may be at most the value of MAX_VERTEX_STREAMS active
queries of this type.

e Primitive queries with a farget of TRANSFORM_FEEDBACK_PRIMITIVES_—
WRITTEN (see section 13.3) return information on the number of primitives
written to one or more buffer objects. There may be at most the value of
MAX_VERTEX_STREAMS active queries of this type.

e Occlusion queries with a farget of SAMPLES_PASSED, ANY_SAMPLES_—
PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE (see section 17.3.5)
count the number of fragments or samples that pass the depth test, or set a
boolean to true when any fragments or samples pass the depth test. There
may be at most one active query of this type.

e Time elapsed queries with a rarget of TIME_ELAPSED (see section 4.3)
record the amount of time needed to fully process a sequence of commands.
There may be at most one active query of this type.

e Timer queries with a farget of TIMESTAMP (see section 4.3) record the cur-
rent time of the GL. There may be at most one active query of this type.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 4.2.1 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, for the purposes of GenQueries only, but no object is associated with
them until the first time they are used by BeginQuery, BeginQueryIndexed, or
QueryCounter (see section 4.3).

OpenGL 4.5 (Core Profile) - June 29, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 43

Errors

An INVALID_VALUE error is generated if # is negative.
Query objects may also be created with the command
void CreateQueries(enum target, sizei n, uint *ids);

CreateQueries returns n previously unused query object names in ids, each
representing a new query object with the specified rarget. target may be
one of SAMPLES_PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_-
CONSERVATIVE, TIME_ELAPSED, TIMESTAMP, PRIMITIVES_GENERATED, and
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN.

The initial state of the resulting query object is that the result is marked avail-
able (the value of QUERY_RESULT_AVAILABLE for the query object is TRUE) and
the result value (the value of QUERY_RESULT) is zero.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.
An INVALID_VALUE error is generated if # is negative.

Query objects are deleted by calling
void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if 7 is negative.

Each type of query, other than timer queries of type TIMESTAMP, supported by
the GL has an active query object name for each of the possible active queries. If
an active query object name is non-zero, the GL is currently tracking the corre-
sponding information, and the query results will be written into that query object.
If an active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

OpenGL 4.5 (Core Profile) - June 29, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 44

void BeginQueryIndexed(enum farget, uint index,
uint id);

target indicates the type of query to be performed. The valid values of rarget are
discussed in more detail in subsequent sections.

If id is an unused query object name, the name is marked as used and associated
with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type. Note that occlusion query objects
specified by either of the two targets ANY_SAMPLES_PASSED or ANY_SAMPLES_ -
PASSED_CONSERVATIVE may be reused for either target in future queries. Objects
specified with farget SAMPLES_PASSED may only be reused for that rarget.

index is the index of the query, and must be between zero and a farget-specific
maximum. The state of the query object named id, whether newly created or not,
is that the result is marked unavailable (the value of QUERY_RESULT_AVAILABLE
for the query object is FALSE), and the result value (the value of QUERY_RESULT)
is zero.

The active query object name for farget and index is set to id.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_PASSED,
ANY_SAMPLES_PASSED, ANY_SAMPLES_-—
PASSED_CONSERVATIVE, TIME_ELAPSED, PRIMITIVES_GENERATED Or
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED,

ANY_SAMPLES_PASSED_CONSERVATIVE, or TIME_ELAPSED, and index is
not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES -
GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries or CreateQueries, or if such a name has
since been deleted with DeleteQueries.

An INVALID_OPERATION error is generated if id is any of:

® 7€ro

e the name of an existing query object whose type does not match target

OpenGL 4.5 (Core Profile) - June 29, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 45

e an active query object name for any farget and index

e the active query object for conditional rendering (see section 10.9).

An INVALID_OPERATION error is generated if the active query object
name for farget and index is non-zero.

The command
void BeginQuery(enum target, uint id);
is equivalent to
BeginQueryIndexed (target, 0, id);
The command
void EndQueryIndexed(enum target, uint index);

marks the end of the sequence of commands to be tracked for the active query
specified by target and index. target and index have the same meaning as for Be-
ginQueryIndexed.

The corresponding active query object is updated to indicate that query results
are not available, and the active query object name for farget and index is reset to
zero. When the commands issued prior to EndQueryIndexed have completed and
a final query result is available, the query object active when EndQueryIndexed
was called is updated to contain the query result and to indicate that the query result
is available.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_-
PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE
TIME_ELAPSED, PRIMITIVES_GENERATED, or TRANSFORM_FEEDBACK_-—
PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED,

ANY SAMPLES_PASSED_CONSERVATIVE, or TIME_ELAPSED, and index is
not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES_ -
GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if the active query object

OpenGL 4.5 (Core Profile) - June 29, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 46

name for target and index is zero.

The command
void EndQuery(enum target);
is equivalent to
EndQueryIndexed (target, 0);

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may be determined as described in section 4.2.1. The initial state of a query
object depends on whether it was created with CreateQueries or BeginQuerylIn-
dexed, as described above.

If the query result overflows (exceeds the value 2" — 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2’ — 1 and incrementing no further.

The necessary state for each possible active query farget and index is an un-
signed integer holding the active query object name (zero if no query object is ac-
tive), and any state necessary to keep the current results of an asynchronous query
in progress. Only a single type of occlusion query can be active at one time, so the
required state for occlusion queries is shared.

4.2.1 Query Object Queries
The command
boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.
Information about an active query object may be queried with the command

void GetQueryIndexediv(enum target, uint index,
enum pname, int *params);

target and index specify the active query, and have the same meaning as for Begin-
QueryIndexed.

OpenGL 4.5 (Core Profile) - June 29, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES

If pname is CURRENT_QUERY, the name of the currently active query object for
target and index, or zero if no query is active, will be placed in params. If target is
TIMESTAMP, zero is always returned.

If pname is QUERY_COUNTER_BITS, index is ignored and the implementation-
dependent number of bits used to hold the query result for target will be placed in
params. The number of query counter bits may be zero, in which case the counter
contains no useful information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For occlusion queries with target ANY_SAMPLES_PASSED or ANY_ -
SAMPLES_PASSED_CONSERVATIVE, if the number of bits is non-zero, the min-
imum number of bits is 1. For occlusion queries with farget SAMPLES_PASSED, if
the number of bits is non-zero, the minimum number of bits allowed is 32.

For timer queries (farget TIME_ELAPSED and TIMESTAMP), if the number of
bits is non-zero, the minimum number of bits allowed is 30. This will allow at least
one second of timing.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_ -
PASSED, ANY SAMPLES_ PASSED, ANY SAMPLES PASSED CONSERVATIVE
TIMESTAMP, TIME_ELAPSED, PRIMITIVES_GENERATED, or TRANSFORM_-
FEEDBACK_PRIMITIVES WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY -

SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE, TIMESTAMP,
or TIME_ELAPSED, and index is not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES -
GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_ENUM error is generated if pname is not CURRENT_QUERY
or QUERY COUNTER_BITS.

The command
void GetQueryiv(enum farget, enum pname, int *params);
is equivalent to

GetQuerylIndexediv (target, 0, pname, params);

OpenGL 4.5 (Core Profile) - June 29, 2017

47

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 48

The state of a query object may be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

void GetQueryObjecti6dv(uint id, enum pname,
int 64 *params);

void GetQueryObjectui6dv(uint id, enum pname,
uint 64 *params);

void GetQueryBufferObjectiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectuiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectiodv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectui6dv(uint id, uint buffer,
enum pname, intptr offset);

id is the name of a query object.

For GetQueryBufferObject*, buffer is the name of a buffer object and offset
is an offset into buffer at which the queried value is written.

For GetQueryObject*, the queried value may be returned either in client
memory or in a buffer object. If zero is bound to the current query result buffer
binding point (see QUERY_RESULT in section 6.1), then params is treated as a
pointer into client memory at which the queried value is written. Otherwise,
params is treated as an offset into the query result buffer object at which the queried
value is written.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE. Repeatedly querying QUERY_—
RESULT_AVAILABLE for any given query object is guaranteed to return TRUE
eventually.

If pname is QUERY_TARGET, then the target of the query object is returned as
a single integer.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer. If the value is so large in magnitude that it cannot be represented
with the requested type, then the nearest value representable using the requested

OpenGL 4.5 (Core Profile) - June 29, 2017

4.3. TIME QUERIES 49

type is returned. If the number of query counter bits for farget is zero, then the
result is returned as a single integer with the value zero. Querying QUERY_RESULT
for any given query object forces that query to complete within a finite amount of
time.

If pname is QUERY_RESULT_NO_WATIT, then the query object’s result value is
returned as a single integer if the result is available at the time of the state query. If
the result is not available then the query return value is not written.

If multiple queries are issued using the same object name prior to calling these
query commands, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same farget and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID_OPERATION error is generated by GetQueryBufferOb-
ject* if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not QUERY_RESULT,
QUERY_RESULT_AVATILABLE, QUERY_RESULT_NO_WATT, or
QUERY_TARGET.

An INVALID_OPERATION error is generated if the query writes to a buffer
object, and the specified buffer offset would cause data to be written beyond
the bounds of that buffer object.

An INVALID_VALUE error is generated by GetQueryBufferObject* if
offset is negative.

4.3 Time Queries

Query objects may also be used to track the amount of time needed to fully com-
plete a set of GL commands (a time elapsed query), or to determine the current
time of the GL (a timer query).

When BeginQuery and EndQuery are called with a target of TIME_ELAPSED,
the GL prepares to start and stop the timer used for time elapsed queries. The timer
is started or stopped when the effects from all previous commands on the GL client
and server state and the framebuffer have been fully realized. The BeginQuery and
EndQuery commands may return before the timer is actually started or stopped.
When the time elapsed query timer is finally stopped, the elapsed time (in nanosec-
onds) is written to the corresponding query object as the query result value, and the

OpenGL 4.5 (Core Profile) - June 29, 2017

4.3. TIME QUERIES 50

query result for that object is marked as available.
A timer query object is created with the command

void QueryCounter(uint id, enum target);

target must be TIMESTAMP. If id is an unused query object name, the name is
marked as used and associated with a new query object of type TIMESTAMP. Oth-
erwise id must be the name of an existing query object of that type.

Alternatively, TIMESTAMP query objects can be created by calling Create-
Queries with target set to TIMESTAMP.

When QueryCounter is called, the GL records the current time into the cor-
responding query object. The time is recorded after all previous commands on
the GL client and server state and the framebuffer have been fully realized. When
the time is recorded, the query result for that object is marked available. Timer
queries can be used within a BeginQuery / EndQuery block where the target is
TIME_ELAPSED, and it does not affect the result of that query object.

The current time of the GL may be queried by calling GetIntegerv or Get-
Integer64v with the symbolic constant TIMESTAMP. This will return the GL time
after all previous commands have reached the GL server but have not yet neces-
sarily executed. By using a combination of this synchronous get command and the
asynchronous timestamp query object target, applications can measure the latency
between when commands reach the GL server and when they are realized in the
framebuffer.

Errors

An INVALID_ENUM error is generated if target is not TIMESTAMP.

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries, or if such a name has since been deleted
with DeleteQueries.

An INVALID_OPERATION error is generated if id is the name of an exist-
ing query object whose type is not TIMESTAMP.

OpenGL 4.5 (Core Profile) - June 29, 2017

Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL contexts, including deletion behavior and how changes to shared objects
are propagated between contexts.

Objects that may be shared between contexts include buffer objects, program
and shader objects, renderbuffer objects, sampler objects, sync objects, and texture
objects (except for the texture objects named zero).

Some of these objects may contain views (alternate interpretations) of part or
all of the data store of another object. Examples are texture buffer objects, which
contain a view of a buffer object’s data store, and texture views, which contain a
view of another texture object’s data store. Views act as references on the object
whose data store is viewed.

Objects which contain references to other objects include framebuffer, program
pipeline, query, transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing differ-
ent OpenGL versions or different profiles of the same OpenGL version (see ap-
pendix D). However, implementation-dependent behavior may result when aspects
and/or behaviors of such shared objects do not apply to, and/or are not described
by more than one version or profile.

51

5.1. OBJECT DELETION BEHAVIOR 52

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, and detached from any attachments
of container objects that are bound to the current context, as described for Delete-
Buffers, DeleteTextures, and DeleteRenderbuffers. If the object binding was
established with other related state (such as a buffer range in BindBufferRange or
selected level and layer information in FramebufferTexture or BindImageTex-
ture), all such related state are restored to default values by the automatic unbind.
Bind points in other contexts are not affected. Attachments to unbound container
objects, such as deletion of a buffer attached to a vertex array object which is not
bound to the context, are not affected and continue to act as references on the
deleted object, as described in the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, texture, sampler, renderbuffer, query, or sync object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use.

A buffer, texture, sampler, or renderbuffer object is in use if any of the follow-
ing conditions are satisfied:

o the object is attached to any container object
e the object is bound to a context bind point in any context

e any other object contains a view of the data store of the object.

A sync object is in use while there is a corresponding fence command which
has not yet completed and signaled the sync object, or while there are any GL

OpenGL 4.5 (Core Profile) - June 29, 2017

5.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 53

clients and/or servers blocked on the sync object as a result of ClientWaitSync or
WaitSync commands.

Query objects are in use so long as they are active, as described in section 4.2.

When a shader object or program object is deleted, it is flagged for deletion, but
its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object while it is in use (as defined
above). Following its deletion, the object’s name may be returned by Gen* or
Create* commands. The underlying object state and data for such a deleted, but
still in use object may still be read and written by the GL, but cannot be accessed
by name. The underlying storage backing a deleted object will not be reclaimed by
the GL until all references to the object from container object attachment points,
context binding points, views, fence commands, active queries, etc. are removed.
Since the name is marked unused, binding the name will create a new object with
the same name, and attaching the name will generate an error.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signaled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.

e The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

OpenGL 4.5 (Core Profile) - June 29, 2017

5.3. PROPAGATING CHANGES TO OBJECTS 54

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

e State-setting commands, such as TexParameter.
e Data-setting commands, such as TexSubImage* or BufferSubData.

e Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

e Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

e Commands that affect both state and data, such as TexImage* and Buffer-
Data.

e Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

e Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of 7 are construed to include the contents of
the data store of T, even if T’s data store was modified via a different view of the
data store.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command ' may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context. In cases where a feed-
back loop has been established (see sections 8.6.1, 8.14.2.1, and 9.3, as well as the

!The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time ¢ must be completed by the time a command
issued in the same context at time ¢ + 1 uses the result of that change.

OpenGL 4.5 (Core Profile) - June 29, 2017

5.3. PROPAGATING CHANGES TO OBJECTS 55

discussion of rule 1 below in section 5.3.3) the resulting contents of an object may
be undefined.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:

e An object T'is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

e T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 [f the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with updates via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 13.2.3), results will be undefined.

OpenGL 4.5 (Core Profile) - June 29, 2017

5.3. PROPAGATING CHANGES TO OBJECTS 56

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 [f the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL 4.5 (Core Profile) - June 29, 2017

Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors
An INVALID_VALUE error is generated if # is negative.

In addition to generating an unused name and then binding it to a target with
BindBuffer, a buffer object may also be created with the command

void CreateBuffers(sizei n, uint *buffers);

CreateBuffers returns # previously unused buffer names in buffers, each rep-
resenting a new buffer object initialized as if it had been bound to an unspecified
target.

57

6.1. CREATING AND BINDING BUFFER OBJECTS 58

Errors

An INVALID_VALUE error is generated if # is negative.
Buffer objects are deleted by calling
void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsBuffer(uint buffer);
returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is

a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding a name returned by GenBuffers to a buffer
target. The binding is effected by calling

void BindBuffer(enum farget, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named buffer
has not been previously bound, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

Buffer objects created by binding a name returned by GenBuffers to any of the
valid rargets are formally equivalent, but the GL may make different choices about
storage location and layout based on the initial binding.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS

59

Target name Purpose Described in
section(s)
ARRAY_BUFFER Vertex attributes 10.3.9
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.6
COPY_WRITE_BUFFER Buffer copy destination 6.6
DISPATCH_INDIRECT_BUFFER | Indirect compute dispatch commands | 19
DRAW_INDIRECT_BUFFER Indirect command arguments 10.3.11
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.10
PIXEL_PACK_BUFFER Pixel read target 18.2, 22
PIXEL_UNPACK_BUFFER Texture data source 8.4
QUERY_BUFFER Query result buffer 4.2.1
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 13.2
UNIFORM_BUFFER Uniform block storage 7.6.2
Table 6.1: Buffer object binding targets.
Name Type Initial Value | Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY
BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE
BUFFER_ACCESS_FLAGS int 0 See section 6.3
BUFFER_IMMUTABLE_STORAGE | boolean FALSE TRUE, FALSE
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH int64 0 any non-negative integer
BUFFER_STORAGE_FLAGS int 0 See section 6.2

Table 6.2: Buffer object parameters and their values.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS 60

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in section 5.1.

Initially, each buffer object target is bound to zero.

Errors

An INVALID_ENUM error is generated if zarget is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers, or if such a name has since been
deleted with DeleteBuffers.

An INVALID_OPERATION error is generated by client attempts to modify
or query buffer object state for a target bound to zero, since there is no buffer
object corresponding to the name zero,

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be one of ATOMIC_COUNTER_BUFFER, SHADER STORAGE_BUFFER,
TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Additional language
specific to each target is included in sections referred to for each target in table 6.1.

Each rarget represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manip-
ulation functions, such as BindBuffer or MapBuffer. Both commands bind the

OpenGL 4.5 (Core Profile) - June 29, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS

buffer object named by buffer to both the general binding point, and to the binding
point in the array given by index. If the binds are successful no change is made
to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound, the GL creates
a new state vector, initialized with a zero-sized memory buffer and comprising all
the state and with the same initial values listed in table 6.2.

For BindBufferRange, offser specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offset and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 13.2.2.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of farget-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers, or if such a name has since been
deleted with DeleteBuffers.

An INVALID_VALUE error is generated by BindBufferRange if offset is
negative.

An INVALID VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified target, as described in section 6.7.1.

The commands

OpenGL 4.5 (Core Profile) - June 29, 2017

61

6.1. CREATING AND BINDING BUFFER OBJECTS 62

void BindBuffersBase(enum rarget, uint first, sizei count,
const uint *buffers);

void BindBuffersRange(enum rarget, uint first,
sizei count, const uint *buffers, const
intptr *offsets, const sizeiptr *sizes);

bind count existing buffer objects to bindings numbered first through first +
count — 1 in the array of buffer binding points corresponding to farget. If buffers
is not NULL, it specifies an array of count values, each of which must be zero or
the name of an existing buffer object. For BindBuffersRange, offsets and sizes
specify arrays of count values indicating the range of each buffer to bind. If buffers
is NULL, all bindings from first to first + count — 1 are reset to their unbound
(zero) state. In this case, the offsets and sizes associated with the binding points
are set to default values, ignoring offsets and sizes.
BindBuffersBase is equivalent (assuming no errors are generated) to:

for (i = 0; 1 < count; i++) {
if (buffers == NULL) {
BindBufferBase (target, first + i, 0);
} else {

BindBufferBase (target, first + i, buffers[i]);

}
}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.
BindBuffersRange is equivalent (assuming no errors are generated) to:

for (1 = 0; i < count; i++) {
if (buffers == NULL) {
BindBufferRange (target, first + i1, 0, 0, 0);
} else {

BindBufferRange (target, first + i, buffers(i],
of fsets[i], sizes[i]);

}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.

The values specified in buffers, offsets, and sizes will be checked separately for
each binding point. When values for a specific binding point are invalid, the state

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 63

for that binding point will be unchanged and an error will be generated. When
such an error occurs, state for other binding points will still be changed if their
corresponding values are valid.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_OPERATION error is generated if first + count is greater
than the number of target-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if any value in buffers is not
zero or the name of an existing buffer object.

An INVALID_VALUE error is generated by BindBuffersRange if any
value in offsets is less than zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any
value in sizes is less than or equal to zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any pair
of values in offsets and sizes does not respectively satisfy the constraints
described for those parameters for the specified target, as described in sec-
tion 6.7.1 (per binding).

6.2 Creating and Modifying Buffer Object Data Stores
The data store of a buffer object is created by calling one of

void BufferStorage(enum farget, sizeiptr size, const
void *data, bitfield flags);

void NamedBufferStorage(uint buffer, sizeiptr size,
const void *data, bitfield flags);

For BufferStorage, the buffer object is that bound to target, which must be one
of the values listed in table 6.1. For NamedBufferStorage, buffer is the name of
the buffer object. size is the size of the data store in basic machine units, and flags
containing a bitfield describing the intended usage of the data store.

The data store of the buffer object is allocated as a result of these commands,
and cannot be de-allocated until the buffer is deleted with a call to DeleteBuffers.
Such a store may not be re-allocated through further calls to *BufferStorage or
BufferData.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 64

data specifies the address in client memory of the data that should be used to
initialize the buffer object’s data store. If data is NULL, the data store of the buffer
object is created, but contains undefined data. Otherwise, data should point to an
array of at least size basic machine units.

flags is the bitwise OR of flags describing the intended usage of the buffer
object’s data store by the application. Valid flags and their meanings are as follows:

DYNAMIC_STORAGE_BIT The contents of the data store may be updated after cre-
ation through calls to BufferSubData. If this bit is not set, the buffer content
may not be directly updated by the client. The data argument may be used
to specify the initial content of the buffer’s data store regardless of the pres-
ence of the DYNAMIC_STORAGE_BIT. Regardless of the presence of this bit,
buffers may always be updated with server-side calls such as CopyBuffer-
SubData and ClearBufferSubData.

MAP_READ_BIT The data store may be mapped by the client for read access and a
pointer in the client’s address space obtained that may be read from.

MAP_WRITE_BIT The data store may be mapped by the client for write access and
a pointer in the client’s address space obtained that may be written to.

MAP_PERSISTENT_BIT The client may request that the server read from or write
to the buffer while it is mapped. The client’s pointer to the data store remains
valid so long as the data store is mapped, even during execution of drawing
or dispatch commands.

MAP_COHERENT_BIT Shared access to buffers that are simultaneously mapped for
client access and are used by the server will be coherent, so long as that map-
ping is performed using MapBufferRange or MapNamedBufferRange.
That is, data written to the store by either the client or server will be visible
to any subsequently issued GL commands with no further action taken by
the application. In particular,

e If MAP_COHERENT_BIT is not set and the client performs a write fol-
lowed by a call to one of the FlushMapped*BufferRange commands
with a range including the written range, then in subsequent com-
mands the server will see the writes.

e If MAP_COHERENT_BIT is set and the client performs a write, then in
subsequent commands the server will see the writes.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 65

e If MAP_COHERENT_BIT is not set and the server performs a write, the
application must call MemoryBarrier with the CLIENT_MAPPED_-—
BUFFER_BARRIER_BIT set and then call FenceSync with sync_-
GPU_COMMANDS_COMPLETE (or Finish). Then the CPU will see the
writes after the sync is complete.

e If MAP_COHERENT_BIT is set and the server does a write, the applica-
tion must call FenceSync with SYNC_GPU_COMMANDS_COMPLETE (or
Finish). Then the CPU will see the writes after the sync is complete.

CLIENT_STORAGE_BIT When all other criteria for the buffer storage allocation
are met, this bit may be used by an implementation to determine whether to
use storage that is local to the server or to the client to serve as the backing
store for the buffer.

If flags contains MAP_PERSISTENT_BIT, it must also contain at least one of
MAP_READ_BIT or MAP_WRITE_BIT.

It is an error to specify MAP_COHERENT_BIT without also specifying MAP_ -
PERSISTENT_BIT.

BufferStorage and NamedBufferStorage delete any existing data store, and
set the values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Errors

An INVALID_OPERATION error is generated by BufferStorage if zero is
bound to target.

An INVALID_OPERATION error is generated by NamedBufferStorage if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is less than or equal to zero.

An INVALID_VALUE error is generated if flags has any bits set other than
those defined above.

An INVALID VALUE error is generated if flags contains MAP_ -
PERSISTENT_BIT but does not contain at least one of MAP_ READ BIT Or
MAP_WRITE_BIT.

An INVALID_VALUE error is generated if flags contains MAP_-—
COHERENT_BIT, but does not also contain MAP_ PERSISTENT_BIT.

An INVALID OPERATION error is generated if the BUFFER -

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 66

Name Value for Value for
BufferData *BufferStorage
BUFFER_SIZE size size
BUFFER_USAGE usage DYNAMIC_DRAW
BUFFER_ACCESS READ_WRITE READ_WRITE
BUFFER_ACCESS_FLAGS 0 0
BUFFER_IMMUTABLE_STORAGE | FALSE TRUE
BUFFER_MAPPED FALSE FALSE
BUFFER_MAP_POINTER NULL NULL
BUFFER_MAP_OFFSET 0 0
BUFFER_MAP_LENGTH 0 0
BUFFER_STORAGE_FLAGS MAP_READ_BIT | flags
MAP_WRITE_BIT |
DYNAMIC_STORAGE_BIT

Table 6.3: Buffer object state after calling BufferData, BufferStorage, or Named-
BufferStorage.

IMMUTABLE_STORAGE flag of the buffer bound to farget is TRUE.
A mutable data store may be allocated for a buffer object with the commands

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

void NamedBufferData(uint buffer, sizeiptr size, const
void *data, enum usage);

For BufferData, the buffer object is that bound to target, which must be one
of the targets listed in table 6.1. For NamedBufferData, buffer is the name of the
buffer object.

size is the size of the data store in basic machine units, data points to the source
data in client memory, and usage indicates the expected application usage pattern
of the data store.

If data is non-NULL, then the source data is copied to the buffer object’s data
store. If data is NULL, then the contents of the buffer object’s data store are unde-
fined.

usage is specified as one of nine enumerated values. In the following descrip-
tions, a buffer’s data store is sourced when if is read from as a result of GL com-
mands which specify images, or invoke shaders accessing buffer data as a result of
drawing commands or compute shader dispatch.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 67

The values are:

STREAM DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

STATIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coPY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData and NamedBufferData delete any existing data store, and set the
values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /V basic machine units be a multiple of N.

Calling *BufferData is equivalent to calling BufferStorage with target, size
and data as specified, and flags set to the logical OR of DYNAMIC_STORAGE_BIT,
MAP_READ_BIT and MAP_WRITE_BIT. The GL will use the value of the usage pa-
rameter to *BufferData as a hint to further determine the intended use of the buffer.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 68

However, BufferStorage allocates immutable storage whereas *BufferData allo-
cates mutable storage. Thus, when a buffer’s data store is allocated through a call
to *BufferData, the buffer’s BUFFER_IMMUTABLE_STORAGE flag is set to FALSE.

Errors

An INVALID_OPERATION error is generated by BufferData if zero is
bound to trarget.

An INVALID_ OPERATION error is generated by NamedBufferData if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is negative.

An INVALID_ENUM error is generated by BufferData if rarget is not one
of the targets listed in table 6.1.

An INVALID_OPERATION error is generated if the BUFFER_-
IMMUTABLE_STORAGE flag of the buffer object is TRUE.

An INVALID_ENUM error is generated if usage is not one of the nine us-
ages described above.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the commands

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

void NamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, const void *data);

For BufferSubData, rarget specifies the target to which the buffer object is
bound, and must be one of the values listed in table 6.1. For NamedBufferSub-
Data, buffer is the name of the buffer object.

offset and size indicate the range of data in the buffer object that is to be re-
placed, in terms of basic machine units. data specifies a region of client memory
size basic machine units in length, containing the data that replace the specified
buffer range.

Errors

An INVALID_OPERATION error is generated by BufferSubData if zero is
bound to target.

An INVALID_ OPERATION error is generated by NamedBufferSubData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated by BufferSubData if rarget is not

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 69

one of the targets listed in table 6.1.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_STZE for the buffer object.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID_OPERATION error is generated if the BUFFER -
IMMUTABLE_STORAGE flag of the buffer object is TRUE and the value of
BUFFER_STORAGE_FLAGS for the buffer does not have the DYNAMIC_-
STORAGE_BIT set.

6.2.1 Clearing Buffer Object Data Stores

To fill all or part of a buffer object’s data store with constant values, use the com-
mands

void ClearBufferSubData(enum target, enum internalformat,
intptr offset, sizeiptr size, enum format, enumn type,
const void *data);

void ClearNamedBufferSubData(uint buffer,
enumn internalformat, intptr offset, sizeiptr size,
enum format, enum type, const void *data);

For ClearBufferSubData, the buffer object is that bound to target, which must
be one of the values listed in table 6.1. For ClearNamedBufferSubData, buffer is
the name of the buffer object.

internalformat must be set to one of the format tokens listed in table 8.16.
format and type specify the format and type of the source data and are interpreted
as described in section 8.4.4.

offset is the offset, measured in basic machine units, into the buffer object’s
data store from which to begin filling, and size is the size, also in basic machine
units, of the range to fill.

data is a pointer to an array of between one and four components containing
the data to be used as the source of the constant fill value. The elements of data
are converted by the GL into the format specified by internalformat in the manner
described in section 2.2.1, and then used to fill the specified range of the destination
buffer. If data is NULL, then the pointer is ignored and the sub-range of the buffer
is filled with zeros.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 70

Errors

An INVALID_ENUM error is generated by ClearBufferSubData if targer
is not one of the targets listed in table 6.1.

An INVALID_VALUE error is generated by ClearBufferSubData if zero
is bound to target.

An INVALID_OPERATION error is generated by ClearNamedBufferData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if internalformat is not one of the
format tokens listed in table 8.16.

An INVALID_VALUE error is generated if offset or size are not multiples
of the number of basic machine units for the internal format specified by inter-
nalformat. This value may be computed by multiplying the number of com-
ponents for internalformat from table 8.16 by the size of the base type from
that table.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_STZE for the buffer object.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_ PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID_VALUE error is generated if fype is not one of the types in
table 8.2.

An INVALID_VALUE error is generated if format is not one of the formats
in table 8.3.

The commands

void ClearBufferData(enum farget, enum internalformat,
enum format, enum type, const void *data);

void ClearNamedBufferData(uint buffer,
enumn infernalformat, enum format, enum type, const
void *data);

are respectively equivalent to
ClearBufferSubData (target, internalformat, 0, size, format, type, data) ;
and
ClearNamedBufferSubData (bu f fer, internalformat, 0, size, format, type, data);

where s1ize is the value of BUFFER_SIZE for the destination buffer object.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 71

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space with the commands

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield acesss);

void *MapNamedBufferRange(uint buffer, intptr offset,
sizeiptr length, bitfield access);

For MapBufferRange, the buffer object is that bound to farget, which must be
one of the values listed in table 6.1. For MapNamedBufferRange, buffer is the
name of the buffer object.

offset and length indicate the range of data in the buffer object that is to be
mapped, in terms of basic machine units. access is a bitfield containing flags which
describe the requested mapping. These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP PERSISTENT_BIT indicates that it is not an error for the GL to read
data from or write data to the buffer while it is mapped (see section 6.3.2).
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_PERSISTENT_BIT.

e MAP_COHERENT_BIT indicates that the mapping should be performed co-
herently. That is, such a mapping follows the rules set forth in section 6.2.
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_COHERENT_BTT.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 72

If no error occurs, the pointer values returned by Map*BufferRange must
reflect an allocation aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic
machine units. Subtracting offset basic machine units from the returned pointer
will always produce a multiple of the value of MIN_MAP_BUFFER_ALIGNMENT.

The returned pointer values may not be passed as parameter values to GL com-
mands. For example, they may not be used to specify array pointers, or to specify or
query pixel or texture image data; such actions produce undefined results, although
implementations may not check for such behavior for performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 73

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 6.4: Buffer object state set by MapBufferRange and MapNamedBuffer-
Range.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ BIT, MAP_-
WRITE_BIT, or MAP_READ_BIT|MAP_WRITE_ BIT.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt
to synchronize pending operations on the buffer prior to returning from
Map*BufferRange. No GL error is generated if pending operations which
source or modify the buffer overlap the mapped region, but the result of such
previous and any subsequent operations is undefined.

A successful Map*BufferRange sets buffer object state values as shown in
table 6.4.

Errors

If an error occurs, a NULL pointer is returned.

An INVALID_ENUM error is generated by MapBufferRange if target is
not one of the valid targets listed above.

An INVALID_OPERATION error is generated by MapBufferRange if zero
is bound to rarget.

An INVALID_OPERATION error is generated by MapNamedBuffer-
Range if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, if
offset + length is greater than the value of BUFFER_STZE, or if access has
any bits set other than those defined above.

An INVALID_OPERATION error is generated for any of the following con-
ditions:

OpenGL 4.5 (Core Profile) - June 29, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 74

length is zero.
e The buffer is already in a mapped state.
e Neither MAP_ READ_BIT nor MAP_WRITE_BIT is set.

e MAP READ BIT is set and any of MAP_INVALIDATE RANGE_BIT,
MAP_ INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_ BIT is
set.

e MAP FLUSH_EXPLICIT_BIT is set and MAP_ WRITE_BIT is not set.

e Any of MAP_READ_BIT, MAP_WRITE_BIT, MAP_PERSISTENT_BIT,
or MAP_ COHERENT_BIT are set, but the same bit is not set in the buffer’s
storage flags.

No error is generated if memory outside the mapped range is modified
or queried, but the result is undefined and system errors (possibly including
program termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space with the commands

void *MapBuffer(enum farget, enum access);
void *MapNamedBuffer(uint buffer, enum access);

These commands are respectively equivalent to
MapBufferRange (target, 0, length, flags);
and
MapNamedBufferRange (bu f fer, 0, length, flags);

where length is equal to the value of BUFFER_SIZE for the target buffer and
flagsisequal to

e MAP_READ_BIT, if access is READ_ONLY
e MAP_WRITE_BIT, if access is WRITE_ONLY

e MAP_READ_BIT | MAP_WRITE_BIT, if access is READ_WRITE.

The pointer value returned by MapBuffer and MapNamedBuffer must be
aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic machine units.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 75

Errors

An INVALID_ENUM error is generated if access is not READ_ONLY,
WRITE_ONLY, Oor READ_WRITE.

Other errors are generated as described above for MapBufferRange and
MapNamedBufferRange.

If a buffer object is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, mod-
ifications to the mapped range may be indicated with the commands

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

void FlushMappedNamedBufferRange(uint buffer,
intptr offset, sizeiptr length);

For FlushMappedBufferRange, the buffer object is that bound to farget,
which must be one of the targets listed in table 6.1. For FlushMappedNamed-
BufferRange, buffer is the name of the buffer object.

offset and length indicate a modified subrange of the mapping, in basic machine
units. The specified subrange to flush is relative to the start of the currently mapped
range of the buffer object. FlushMapped*BufferRange may be called multiple
times to indicate distinct subranges of the mapping which require flushing.

If a buffer range is mapped with both MAP_PERSISTENT_BIT and MAP_-
FLUSH_EXPLICIT_BIT set, then FlushMapped*BufferRange may be called to
ensure that data written by the client into the flushed region becomes visible to the
server. Data written to a coherent store will always become visible to the server
after an unspecified period of time.

Errors

An INVALID_ENUM error is generated by FlushMappedBufferRange if
target is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by FlushMappedBuffer-
Range if zero is bound to farget.

An INVALID_OPERATION error is generated by FlushMappedNamed-
BufferRange if buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object is not
mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 76

6.3.1 Unmapping Buffers

After the client has specified the contents of a mapped range of a buffer object, and
before the data in that range are dereferenced by any GL commands, the mapping
must be relinquished with one of the commands

boolean UnmapBuffer(enum rarget);
boolean UnmapNamedBuffer(uint buffer);

For UnmapBuffer, the buffer object is that bound to farget, which must be one
of the targets listed in table 6.1. For UnmapNamedBuffer, buffer is the name of
the buffer object.

Unmapping a mapped buffer object invalidates the pointer to its data store and
sets the object’s BUFFER_MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_—
FLAGS, BUFFER_MAP_OFFSET, and BUFFER_MAP_LENGTH state variables to the
initial values shown in table 6.3.

Unmap*Buffer returns TRUE unless data values in the buffer object’s data store
have become corrupted during the period that the buffer object was mapped. Such
corruption can be the result of a screen resolution change or other window system-
dependent event that causes system heaps such as those for high-performance
graphics memory to be discarded. GL implementations must guarantee that such
corruption can occur only during the periods that a buffer object’s data store is
mapped. If such corruption has occurred, Unmap*Buffer return FALSE, and the
contents of the data store become undefined.

Unmapping that occurs as a side effect of buffer deletion (see section 5.1.2) or
reinitialization by BufferData is not an error.

Buffer mappings are buffer object state, and are not affected by whether or not
a context owing a buffer object is current.

If an error is generated, FALSE is returned.

Errors

An INVALID_ ENUM error is generated by UnmapBuffer if rarger is not
one of the targets listed in table 6.1.

An INVALID_ OPERATION error is generated by UnmapBuffer if zero is
bound to target.

An INVALID_ OPERATION error is generated by UnmapNamedBuffer if
buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object’s data
store is already in the unmapped state.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.4. EFFECTS OF ACCESSING OUTSIDE BUFFER BOUNDS 77

6.3.2 Effects of Mapping Buffers on Other GL Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped, unless it was allocated by a call to *BufferStorage with
the MAP_PERSISTENT_BIT included in flags. However, only commands which
explicitly describe this error are required to do so. If an error is not generated,
such commands will have undefined results and may result in GL interruption or
termination.

6.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error is generated. Any command which does not detect these attempts, and
performs such an invalid read or write, has undefined results, and may result in GL
interruption or termination.

Robust buffer access can be enabled by creating a context with robust access
enabled through the window system binding APIs. When enabled, any command
unable to generate a GL error as described above, such as buffer object accesses
from the active program, will not read or modify memory outside of the data store
of the buffer object and will not result in GL interruption or termination. Out-
of-bounds reads may return values from within the buffer object or zero values.
Out-of-bounds writes may modify values within the buffer object or be discarded.
Accesses made through resources attached to binding points are only protected
within the buffer object from which the binding point is declared. For example,
for an out-of-bounds access to a member variable of a uniform block, the access
protection is provided within the uniform buffer object, and not for the bound buffer
range for this uniform block.

6.5 Invalidating Buffer Data

All or part of the data store of a buffer object may be invalidated by calling

void InvalidateBufferSubData(uint buffer, intptr offset,
sizeiptr length);

with buffer set to the name of the buffer whose data store is being invalidated. offset
and length specify the range of the data in the buffer object that is to be invalidated.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.6. COPYING BETWEEN BUFFERS 78

Data in the specified range have undefined values after calling InvalidateBuffer-
SubData.

Errors

An INVALID_VALUE error is generated if buffer is zero or is not the name
of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length is greater than the value of BUFFER_STIZE for buffer.

An INVALID_OPERATION error is generated if buffer is currently mapped
by MapBuffer or if the invalidate range intersects the range currently mapped
by MapBufferRange, unless it was mapped with MAP_ PERSTISTENT_BIT set
in the MapBufferRange access flags.

The command
void InvalidateBufferData(uint buffer);

is equivalent to calling InvalidateBufferSubData with offset equal to zero and
length equal to the value of BUFFER_SIZE for buffer.

6.6 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object with the commands

void CopyBufferSubData(enum readTarget, enum writelarget,
intptr readOffset, intptr writeOffset, sizeiptr size);
void CopyNamedBufferSubData(uint readBuffer,
uint writeBuffer, intptr readOffset, intptr writeOffset,
sizeiptr size);

For CopyBufferSubData, readTarget and writeTarget are the targets to which
the source and destination buffers are bound, and each must be one of the targets
listed in table 6.1. For CopyNamedBufferSubData, readBuffer and writeBuffer
are the names of the source and destination buffers, respectively.

While any of these targets may be used, the COPY_READ_BUFFER and COPY_ -
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use.

writeOffset and size specify the range of data in the destination buffer object
that is to be replaced, in terms of basic machine units. readOffset and size specify

OpenGL 4.5 (Core Profile) - June 29, 2017

6.7. BUFFER OBJECT QUERIES 79

the range of data in the source buffer object that is to be copied to the corresponding
region of writeTarget.

Errors

An INVALID_OPERATION error is generated by CopyBufferSubData if
zero is bound to readTarget or writeTarget.

An INVALID_ENUM error is generated by CopyBufferSubData if read-
Target or writeTarget is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by CopyNamedBufferSub-
Data if readBuffer or writeBuffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if any of readOffset, writeOffset,
or size are negative, if readOffset + size exceeds the size of the source buffer
object, or if write Offset+size exceeds the size of the destination buffer object.

An INVALID VALUE error is generated if the source and destination are
the same buffer object, and the ranges [readOffset, readOffset + size) and
[writeOffset, writeOffset + size) overlap.

An INVALID_OPERATION error is generated if either the source or des-
tination buffer objects is mapped, unless they were mapped with MAP_—
PERSISTENT_BIT set in the Map*BufferRange access flags.

6.7 Buffer Object Queries

To query information about a buffer object, use the commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int 64 *data);

void GetNamedBufferParameteriv(uint buffer,
enum pname, int *data);

void GetNamedBufferParameteri6dv(uint buffer,
enum pname, int64 *data);

For GetBufferParameter*, the buffer object is that bound to farget, which must
be one of the targets listed in table 6.1. For GetNamedBufferParameter®, buffer
is the name of the buffer object.

pname must be one of the buffer object parameters in table 6.2, other than
BUFFER_MAP_POINTER. The value of the specified parameter of the buffer object
bound to target is returned in data.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.7. BUFFER OBJECT QUERIES

Errors

An INVALID_ENUM error is generated by GetBufferParameter* if target
is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferParameter™ if
zero is bound to target.

An INVALID OPERATION error is generated by GetNamedBufferPa-
rameter™ if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not one of the buffer
object parameters other than BUFFER_MAP_POINTER.

To query the data store of a buffer object, use the commands

void GetBufferSubData(enum farget, intptr offset,
sizeiptr size, void *data);

void GetNamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, void *data);

For GetBufferSubData, rarget specifies the target to which the source buffer ob-
ject is bound, and must be one of the values listed in table 6.1. For GetNamed-
BufferSubData, buffer specifies the name of the source buffer object.

offset and size indicate the range of data in the source buffer object that is to be
queried, in terms of basic machine units. data specifies a region of client memory,
size basic machine units in length, into which the data is to be retrieved.

Errors

An INVALID_ENUM error is generated by GetBufferSubData if target is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferSubData if
zero is bound to farget.

An INVALID OPERATION error is generated by GetNamedBufferSub-
Data if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the source buffer
object.

An INVALID_OPERATION error is generated if the source buffer object is
currently mapped, unless it was mapped with MAP_ PERSISTENT_BIT set in
the Map*BufferRange access flags.

While part or all of the data store of a buffer object is mapped, the pointer to
the mapped range of the data store may be queried with the commands

OpenGL 4.5 (Core Profile) - June 29, 2017

80

6.7. BUFFER OBJECT QUERIES 81

void GetBufferPointerv(enum target, enum pname, const
void **params);

void GetNamedBufferPointerv(uint buffer, enum pname,
const void **params);

For GetBufferPointerv, the buffer object is that bound to target, which must
be one of the targets listed in table 6.1. For GetNamedBufferPointerv, buffer is
the name of the buffer object.

pname must be BUFFER_MAP_POINTER. The single buffer map pointer is re-
turned in params. A NULL pointer value is returned if the buffer object’s data store
is not currently mapped; or if the requesting context did not map the buffer ob-
ject’s data store, and the implementation is unable to support mappings on multiple
clients.

Errors

An INVALID_ENUM error is generated by GetBufferPointerv if rarget is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferPointerv if
zero is bound to farget.

An INVALID_OPERATION error is generated by GetNamedBufferPoint-
erv if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if prname is not BUFFER_MAP_-
POINTER.

6.7.1 Indexed Buffer Object Limits and Binding Queries

Several types of buffer bindings support an indexed array of binding points for
specific use by the GL, in addition to a single generic binding point for general
management of buffers of that type. Each type of binding is described in table 6.5
together with the token names used to refer to each buffer in the array of binding
points, the starting offset of the binding for each buffer in the array, any constraints
on the corresponding offset value passed to BindBufferRange (see section 6.1.1),
the size of the binding for each buffer in the array, any constraints on the corre-
sponding size value passed to BindBufferRange, and the size of the array (the
number of bind points supported).

To query which buffer objects are bound to an indexed array, call GetIntegeri_-
v with target set to the name of the array of binding points. index must be in the
range zero to the number of bind points supported minus one. The name of the
buffer object bound to index is returned in values. If no buffer object is bound for
index, zero is returned in values.

OpenGL 4.5 (Core Profile) - June 29, 2017

6.7. BUFFER OBJECT QUERIES

82

Atomic counter array bindings (see sec. 7.7.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

ATOMIC_COUNTER_BUFFER_BINDING
ATOMIC_COUNTER_BUFFER_START

multiple of 4

ATOMIC_COUNTER_BUFFER_SIZE

none

value of MAX ATOMIC_COUNTER_BUFFER_-
BINDINGS

Shader storage array bindings (see sec. 7.8)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

SHADER_STORAGE_BUFFER_BINDING
SHADER_STORAGE_BUFFER_START

multiple of value of SHADER_STORAGE -
BUFFER_OFFSET_ALIGNMENT
SHADER_STORAGE_BUFFER_SIZE

none

value of MAX_ SHADER STORAGE_BUFFER_ -
BINDINGS

Transform feedback array

bindings (see sec. 13.2.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

TRANSFORM_FEEDBACK_BUFFER_BINDING
TRANSFORM_FEEDBACK_BUFFER_START
multiple of 4
TRANSFORM_FEEDBACK_BUFFER_SIZE
multiple of 4

value of MAX_ TRANSFORM_FEEDBACK_BUFFERS

Uniform buffer array bindings (see sec. 7.6.3)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

UNIFORM_BUFFER_BINDING
UNIFORM_BUFFER_START

multiple of value of UNIFORM_BUFFER_ -
OFFSET_ALIGNMENT

UNIFORM_BUFFER_SIZE

none

value of MAX_UNIFORM_BUFFER_BINDINGS

Table 6.5: Indexed buffer object limits and binding queries

OpenGL 4.5 (Core Profile) - June 29, 2017

6.8. BUFFER OBJECT STATE 83

To query the starting offset or size of the range of a buffer object binding in
an indexed array, call GetInteger64i_v with rarget set to respectively the starting
offset or binding size name from table 6.5 for that array. index must be in the range
zero to the number of bind points supported minus one. If the starting offset or
size was not specified when the buffer object was bound (e.g. if it was bound with
BindBufferBase), or if no buffer object is bound to the target array at index, zero
is returned .

Errors

An INVALID VALUE error is generated by GetIntegeri_v and GetInte-
ger64i_v if rarget is one of the array binding point names, starting offset
names, or binding size names from table 6.5 and index is greater than or equal
to the number of binding points for target as described in the same table.

6.8 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 6.1, and for each of the indexed buffer targets in sec-
tion 6.1.1. The state required for index buffer targets for atomic counters, shader
storage, transform feedback, and uniform buffer array bindings is summarized in
tables 23.46, 23.47, 23.48, and 23.49 respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the vertex attribute arrays. The initial values for all
buffer object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, an boolean indicating whether or not buffer
storage is immutable, an unsigned integer storing the flags with which it was allo-
cated, a mapped boolean, two integers for the offset and size of the mapped region,
a pointer to the mapped buffer (NULL if unmapped), and the sized array of basic
machine units for the buffer data.

'A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL 4.5 (Core Profile) - June 29, 2017

Chapter 7

Programs and Shaders

This chapter specifies commands to create, manage, and destroy program and
shader objects. Commands and functionality applicable only to specific shader
stages (for example, vertex attributes used as inputs by vertex shaders) are de-
scribed together with those stages in chapters 10 and 15.

A shader specifies operations that are meant to occur on data as it moves
through different programmable stages of the OpenGL processing pipeline, start-
ing with vertices specified by the application and ending with fragments prior to
being written to the framebuffer. The programming language used for shaders is
described in the OpenGL Shading Language Specification.

To use a shader, shader source code is first loaded into a shader object and then
compiled. A shader object corresponds to a stage in the rendering pipeline referred
to as its shader stage or shader type.

Alternatively, pre-compiled shader binary code may be directly loaded into a
shader object. An implementation must support shader compilation (the boolean
value SHADER_COMPILER must be TRUE). If the integer value of NUM_SHADER_-
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

One or more shader objects are attached to a program object. The program
object is then linked, which generates executable code from all the compiled shader
objects attached to the program. Alternatively, pre-compiled program binary code
may be directly loaded into a program object (see section 7.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for a shader stage
includes a shader of that type, it is considered the active program object for that
stage.

The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage

84

7.1. SHADER OBJECTS 85

individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for one of the stages, the
corresponding executable code is used to perform processing for that stage.

Shader stages including vertex shaders, tessellation control shaders, tessella-
tion evaluation shaders, geometry shaders, fragment shaders, and compute shaders
can be created, compiled, and linked into program objects.

Vertex shaders describe the operations that occur on vertex attributes. Tessel-
lation control and evaluation shaders are used to control the operation of the tes-
sellator, and are described in section 11.2. Geometry shaders affect the processing
of primitives assembled from vertices (see section 11.3). Fragment shaders affect
the processing of fragments during rasterization (see section 15). A single program
object can contain all of these shaders, or any subset thereof.

Compute shaders perform general-purpose computation for dispatched arrays
of shader invocations (see section 19), but do not operate on primitives processed
by the other shader types.

Shaders can reference several types of variables as they execute. Uniforms
are per-program variables that are constant during program execution (see sec-
tion 7.6). Buffer variables (see section 7.8) are similar to uniforms, but are stored
in buffer object memory which may be written to, and is persistent across multiple
shader invocations. Subroutine uniform variables (see section 7.9) are similar to
uniforms but are context state, rather than program object state. Samplers (see sec-
tion 7.10) are a special form of uniform used for texturing (see chapter 8). Images
(see section 7.11) are a special form of uniform identifying a level of a texture to
be accessed using built-in shader functions as described in section 8.26. Output
variables hold the results of shader execution that are used later in the pipeline.
Each of these variable types is described in more detail below.

7.1 Shader Objects

The name space for shader objects is the unsigned integers, with zero reserved for
the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created and must be one of the values in table 7.1 indicating

OpenGL 4.5 (Core Profile) - June 29, 2017

7.1. SHADER OBJECTS 86

type Shader Stage

VERTEX_SHADER Vertex shader
TESS_CONTROL_SHADER Tessellation control shader
TESS_EVALUATION_SHADER | Tessellation evaluation shader

GEOMETRY_SHADER Geometry shader
FRAGMENT_SHADER Fragment shader
COMPUTE_SHADER Compute shader

Table 7.1: CreateShader rype values and the corresponding shader stages.

the corresponding shader stage. A non-zero name that can be used to reference the
shader object is returned.

Errors

An INVALID_ENUM error is generated and zero is returned if fype is not
one of the values in table 7.1.

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.1. SHADER OBJECTS 87

An INVALID_OPERATION error is generated if shader is the name of a
program object.
An INVALID_VALUE error is generated if count is negative.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status may be queried with GetShaderiv (see sec-
tion 7.13). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log may be queried with Get-
ShaderInfoL.og to obtain more information about the compilation attempt (see
section 7.13).

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

Resources allocated by the shader compiler may be released with the command
void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 7.13).

Shader objects can be deleted with the command

OpenGL 4.5 (Core Profile) - June 29, 2017

7.2. SHADER BINARIES 88

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS may be
queried with GetShaderiv (see section 7.13). DeleteShader will silently ignore
the value zero.

Errors

An INVALID_VALUE error is generated if shader is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if shader is not zero and is
the name of a program object.

The command
boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

7.2 Shader Binaries
Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type, and may correspond to any of the shader stages in table 7.1.
binary points to length bytes of pre-compiled binary shader code in client memory,
and binaryformat denotes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL defines no specific binary formats,
but does provide a mechanism to obtain token values for such formats provided
by extensions. The number of shader binary formats supported can be obtained by
querying the value of NUM_SHADER_BINARY_FORMATS. The list of specific binary

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS &9

formats supported can be obtained by querying the value of SHADER_BINARY_—
FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary shaders, or load an executable binary that contains an op-
timized set of shaders stored in the same binary.

Errors

An INVALID_VALUE error is generated if count or length is negative.

An INVALID_ENUM error is generated if binaryformat is not a supported
format returned in SHADER_BINARY_ FORMATS.

An INVALID_VALUE error is generated if the data pointed to by binary
does not match the specified binaryformat.

An INVALID_VALUE error is generated if any of the handles in shaders is
not the name of either a program or shader object.

An INVALID_OPERATION error is generated if any of the handles in
shaders is the name of a program object.

An INVALID_OPERATION error is generated if more than one of the han-
dles in shaders refers to the same type of shader object.

Additional errors corresponding to specific binary formats may be gener-
ated as specified by the extensions defining those formats.

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized set of shader binaries that were compiled together be
specified to LinkProgram. Not specifying an optimized set may cause LinkPro-
gram to fail.

7.3 Program Objects
A program object is created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 90

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is already attached
to program.

To detach a shader object from a program object, use the command
void DetachShader(uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID OPERATION error is generated if shader is not attached to
program.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 91

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status may be
queried with GetProgramiv (see section 7.13). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL Shading
Language Specification, as well as any of the following reasons:

e No shader objects are attached to program.

e One or more of the shader objects attached to program are not compiled
successfully.

e More active uniform or active sampler variables are used in program than
allowed (see sections 7.6, 7.10, and 11.3.3).

e program contains objects to form a tessellation control shader (see sec-
tion 11.2.1), and

— the program is not separable and contains no objects to form a vertex
shader;

— the output patch vertex count is not specified in any compiled tessella-
tion control shader object; or

— the output patch vertex count is specified differently in multiple tessel-
lation control shader objects.

e program contains objects to form a tessellation evaluation shader (see sec-
tion 11.2.3), and

— the program is not separable and contains no objects to form a vertex
shader;

— the tessellation primitive mode is not specified in any compiled tessel-
lation evaluation shader object; or

— the tessellation primitive mode, spacing, vertex order, or point mode is
specified differently in multiple tessellation evaluation shader objects.

e program contains objects to form a geometry shader (see section 11.3), and

— the program is not separable and contains no objects to form a vertex
shader;

— the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in any compiled geometry shader object; or

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 92

— the input primitive type, output primitive type, or maximum output ver-
tex count is specified differently in multiple geometry shader objects.

e program contains objects to form a compute shader (see section 19) and,
— program also contains objects to form any other type of shader.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

When program objects which have been linked successfully are used for ren-
dering operations, they may access GL state and interface with other stages of the
GL pipeline through active variables and active interface blocks. The GL provides
various commands allowing applications to enumerate and query properties of ac-
tive variables and interface blocks for a specified program. If one of these com-
mands is called with a program for which LinkProgram succeeded, the informa-
tion recorded when the program was linked is returned. If one of these commands is
called with a program for which LinkProgram failed, no error is generated unless
otherwise noted. Implementations may return information on variables and inter-
face blocks that would have been active had the program been linked successfully.
In cases where the link failed because the program required too many resources,
these commands may help applications determine why limits were exceeded. How-
ever, the information returned in this case is implementation-dependent and may be
incomplete. If one of these commands is called with a program for which LinkPro-
gram had never been called, no error is generated unless otherwise noted, and the
program object is considered to have no active variables or interface blocks.

Each program object has an information log that is overwritten as a result of a
link operation. This information log may be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 7.13).

If a program has been linked successfully by LinkProgram or loaded by Pro-
gramBinary (see section 7.5), it can be made part of the current rendering state
for all shader stages with the command

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 93

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last linked successfully. If UsePro-
gram is called with program set to zero, then there is no current program object.
The command

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by Use-
Program, that program is considered current for all stages. Otherwise, if there is
a bound program pipeline object (see section 7.4), the program bound to the ap-
propriate stage of the pipeline object is considered current. If there is no current
program object or bound program pipeline object, no program is current for any
stage. The current program for a stage is considered active if it contains exe-
cutable code for that stage; otherwise, no program is considered active for that
stage. If there is no active program for the vertex or fragment shader stages, the
results of vertex and/or fragment processing will be undefined. However, this is
not an error. If there is no active program for the tessellation control, tessellation
evaluation, or geometry shader stages, those stages are ignored. If there is no active
program for the compute shader stage, compute dispatches will generate an error.
The active program for the compute shader stage has no effect on the processing of
vertices, geometric primitives, and fragments, and the active program for all other
shader stages has no effect on compute dispatches.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. The current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 94

program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but any existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call to
UseProgram, UseProgramStages, or BindProgramPipeline removes them from
use. If such a program is attached to any program pipeline object, the existing exe-
cutables and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. A program which
has not been linked successfully may not be made part of the current rendering state
by UseProgram or added to program pipeline objects by UseProgramStages until
it is re-linked successfully. If such a program was attached to a program pipeline
at the time of a failed link, its existing executable may still be made part of the
current rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, value must be TRUE or
FALSE, and indicates whether a program binary is likely to be retrieved later, as
described for ProgramBinary in section 7.5.

State set with this command does not take effect until after the next time
LinkProgram or ProgramBinary is called successfully.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not PROGRAM -
SEPARABLE or PROGRAM_BINARY RETRIEVABLE_HINT.

An INVALID_VALUE error is generated if value is not TRUE or FALSE.

Program objects can be deleted with the command

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 95

void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

The command
boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent (assuming no er-
rors are generated) to:

const uint shader = CreateShader (type) ;
if (shader) {
ShaderSource (shader, count, strings, NULL);
CompileShader (shader) ;
const uint program =
if (program) {
int compiled = FALSE;
GetShaderiv (shader, COMPILE_STATUS, &compiled);
ProgramParameteri (program, PROGRAM_SEPARABLE, TRUE) ;

CreateProgram () ;

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 96

if (compiled) {
AttachShader (program, shader);
LinkProgram (program) ;
DetachShader (program, shader) ;
¥
append-shader-info-log-to-program-info-log
}
DeleteShader (shader) ;
return program;
} else {
return 0;
}

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

If an error is generated, zero is returned.

Errors

An INVALID_ENUM error is generated if fype is not one of the values in
table 7.1.

An INVALID_VALUE error is generated if count is negative.

Other errors are generated if the supplied shader code fails to compile
and link, as described for the commands in the pseudocode sequence above,
but all such errors are generated without any side effects of executing those
commands.

7.3.1 Program Interfaces

When a program object is made part of the current rendering state, its executable
code may communicate with other GL pipeline stages or application code through
a variety of interfaces. When a program is linked, the GL builds a list of active
resources for each interface. Examples of active resources include variables, inter-
face blocks, and subroutines used by shader code. Resources referenced in shader
code are considered active unless the compiler and linker can conclusively deter-
mine that they have no observable effect on the results produced by the executable
code of the program. For example, variables might be considered inactive if they
are declared but not used in executable code, used only in a clause of an if state-
ment that would never be executed, used only in functions that are never called, or

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 97

used only in computations of temporary variables having no effect on any shader
output. In cases where the compiler or linker cannot make a conclusive determina-
tion, any resource referenced by shader code will be considered active. The set of
active resources for any interface is implementation-dependent because it depends
on various analysis and optimizations performed by the compiler and linker.

If a program is linked successfully, the GL will generate lists of active resources
based on the executable code produced by the link. If a program is not linked suc-
cessfully, the link may have failed for a number of reasons, including cases where
the program required more resources than supported by the implementation. Imple-
mentations are permitted, but not required, to record lists of resources that would
have been considered active had the program linked successfully. If an implemen-
tation does not record information for any given interface, the corresponding list of
active resources is considered empty. If a program has never been linked, all lists
of active resources are considered empty.

The GL provides a number of commands to query properties of the interfaces of
a program object. Each such command accepts a programlnterface token, identify-
ing a specific interface. The supported values for programlinterface are as follows:

e UNIFORM corresponds to the set of active uniform variables (see section 7.6)
used by program.

e UNIFORM_BLOCK corresponds to the set of active uniform blocks (see sec-
tion 7.6) used by program.

e ATOMIC_COUNTER_BUFFER corresponds to the set of active atomic counter
buffer binding points (see section 7.6) used by program.

e PROGRAM_INPUT corresponds to the set of active input variables used by the
first shader stage of program. If program includes multiple shader stages,
input variables from any shader stage other than the first will not be enumer-
ated.

e PROGRAM_OUTPUT corresponds to the set of active output variables (see sec-
tion 11.1.2.1) used by the last shader stage of program. If program includes
multiple shader stages, output variables from any shader stage other than the
last will not be enumerated.

® VERTEX_SUBROUTINE, TESS_CONTROIL_SUBROUTINE, TESS_-
EVALUATION_SUBROUTINE, GEOMETRY_SUBROUTINE, FRAGMENT_-
SUBROUTINE, and COMPUTE_SUBROUTINE correspond to the set of active

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 98

subroutines for the vertex, tessellation control, tessellation evaluation, ge-
ometry, fragment, and compute shader stages of program, respectively (see
section 7.9).

® VERTEX_SUBROUTINE_UNIFORM, TESS_CONTROL_SUBROUTINE_—
UNIFORM, TESS_EVALUATION_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_UNIFORM,
and COMPUTE_SUBROUTINE_UNIFORM correspond to the set of active sub-
routine uniform variables used by the vertex, tessellation control, tessellation
evaluation, geometry, fragment, and compute shader stages of program, re-
spectively (see section 7.9).

e TRANSFORM_FEEDBACK_VARYING corresponds to the set of output vari-
ables in the last non-fragment stage of program that would be captured when
transform feedback is active (see section 13.2.3). The resources enumerated
by this query are listed as specified by the most recent call to Transform-
FeedbackVaryings before the last call to LinkProgram. When the resource
names an output array variable either a single element of the array or the
whole array is captured. If the variable name is specified with an array in-
dex syntax "name [x]", name is the name of the array resource and x is
the constant-integer index of the element captured. If the resource name is
an array and has no array index and square bracket, then the whole array is
captured.

e TRANSFORM_FEEDBACK_BUFFER corresponds to the set of active buffer
binding points to which output variables in the TRANSFORM_FEEDBACK_-
VARYING interface are written.

e BUFFER_VARIABLE corresponds to the set of active buffer variables used by
program (see section 7.8).

e SHADER_STORAGE_BLOCK corresponds to the set of active shader storage
blocks used by program (see section 7.8)

7.3.1.1 Naming Active Resources

When building a list of active variable or interface blocks, resources with ag-
gregate types (such as arrays or structures) may produce multiple entries in the
active resource list for the corresponding interface. Additionally, each active vari-
able, interface block, or subroutine in the list is assigned an associated name string
that can be used by applications to refer to the resource. For interfaces involving

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 99

variables, interface blocks, or subroutines, the entries of active resource lists are
generated as follows:

For an active variable declared as a single instance of a basic type, a single
entry will be generated, using the variable name from the shader source.

For an active variable declared as an array of basic types (e.g. not an array
of stuctures or an array of arrays), a single entry will be generated, with its
name string formed by concatenating the name of the array and the string
" [O] " A

For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the " . " character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the " [" character, an integer identi-
fying the element number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

For an active shader storage block member declared as an array of an ag-
gregate type, an entry will be generated only for the first array element, re-
gardless of its type. Such block members are referred to as top-level arrays.
If the block member is an aggregate type, the enumeration rules are then
applied recursively.

For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

For an active interface block declared as an array of arrays, a separate en-
try will be generated for each active instance. The name of each instance is
formed by concatenating the block name, the " [" character, an integer iden-
tifying the instance number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active interface block.

For an active subroutine, a single entry will be generated, using the subrou-
tine name from the shader source.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 100

When an integer array element or block instance number is part of the name
string, it will be specified in decimal form without a "+" or "-" sign or any
extra leading zeroes. Additionally, the name string will not include white space
anywhere in the string.

The order of the active resource list is implementation-dependent for all
interfaces except for TRANSFORM_FEEDBACK_VARYING. If variables in the
TRANSFORM_FEEDBACK_VARYING interface were specified using the Transform-
FeedbackVaryings command, the active resource list will be arranged in the vari-
able order specified in the most recent call to TransformFeedbackVaryings be-
fore the last call to LinkProgram. If variables in the TRANSFORM_FEEDBACK_—
VARYING interface were specified using layout qualifiers in shader code, the or-
der of the active resource list is implementation-dependent.

For the ATOMIC_COUNTER_BUFFER interface, the list of active buffer binding
points is built by identifying each unique binding point associated with one or more
active atomic counter uniform variables. Active atomic counter buffers do not have
an associated name string.

For the UNIFORM, PROGRAM_INPUT, PROGRAM_OUTPUT, and TRANSFORM_-
FEEDBACK_VARY ING interfaces, the active resource list will include all active vari-
ables for the interface, including any active built-in variables.

For PROGRAM_INPUT and PROGRAM_OUTPUT interfaces for shaders that re-
cieve or produce patch primitves, the active resource list will include both per-
vertex and per-patch inputs and outputs.

For the TRANSFORM_FEEDBACK_BUFFER interface, the list of active buffer
binding points is built by identifying each unique binding point to which one or
more active output variables will be written in transform feedback mode. Active
transform feedback buffers do not have an associated name string.

For the TRANSFORM_FEEDBACK_VARYING interface, the active resource
list will include entries for the special variable names gl_NextBuffer,
gl_SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3, and
gl_SkipComponents4 (see section 11.1.2.1). These variables are used to control
how output values are written to transform feedback buffers. When enumerating
the properties of such resources, these variables are considered to have a TYPE of
NONE and an ARRAY_SIZE of 0 (gl_NextBuffer), 1, 2, 3, and 4, respectively.

When a program is linked successfully, active variables in the UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, or any of the subroutine uniform interfaces,
are assigned one or more signed integer locations. These locations can be used
by commands to assign values to uniforms and subroutine uniforms, to identify
generic vertex attributes associated with vertex shader inputs, or to identify frag-
ment color output numbers and indices associated with fragment shader outputs.
For such variables declared as arrays, separate locations will be assigned to each ac-

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 101

tive array element and are not required to be sequential. The location for "a [1]"
may or may not be equal to the location for "a [0]" +1. Furthermore, since un-
used elements at the end of uniform arrays may be trimmed, the location of the
1 4+ 1’th array element may not be valid even if the location of the ¢’th element
is valid. As a direct consequence, the value of the location of "a[0]" +1 may
refer to a different uniform entirely. Applications that wish to set individual array
elements should query the locations of each element separately.

Not all active variables are assigned valid locations; the following variables
will have an effective location of -1:

e uniforms declared as atomic counters
e members of a uniform block
e built-in inputs, outputs, and uniforms (starting with g1_)

e inputs (except for vertex shader inputs) not declared with a location
layout qualifier

e outputs (except for fragment shader outputs) not declared with a 1ocation
layout qualifier

If a program has not been linked successfully, no locations will be assigned.
The command

void GetProgramlInterfaceiv(uint program,
enum programlnterface, enum pname, int *params);

queries a property of the interface programlinterface in program program, returning
its value in params. The property to return is specified by pname.

If pname is ACTIVE_RESOURCES, the value returned is the number of re-
sources in the active resource list for programlinterface. If the list of active re-
sources for programlnterface is empty, zero is returned.

If pname is MAX_NAME_ LENGTH, the value returned is the length of the longest
active name string for an active resource in programlinterface. This length includes
an extra character for the null terminator. If the list of active resources for pro-
gramlInterface is empty, zero is returned.

If pname is MAX_NUM_ACTIVE_VARIABLES, the value returned is the num-
ber of active variables belonging to the interface block or atomic counter buffer
resource in programlinterface with the most active variables. If the list of active
resources for programlnterface is empty, zero is returned.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 102

If pname is MAX_NUM_COMPATIBLE_SUBROUTINES, the value returned is the
number of compatible subroutines for the active subroutine uniform in program-
Interface with the most compatible subroutines. If the list of active resources for
programlinterface is empty, zero is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error 18
generated if pname is not ACTIVE_RESOURCES, MAX_NAME_LENGTH, MAX_ -
NUM_ACTIVE_VARIABLES, or MAX_NUM_COMPATIBLE_SUBROUTINES.

An INVALID_OPERATION error is generated if pname is MAX_ -
NAME_LENGTH and programlinterface is ATOMIC_COUNTER_BUFFER or
TRANSFORM_FEEDBACK_BUFFER, since active atomic counter and transform
feedback buffer resources are not assigned name strings.

An INVALID_OPERATION error is generated if pname is MAX_NUM_-
ACTIVE_VARIABLES and programlinterface is not ATOMIC_COUNTER_-—
BUFFER, SHADER STORAGE_BLOCK, TRANSFORM_FEEDBACK_BUFFER, Or
UNIFORM_BLOCK.

An INVALID_OPERATION error is generated if pname is MAX_ -
NUM_COMPATIBLE_SUBROUTINES and programlnterface is not VERTEX_ -
SUBROUTINE_-—

UNIFORM, TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_-
SUBROUTINE_UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_—
SUBROUTINE_UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM.

Each entry in the active resource list for an interface is assigned a unique un-
signed integer index in the range zero to N — 1, where NV is the number of entries
in the active resource list. The command

uint GetProgramResourcelndex(uint program,
enum programlinterface, const char *name);

returns the unsigned integer index assigned to a resource named name in the inter-
face type programlinterface of program object program.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 103

If name exactly matches the name string of one of the active resources for
programlInterface, the index of the matched resource is returned.

e For TRANSFORM_FEEDBACK_VARYING resources, name must match one of
the variables to be captured as specified by a previous call to Transform-
FeedbackVaryings, other than the special names gl_NextBuffer, gl_-
SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3,
and g1_SkipComponents4 (see section 11.1.2.1). Otherwise, INVALID_—
INDEX is returned.

e For all other resource types, if name would exactly match the name string
of an active resource if " [0]" were appended to name, the index of the
matched resource is returned. Otherwise, name is considered not to be the
name of an active resource, and INVALID_ INDEX is returned. Note that if an
interface enumerates a single active resource list entry for an array variable
(e.g., "a[0]"), a name identifying any array element other than the first
(e.g., "al[l]")is not considered to match.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programlinterface is ATOMIC_—
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

If name does not match a resource as described above, the value
INVALID_INDEX is returned, but no GL error is generated.

The command
void GetProgramResourceName(uint program,
enum programlnterface, uint index, sizei bufSize,

sizei *length, char *name);

returns the name string assigned to the single active resource with an index of index
in the interface programlinterface of program object program.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 104

The name string assigned to the active resource identified by index is returned
as a null-terminated string in name. The actual number of characters written into
name, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written
into name, including the null terminator, is specified by bufSize. If the length of
the name string (including the null terminator) is greater than bufSize, the first
bufSize — 1 characters of the name string will be written to name, followed by a
null terminator. If bufSize is zero, no error is generated but no characters will be
written to name. The length of the longest name string for programlnterface, in-
cluding a null terminator, may be queried by calling GetProgramInterfaceiv with
a pname of MAX_NAME_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programlinterface is ATOMIC_—
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

An INVALID_VALUE error is generated if index is greater than or equal to
the number of entries in the active resource list for programlinterface.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetProgramResourceiv(uint program,
enum programlnterface, uint index, sizei propCount,
const enum *props, sizei bufSize, sizei *length,
int *params);

returns values for multiple properties of a single active resource with an index of
index in the interface programlinterface of program object program. Values for
propCount properties specified by the array props are returned.

The values associated with the properties of the active resource are written to
consecutive entries in params, in increasing order according to position in props. If
no error is generated, only the first bufSize integer values will be written to params;

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS

105

any extra values will not be written. If length is not NULL, the actual number of
values written to params will be written to length.

Property

Supported Interfaces

ACTIVE_VARIABLES, BUFFER_—
BINDING, NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER, SHADER_ -
STORAGE_BLOCK, TRANSFORM_ -
FEEDBACK_BUFFER, UNIFORM_BLOCK

ARRAY_SIZE

BUFFER_VARIABLE, COMPUTE_ -
SUBROUTINE_UNIFORM, FRAGMENT_ -
SUBROUTINE_UNIFORM, GEOMETRY_ -
SUBROUTINE_UNIFORM, PROGRAM_ -

INPUT, PROGRAM_OUTPUT, TESS_-
CONTROL_SUBROUTINE_UNIFORM,
TESS_EVALUATION_SUBROUTINE_—
UNIFORM, TRANSFORM_FEEDBACK_ -
VARYING, UNIFORM, VERTEX_ -
SUBROUTINE_UNIFORM

ARRAY_STRIDE, BLOCK_INDEX, IS_-
ROW_MAJOR, MATRIX_STRIDE

BUFFER_VARIABLE, UNIFORM

ATOMIC_COUNTER_BUFFER_INDEX

UNIFORM

BUFFER_DATA_SIZE

ATOMIC_COUNTER_BUFFER, SHADER -
STORAGE_BLOCK, UNIFORM_BLOCK

NUM_COMPATIBLE_SUBROUTINES,
COMPATIBLE_SUBROUTINES

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_-—
UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, VERTEX_ -
SUBROUTINE_UNIFORM

IS_PER_PATCH

PROGRAM_INPUT, PROGRAM_OUTPUT

LOCATION

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT,
TESS_CONTROL_SUBROUTINE_-—
UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, UNIFORM,
VERTEX_SUBROUTINE_UNIFORM

GetProgramResourceiv properties continued on next page

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS

106

GetProgramResourceiv properties continued from previous page

Property

|

Supported Interfaces

LOCATION_COMPONENT

PROGRAM_INPUT, PROGRAM_OUTPUT

LOCATION_INDEX

PROGRAM_OUTPUT

NAME_LENGTH

all but ATOMIC_COUNTER_BUFFER and
TRANSFORM_FEEDBACK_BUFFER

OFFSET

BUFFER_VARIABLE, TRANSFORM_ -
FEEDBACK_VARYING, UNIFORM

REFERENCED_BY_VERTEX_ -

SHADER, REFERENCED_BY_ TESS_—
CONTROL_SHADER, REFERENCED_ —
BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_ GEOMETRY_SHADER,
REFERENCED_BY_FRAGMENT_SHADER,
REFERENCED_BY_ COMPUTE_SHADER

ATOMIC_COUNTER_BUFFER, BUFFER_—

VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, SHADER_—
STORAGE_BLOCK, UNIFORM,

UNIFORM_BLOCK

TRANSFORM_FEEDBACK_BUFFER_-—
INDEX

TRANSFORM_FEEDBACK_VARYING

TRANSFORM_FEEDBACK_BUFFER_-—
STRIDE

TRANSFORM_FEEDBACK_BUFFER

TOP_LEVEL_ARRAY_SIZE,
LEVEL_ARRAY_ STRIDE

TOP_—-

BUFFER_VARIABLE

TYPE

BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_ -
FEEDBACK_VARYING, UNIFORM

Table 7.2: GetProgramResourceiv properties and supported in-

terfaces

For the property ACTIVE_VARIABLES, an array of active variable indices as-
sociated with an atomic counter buffer, active uniform block, shader storage block,
or transform feedback buffer is written to params. The number of values written to
params for an active resource is given by the value of the property NUM_ACTIVE_-

VARIABLES for the resource.

For the property ARRAY_SIZE, a single integer identifying the number of active
array elements of an active variable is written to params. The array size returned
is in units of the type associated with the property TYPE. For active variables not
corresponding to an array of basic types, the value one is written to params. If the

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 107

variable is an array whose size is not declared or determined when the program is
linked, the value zero is written to params.

For the property ARRAY_STRIDE, a single integer identifying the stride be-
tween array elements in an active variable is written to params. For active variables
declared as an array of basic types, the value written is the difference, in basic ma-
chine units, between the offsets of consecutive elements in an array. For active
variables not declared as an array of basic types, zero is written to params. For
active variables not backed by a buffer object, -1 is written to params, regardless
of the variable type.

For the property ATOMIC_COUNTER_BUFFER_INDEX, a single integer identi-
fying the index of the active atomic counter buffer containing an active variable is
written to params. If the variable is not an atomic counter uniform, the value -1 is
written to params.

For the property BLOCK_INDEX, a single integer identifying the index of the
active interface block containing an active variable is written to params. The
index written for a member of an interface block declared as an array of block
instances is the index of the first block of the array. If the variable is not the
member of an interface block, the value -1 is written to params.

For the property BUFFER_BINDING, the index of the buffer binding point asso-
ciated with the active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property BUFFER_DATA_SIZE, the implementation-dependent mini-
mum total buffer object size is written to params. This value is the size, in basic
machine units, required to hold all active variables associated with an active uni-
form block, shader storage block, or atomic counter buffer. If the final member of
an active shader storage block is an array with no declared size, the minimum buffer
size is computed assuming the array was declared as an array with one element.

For the property IS_PER_PATCH, a single integer identifying whether the input
or output is a per-patch attribute is written to params. If the active variable is a
per-patch attribute (declared with the patch qualifier), the value one is written to
params; otherwise, the value zero is written to params.

For the property 1S_ROW_MAJOR, a single integer identifying whether an active
variable is a row-major matrix is written to params. For active variables backed by
a buffer object, declared as a single matrix or array of matrices, and stored in row-
major order, one is written to params. For all other active variables, zero is written
to params.

For the property LOCATION, a single integer identifying the assigned location
for an active uniform, input, output, or subroutine uniform variable is written to
params. For input, output, or uniform variables with locations specified by a
layout qualifier, the specified location is used. For vertex shader input, frag-

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 108

ment shader output, or uniform variables without a 1ayout qualifier, the location
assigned when a program is linked is written to params. For all other input and
output variables, the value -1 is written to params. For atomic counter uniforms
and uniforms in uniform blocks, the value -1 is written to params.

For the property LOCATION_COMPONENT, a single integer indicating the first
component of the location assigned to an active input or output variable is writ-
ten to params. For input and output variables with a component specified by a
layout qualifier, the specified component is written. For all other input and output
variables, the value zero is written.

For the property LOCATION_INDEX, a single integer identifying the fragment
color index of an active fragment shader output variable is written to params. If the
active variable is not an output for a fragment shader, the value -1 will be written
to params.

For the property MATRIX_STRIDE, a single integer identifying the stride be-
tween columns of a column-major matrix or rows of a row-major matrix is written
to params. For active variables declared a single matrix or array of matrices, the
value written is the difference, in basic machine units, between the offsets of con-
secutive columns or rows in each matrix. For active variables not declared as a
matrix or array of matrices, zero is written to params. For active variables not
backed by a buffer object, -1 is written to params, regardless of the variable type.

For the property NAME_LENGTH, a single integer identifying the length of the
name string associated with an active variable, interface block, or subroutine is
written to params. The name length includes a terminating null character.

For the property NUM_ACTIVE_VARIABLES, the number of active variables as-
sociated with an active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property OFFSET, a single integer identifying the offset of an ac-
tive variable is written to params. For variables in the BUFFER_VARTIABLE and
UNIFORM interfaces that are backed by a buffer object, the value written is the
offset of that variable relative to the base of the buffer range holding its value.
For variables in the TRANSFORM_FEEDBACK_VARYING interface, the value writ-
ten is the offset in the transform feedback buffer storage assigned to each ver-
tex captured in transform feedback mode where the value of the variable will
be stored. Such offsets are specified via the xfb_offset layout qualifier
or assigned according to the variables position in the list of strings passed to
TransformFeedbackVaryings. Offsets are expressed in basic machine units.
For all variables not recorded in transform feedback mode, including the spe-
cial names g1_NextBuffer, gl_SkipComponentsl, gl_SkipComponents?2,
gl_SkipComponents3, and g1_SkipComponents4, -1 is written to params.

For the properties REFERENCED_BY VERTEX_ SHADER, REFERENCED_-

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 109

BY_TESS_CONTROL_SHADER, REFERENCED_BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_ GEOMETRY_SHADER, REFERENCED_BY_ FRAGMENT_SHADER,
and REFERENCED_BY_COMPUTE_SHADER, a single integer is written to params,
identifying whether the active resource is referenced by the vertex, tessellation con-
trol, tessellation evaluation, geometry, fragment, or compute shaders, respectively,
in the program object. The value one is written to params if an active variable is
referenced by the corresponding shader, or if an active uniform block, shader stor-
age block, or atomic counter buffer contains at least one variable referenced by the
corresponding shader. Otherwise, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
number of active array elements of the top-level shader storage block member con-
taining the active variable is written to params. If the top-level block member is
not declared as an array of an aggregate type, the value one is written to params.
If the top-level block member is an array of an aggregate type whose size is not
declared or determined when the program is linked, the value zero is written to
params.

For the property TOP_LEVEL_ARRAY_STRIDE, a single integer identifying the
stride between array elements of the top-level shader storage block member con-
taining the active variable is written to params. For top-level block members de-
clared as arrays of an aggregate type, the value written is the difference, in basic
machine units, between the offsets of the active variable for consecutive elements
in the top-level array. For top-level block members not declared as an array of an
aggregate type, zero is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_INDEX, a single integer
identifying the index of the active transform feedback buffer associated with an
active variable is written to params. For variables corresponding to the spe-
cial names g1_NextBuffer, gl_SkipComponentsl, gl_SkipComponents?2,
gl_SkipComponents3, and g1_SkipComponents4, -1 is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_STRIDE, a single integer
identifying the stride, in basic machine units, between consecutive vertices written
to the transform feedback buffer is written to params.

For the property TYPE, a single integer identifying the type of an active variable
is written to params. The integer returned is one of the values found in table 7.3.

Type Name Token Keyword ‘ Attrib‘ Xtb ‘ Buffeﬁ
FLOAT float (] ° (]
FLOAT_VEC2 vec2 o o
FLOAT_VEC3 vec3 ° °

(Continued on next page)

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 110
OpenGL Shading Language Type Tokens (continued)
Type Name Token | Keyword | Attrib| Xfb | Buffer
FLOAT_VEC4 vecd ° ° °
DOUBLE double . . °
DOUBLE_VEC2 dvec?2 ° ° °
DOUBLE_VEC3 dvec3 ° ° °
DOUBLE_VEC4 dvec4d ° ° °
INT int ° ° °
INT_VEC2 ivec2 ° ° °
INT_VEC3 ivec3 . ° .
INT_VEC4 ivec4 . ° .
UNSIGNED_INT uint ° ° °
UNSIGNED_INT_VEC2 uvec?2 ° ° °
UNSIGNED_INT_VEC3 uvec3 [° °
UNSIGNED_INT_VEC4 uvecd ° ° °
BOOL bool]
BOOL_VEC2 bvec2 °
BOOL_VEC3 bvec3 (]
BOOL_VEC4 bvec4 (]
FLOAT_MAT2 mat2 ° ° °
FLOAT_MAT3 mat3 ° ° °
FLOAT_MATA4 mat4 ° ° °
FLOAT_MAT2x3 mat2x3 ° ° °
FLOAT_MAT2x4 mat2x4 ° ° °
FLOAT_MAT3x2 mat3x2 ° ° °
FLOAT_MAT3x4 mat3x4 ° ° °
FLOAT_MAT4x2 mat4x2 ° ° °
FLOAT_MAT4x3 mat4x3 . ° °
DOUBLE_MAT2 dmat2 [o °
DOUBLE_MAT3 dmat3 ° ° °
DOUBLE_MATA4 dmat4 ° o °
DOUBLE_MAT2x3 dmat2x3 . ° °
DOUBLE_MAT2x4 dmat2x4 ° ° °
DOUBLE_MAT3x2 dmat3x2 . ° °
DOUBLE_MAT3x4 dmat3x4 ° ° °
DOUBLE_MAT4x2 dmat4x2 ° ° °
DOUBLE_MAT4x3 dmat4x3 ° . °

(Continued on next page)

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS

111

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
SAMPLER_1D samplerlD

SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_1D_SHADOW samplerlDShadow

SAMPLER_2D_SHADOW sampler2DShadow

SAMPLER_1D_ARRAY samplerlDArray

SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_CUBE_MAP_ARRAY samplerCubeArray

SAMPLER_1D_ARRAY_SHADOW

samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW

sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE

sampler2DMS

SAMPLER_2D_MULTISAMPLE_-—
ARRAY

sampler2DMSArray

SAMPLER_CUBE__SHADOW

samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_ - samplerCube-
SHADOW ArrayShadow
SAMPLER_BUFFER samplerBuffer
SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW

sampler2DRectShadow

INT_SAMPLER_1D isamplerlD
INT_SAMPLER_2D isampler2D
INT_SAMPLER_3D isampler3D
INT_SAMPLER_CUBE isamplerCube
INT_SAMPLER_1D_ARRAY isamplerlDArray
INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_ -
ARRAY

isamplerCubeArray

INT_SAMPLER_2D_ - isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_-— isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
INT_SAMPLER_2D_RECT isampler2DRect
UNSIGNED_INT_SAMPLER_1D usamplerlD

(Continued on next page)

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS

112

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
UNSIGNED_INT_SAMPLER_2D usampler2D

UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_-— usamplerCube

CUBE

UNSIGNED_INT_SAMPLER_ - usamplerlDArray

1D_ARRAY

UNSIGNED_INT_SAMPLER_-— usampler2DArray

2D_ARRAY

UNSIGNED_INT_SAMPLER_ -
CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_ - usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_ - usampler2DMSArray
2D_MULTISAMPLE_ARRAY
UNSIGNED_INT_SAMPLER_- usamplerBuffer
BUFFER

UNSIGNED_INT_SAMPLER_ - usampler2DRect
2D_RECT

IMAGE_1D imagelD
IMAGE_2D image2D
IMAGE_3D image3D
IMAGE_2D_RECT image2DRect
IMAGE_CUBE imageCube
IMAGE_BUFFER imageBuffer
IMAGE_1D_ARRAY imagelDArray
IMAGE_2D_ARRAY image2DArray
IMAGE_CUBE_MAP_ARRAY imageCubeArray
IMAGE_2D_MULTISAMPLE image2DMS
IMAGE_2D_MULTISAMPLE_ - image2DMSArray
ARRAY

INT_IMAGE_1D iimagelD
INT_IMAGE_2D iimage2D
INT_IMAGE_3D iimage3D
INT_IMAGE_2D_RECT iimage2DRect
INT_IMAGE_CUBE iimageCube

(Continued on next page)

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS

113

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
INT_IMAGE_BUFFER iimageBuffer
INT_IMAGE_1D_ARRAY iimagelDArray
INT_IMAGE_2D_ARRAY iimage2DArray
INT_IMAGE_CUBE_MAP_ARRAY | iimageCubeArray
INT_IMAGE_2D_MULTISAMPLE | iimage2DMS
INT_IMAGE_2D - iimage2DMSArray
MULTISAMPLE_ARRAY

UNSIGNED_INT_IMAGE_1D uimagelD
UNSIGNED_INT_IMAGE_2D uimage?2D
UNSIGNED_INT_IMAGE_3D uimage3D
UNSIGNED_INT_IMAGE_2D_- uimage2DRect
RECT

UNSIGNED_INT_IMAGE_CUBE uimageCube
UNSIGNED_INT_IMAGE_ - uimageBuffer
BUFFER

UNSIGNED_INT_IMAGE_1D_- uimagelDArray
ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DArray
ARRAY

UNSIGNED_INT_IMAGE_- uimageCubeArray
CUBE_MAP_ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DMS
MULTISAMPLE

UNSIGNED_INT_IMAGE_2D_-— uimage2DMSArray
MULTISAMPLE_ARRAY

UNSIGNED_INT_ATOMIC_- atomic_uint
COUNTER

Table 7.3: OpenGL Shading Language type tokens, and corre-
sponding shading language keywords declaring each such type.
Types whose “Attrib” column is marked may be declared as ver-
tex attributes (see section 11.1.1). Types whose “Xfb” column
is marked may be the types of variables returned by transform
feedback (see section 11.1.2.1). Types whose “Buffer” column is
marked may be declared as buffer variables (see section 7.8).

OpenGL 4.5 (Core Profile) - June 29, 2017

7.3. PROGRAM OBJECTS 114

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_VALUE error is generated if propCount is less than or equal
to zero, or if bufSize is negative.

An INVALID_ENUM error is generated if any value in props is not one of
the properties described above.

An INVALID_OPERATION error is generated if any value in props is not
allowed for programlnterface. The set of allowed programlinterface values for
each property can be found in table 7.2.

The commands

int GetProgramResourceLocation(uint program,
enum programlinterface, const char *name);

int GetProgramResourceLocationIndex(uint program,
enum programlinterface, const char *name);

return the location or the fragment color index, respectively, assigned to the
variable named name in interface programinterface of program object program.
For GetProgramResourceLocation, programlInterface must be one of UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, VERTEX_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_SUBROUTINE_ -
UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_-
UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM. For GetProgramResourcelLo-
cationIndex, programinterface must be PROGRAM_OUTPUT. The value -1 will be
returned by either command if an error occurs, if name does not identify an ac-
tive variable on programlinterface, or if name identifies an active variable that does
not have a valid location assigned, as described above. The locations returned by
these commands are the same locations returned when querying the LOCATION and
LOCATION_INDEX resource properties.

A string provided to GetProgramResourceLocation or GetProgramRe-
sourceLocationIndex is considered to match an active variable if

o the string exactly matches the name of the active variable;

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 115

e if the string identifies the base name of an active array, where the string
would exactly match the name of the variable if the suffix " [0] " were ap-
pended to the string; or

o if the string identifies an active element of the array, where the string ends
with the concatenation of the " [" character, an integer (with no "+" sign,
extra leading zeroes, or whitespace) identifying an array element, and the
"1™ character, the integer is less than the number of active elements of the
array variable, and where the string would exactly match the enumerated
name of the array if the decimal integer were replaced with zero.

Any other string is considered not to identify an active variable. If the string
specifies an element of an array variable, GetProgramResourcelLocation and
GetProgramResourceLocationIndex return the location or fragment color index
assigned to that element. If it specifies the base name of an array, it identifies the
resources associated with the first element of the array.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces named above.

7.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

A program pipeline object contains bindings for each shader type associating
that shader type with a program object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 116

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Errors
An INVALID_VALUE error is generated if # is negative.
Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsProgramPipeline(uint pipeline);

returns TRUE if pipeline is the name of a program pipeline object. If pipeline
is zero, or a non-zero value that is not the name of a program pipeline object,
IsProgramPipeline returns FALSE. No error is generated if pipeline is not a valid
program pipeline object name.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline
object is a new state vector, comprising all the state and with the same initial values
listed in table 23.31.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 117

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 7.3).

Errors

An INVALID_OPERATION error is generated if pipeline is not zero or a
name returned from a previous call to GenProgramPipelines, or if such a
name has since been deleted with DeleteProgramPipelines.

Program pipeline objects may also be created with the command
void CreateProgramPipelines(sizei n, uint *pipelines);

CreateProgramPipelines returns n previously unused program pipeline names
in pipelines, each representing a new program pipeline object which is a state vec-
tor comprising all the state and with the same initial values listed in table 23.31.

Errors
An INVALID_VALUE error is generated if 7 is negative.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command

void UseProgramStages(uint pipeline, bit field stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise

OR of accepted constants representing shader stages, and program identifies the
program from which the executables are taken.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 118

The bits set in stages indicate the program stages for which the pro-
gram object named by program becomes current. These stages may in-
clude compute, vertex, tessellation control, tessellation evaluation, geome-
try, or fragment, indicated respectively by COMPUTE_SHADER_BIT, VERTEX_ -
SHADER_BIT, TESS_CONTROL_SHADER BIT, TESS_EVALUATION_SHADER_ —
BIT, GEOMETRY_SHADER BIT, Oor FRAGMENT_SHADER_BIT. The constant ALL_-
SHADER_BITS indicates program is to be made current for all shader stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramsStages is called with program
set to zero or with a program object that contains no executable code for any stage
in stages, it is as if the pipeline object has no programmable stage configured for
that stage.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_VALUE error is generated if stages is not the special value
ALL_SHADER BITS, and has any bits set other than VERTEX_ SHADER_BIT,
COMPUTE_SHADER_BIT, TESS_-
CONTROL_SHADER_BIT, TESS_EVALUATION_SHADER_BIT, GEOMETRY_ -
SHADER_BIT, and FRAGMENT_SHADER_BIT.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
was linked without the PROGRAM SEPARABLE parameter set, or has not been
linked successfully. The corresponding shader stages in pipeline are not mod-
ified.

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

The command

void ActiveShaderProgram(uint pipeline, uint program);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 119

sets the linked program named by program to be the active program (see sec-
tion 7.6.1) used for uniform updates for the program pipeline object pipeline. If
program is zero, then it is as if there is no active program for pipeline.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
has not been linked successfully. The active program is not modified.

7.4.1 Shader Interface Matching

When multiple shader stages are active, the outputs of one stage form an interface
with the inputs of the next stage. At each such interface, shader inputs are matched
up against outputs from the previous stage:

e An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

e An output variable is considered to match an input variable in the subsequent
shader if:

— the two variables match in name, type, and qualification, and neither
has a 1ocation qualifier, or

— the two variables are declared with the same location and
component layout qualifiers and match in type and qualification.

For the purposes of interface matching, variables declared with a location
layout qualifier but without a component layout qualifier are considered to

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 120

have declared a component layout qualifier of zero. Variables or block mem-
bers declared as structures are considered to match in type if and only if structure
members match in name, type, qualification, and declaration order. Variables or
block members declared as arrays are considered to match in type only if both
declarations specify the same element type and array size. The rules for determin-
ing if variables or block members match in qualification are found in the OpenGL
Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check
for mismatches on interfaces between shader stages in the program being linked
and generate a link error if a mismatch is detected. A link error is generated if
any statically referenced input variable or block does not have a matching out-
put. If either shader redeclares the built-in arrays gl_ClipDistancel[] or gl_-—
CullDistance[], the array must have the same size in both shaders.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because the
programs are linked separately. When each such program is linked, all inputs or
outputs interfacing with another program stage are treated as active. The linker will
generate an executable that assumes the presence of a compatible program on the
other side of the interface. If a mismatch between programs occurs, no GL error is
generated, but some or all of the inputs on the interface will be undefined.

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

e Every declared input block or variable must have a matching output, as de-
scribed above.

e There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined except when the corresponding outputs were
not written in the previous shader. However, any mismatch between inputs and
outputs results in all inputs being undefined except for cases noted below. Even
if an input has a corresponding output that matches exactly, mismatches on other

OpenGL 4.5 (Core Profile) - June 29, 2017

7.4. PROGRAM PIPELINE OBJECTS 121

inputs or outputs may adversely affect the executable code generated to read or
write the matching variable.

The inputs and outputs on an interface between programs need not match ex-
actly when input and output location qualifiers (sections 4.4.1(“Input Layout Qual-
ifiers”) and 4.4.2(“Output Layout Qualifiers”) of the OpenGL Shading Language
Specification) are used. When using location qualifiers, any input with an input
location qualifier will be well-defined as long as the other program writes to a
matching output, as described above. The names of variables need not match when
matching by location.

Additionally, scalar and vector inputs with 1ocation layout qualifiers will
be well-defined if there is a corresponding output satisfying all of the following
conditions:

e the input and output match exactly in qualification, including in the
location layout qualifier;

e the output is a vector with the same basic component type and has more
components than the input; and

e the common component type of the input and output is int, uint, or float
(scalars, vectors, and matrices with double component type are excluded).

In this case, the components of the input will be taken from the first components
of the matching output, and the extra components of the output will be ignored.

To use any built-in input or output in the gl_PerVertex block in separable
program objects, shader code must redeclare that block prior to use. A separable
program will fail to link if:

e it contains multiple shaders of a single type with different redeclarations of
this built-in block; or

e any shader uses a built-in block member not found in the redeclaration of
that block.

There is one exception to this rule described below.

As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members match exactly in name, type, qualification, and declaration order.
At an interface involving the fragment shader stage, the presence or absence of any
built-in output does not affect interface matching.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.5. PROGRAM BINARIES 122

Built-in inputs or outputs not found in blocks do not affect interface match-
ing. Any such built-in inputs are well-defined unless they are derived from built-in
outputs not written by the previous shader stage.

7.4.2 Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

e Unsigned integers holding the names of the active program and each of the
current vertex, tessellation control, tessellation evaluation, geometry, frag-
ment, and compute stage programs. Each integer is initially zero.

e A boolean holding the status of the last validation attempt, initially false.

e An array of type char containing the information log (see section 7.13),
initially empty.

e An integer holding the length of the information log.

7.5 Program Binaries

The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. The actual num-
ber of bytes written into binary is returned in length and its format is returned in
binaryFormat. If length is NULL, then no length is returned.

The number of bytes in the program binary may be queried by calling GetPro-
gramiv with pname PROGRAM_BINARY_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

OpenGL 4.5 (Core Profile) - June 29, 2017

7.5. PROGRAM BINARIES 123

shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. In this case its program binary length is zero.

An INVALID_VALUE error is generated if bufSize is negative.

An INVALID_OPERATION error is generated if bufSize is less than the
number of bytes in the program binary.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful to avoid online compilation, while still using OpenGL
Shading Language source shaders as a portable initial format. binaryFormat and
binary must be those returned by a previous call to GetProgramBinary, and length
must be the length of the program binary as returned by GetProgramBinary or
GetProgramiv with pname PROGRAM_BINARY_LENGTH. Loading the program bi-
nary will fail, setting the LINK_STATUS of program to FALSE, if these conditions
are not met.

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible
or outdated version of the compiler. In this case the application should fall back
to providing the original OpenGL Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
Or erTors.

A successful call to ProgramBinary will reset all uniform variables in the
default uniform block, all uniform block buffer bindings, and all shader storage
block buffer bindings to their initial values. The initial value is either the value
of the variable’s initializer as specified in the original shader source, or zero if no
initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
and atomic counter binding, offset and stride assignments that were in effect when

OpenGL 4.5 (Core Profile) - June 29, 2017

7.5. PROGRAM BINARIES 124

the program was linked before saving are restored when ProgramBinary is called
successfully.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute and fragment data location bindings as set by BindAttribLocation and
BindFragDataLocation.

OpenGL defines no specific binary formats. Queries of values NUM_-
PROGRAM_BINARY_ FORMATS and PROGRAM_BINARY_FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector.

If an implementation needs to recompile or otherwise modify program exe-
cutables based on GL state outside the program, GetProgramBinary is required
to save enough information to allow such recompilation.

To indicate that a program binary is likely to be retrieved, ProgramParameteri
should be called with prname set to PROGRAM_BINARY RETRIEVABLE_HINT and
value set to TRUE. This setting will not be in effect until the next time LinkPro-
gram or ProgramBinary has been called successfully. Additionally, the appli-
cation may defer GetProgramBinary calls until after using the program with all
non-program state vectors that it is likely to encounter. Such deferral may allow
implementations to save additional information in the program binary that would
minimize recompilation in future uses of the program binary.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if binaryFormat is not a binary for-
mat present in the list of specific binary formats supported.

An INVALID_VALUE error is generated if length is negative.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 125

7.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. A uniform is considered an active uniform if the compiler
and linker determine that the uniform will actually be accessed when the executable
code is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms, except for atomic counters, images, samplers, and subroutine
uniforms, can be grouped into uniform blocks.

Named uniform blocks, as described in the OpenGL Shading Language Speci-
fication, store uniform values in the data store of a buffer object corresponding to
the uniform block. Such blocks are assigned a uniform block index.

Uniforms that are declared outside of a named uniform block are part of the
default uniform block. The default uniform block has no name or uniform block
index. Uniforms in the default uniform block, except for subroutine uniforms, are
program object-specific state. They retain their values once loaded, and their values
are restored whenever a program object is used, as long as the program object has
not been re-linked.

Like uniforms, uniform blocks can be active or inactive. Active uniform blocks
are those that contain active uniforms after a program has been compiled and
linked. Uniform blocks declared in an array are considered active if any member
of the array would otherwise be considered active.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. The uniform block itself is also considered active, even if no
member of the block is referenced.

The implementation-dependent amount of storage available for uniform vari-
ables, except for subroutine uniforms and atomic counters, in the default uniform
block accessed by a shader for a particular shader stage may be queried by calling
Getlntegerv with pname as specified in table 7.4 for that stage.

The implementation-dependent constants MAX_VERTEX_UNIFORM_VECTORS
and MAX_FRAGMENT_UNIFORM_VECTORS have values respectively equal to
the values of MAX_VERTEX_UNIFORM_COMPONENTS and MAX_ FRAGMENT_-
UNIFORM_COMPONENTS divided by four.

The total amount of combined storage available for uniform variables in all
uniform blocks accessed by a shader for a particular shader stage can be queried
by calling GetIntegerv with pname as specified in table 7.5 for that stage.

These values represent the numbers of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a shader. For uni-
forms with boolean, integer, or floating-point components,

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 126

Shader Stage pname for querying default uniform
block storage, in components

Vertex (see section 11.1.2) MAX_VERTEX_UNIFORM_COMPONENTS

Tessellation control (see section 11.2.1.1) MAX_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation (see section 11.2.3.1) | MAX_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry (see section 11.3.3) MAX_GEOMETRY_UNIFORM_COMPONENTS
Fragment (see section 15.1) MAX_FRAGMENT_UNIFORM_COMPONENTS
Compute (see section 19.1) MAX_COMPUTE_UNIFORM_COMPONENTS

Table 7.4: Query targets for default uniform block storage, in components.

Shader Stage pname for querying combined uniform
block storage, in components

Vertex MAX_COMBINED_VERTEX_ UNIFORM_COMPONENTS

Tessellation control MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation | MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS
Fragment MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS
Compute MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS

Table 7.5: Query targets for combined uniform block storage, in components.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 127

e A scalar uniform will consume no more than 1 component

e A vector uniform will consume no more than n components, where n is the
vector component count

e A matrix uniform will consume no more than 4 x min(r,c) components,
where r and c are the number of rows and columns in the matrix.

Scalar, vector, and matrix uniforms with double-precision components will
consume no more than twice the number of components of equivalent uniforms
with floating-point components.

Errors

A link error is generated if an attempt is made to utilize more than the
space available for uniform variables in a shader stage.

When a program is linked successfully, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized
as defined by the version of the OpenGL Shading Language used to compile the
program. A successful link will also generate a location for each active uniform in
the default uniform block which doesn’t already have an explicit location defined
in the shader. The generated locations will never take the location of a uniform
with an explicit location defined in the shader, even if that uniform is determined
to be inactive. The values of active uniforms in the default uniform block can be
changed using this location and the appropriate Uniform* or ProgramUniform*
command (see section 7.6.1). These generated locations are invalidated and new
ones assigned after each successful re-link. The explicitly defined locations and the
generated locations must be in the range of zero to the value of MAX_UNIFORM_-
LOCATIONS minus one.

Similarly, when a program is linked successfully, all active atomic counters
are assigned bindings, offsets (and strides for arrays of atomic counters) according
to layout rules described in section 7.6.2.2. Atomic counter uniform buffer objects
provide the storage for atomic counters, so the values of atomic counters may be
changed by modifying the contents of the buffer object using the commands in
sections 6.2, 6.2.1, 6.3, 6.5, and 6.6. Atomic counters are not assigned a location
and may not be modified using the Uniform* commands. The bindings, offsets,
and strides belonging to atomic counters of a program object are invalidated and
new ones assigned after each successful re-link.

Similarly, when a program is linked successfully, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 128

array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object. Uniforms in a named uniform
block are not assigned a location and may not be modified using the Uniform#*
commands. The offsets and strides of all active uniforms belonging to named uni-
form blocks of a program object are invalidated and new ones assigned after each
successful re-link.

To determine the set of active uniform variables used by a program, applica-
tions can query the properties and active resources of the UNIFORM interface of a
program.

Additionally, several dedicated commands are provided to query properties of
active uniforms. The command

int GetUniformLocation(uint program, const
char *name);

is equivalent to
GetProgramResourcelLocation (program, UNIFORM, name) ;
The command
void GetActiveUniformName(uint program,
uint uniformindex, sizei bufSize, sizei *length,
char *uniformName);

is equivalent to

GetProgramResourceName (program, UNIFORM, wuniformlindez,
bufSize, length, uniformName) ;

The command
void GetUniformIndices(uint program,
sizei uniformCount, const char * const

*uniformNames, uint *uniformindices);

is equivalent (assuming no errors are generated) to:

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 129

for (int i = 0; i < wniformCount; i++) {
uniformIndices [1] = GetProgramResourcelndex (program,
UNIFORM, uniformNames[i]) ;

}

The command

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

is equivalent (assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName (program, UNIFORM, index,
bufSize, length, name) ;
GetProgramResourceiv (program, UNIFORM, index,
1, &props([0], 1, NULL, size);
GetProgramResourceiv (program, UNIFORM, index,
1, &props([l], 1, NULL, (int x)type);

The command

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

is equivalent (assuming no errors are generated) to:

GLenum prop;
for (int i = 0; 1 < wuniformCount; i++) {
GetProgramResourceiv (program, UNIFORM, uniformlindices[i],
1, &prop, 1, NULL, ¶ms[i]);

}

where the value of prop is taken from table 7.6, based on the value of pname.
To determine the set of active uniform blocks used by a program, applications
can query the properties and active resources of the UNIFORM_BLOCK interface.
Additionally, several commands are provided to query properties of active uni-
form blocks. The command

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 130

pname prop

UNIFORM_TYPE TYPE

UNIFORM_SIZE ARRAY_SIZE
UNIFORM_NAME_LENGTH NAME_LENGTH
UNIFORM_BLOCK_INDEX BLOCK_INDEX

UNIFORM_OFFSET OFFSET

UNIFORM_ARRAY_STRIDE ARRAY_STRIDE
UNIFORM_MATRIX_ STRIDE MATRIX_STRIDE
UNIFORM_IS_ROW_MAJOR IS_ROW_MAJOR
UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX | ATOMIC_COUNTER_BUFFER_INDEX

Table 7.6: GetProgramResourceiv properties used by GetActiveUniformsiv.

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

is equivalent to
GetProgramResourcelndex (program, UNIFORM_BLOCK, uniformBlockName) ;
The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei length,
char *uniformBlockName);

is equivalent to

GetProgramResourceName (program, UNIFORM_BLOCK,
uniformBlockIndex, bufSize, length, wuniformBlockName) ;

The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

is equivalent to

GLenum prop;
GetProgramResourceiv (program, UNIFORM_BLOCK,
uniformBlockIndexr, 1, &prop, maxSize, NULL, params);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 131

pname prop

UNIFORM_BLOCK_BINDING BUFFER_BINDING
UNIFORM_BLOCK_DATA_SIZE BUFFER_DATA_SIZE
UNIFORM_BLOCK_NAME_LENGTH NAME_LENGTH
UNIFORM_BLOCK_ACTIVE_UNIFORMS NUM_ACTIVE_VARIABLES
UNIFORM_BLOCK_ACTIVE_UNIFORM_ - | ACTIVE_VARIABLES

INDICES

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_VERTEX_ SHADER
VERTEX_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_TESS_CONTROL_ -
TESS_CONTROL_SHADER SHADER
UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_TESS_-
TESS_EVALUATION_SHADER EVALUATION_SHADER
UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_ GEOMETRY_SHADER
GEOMETRY__SHADER

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_FRAGMENT_SHADER
FRAGMENT_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ - REFERENCED_BY_ COMPUTE_SHADER
COMPUTE_SHADER

Table 7.7: GetProgramResourceiv properties used by GetActiveUniform-
Blockiv.

where the value of prop is taken from table 7.7, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

To determine the set of active atomic counter buffer binding points used
by a program, applications can query the properties and active resources of the
ATOMIC_COUNTER_BUFFER interface of a program.

Additionally, the command

void GetActiveAtomicCounterBufferiv(uint program,
uint bufferindex, enum pname, int *params);

can be used to determine properties of active atomic counter buffer bindings used
by program and is equivalent to

GLenum prop;
GetProgramResourceiv (program, ATOMIC_COUNTER_BUFFER,
bufferinder, 1, &prop, maxSize, NULL, params) ;

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES

132

pname

prop

ATOMIC_COUNTER_BUFFER_BINDING

BUFFER_BINDING

ATOMIC_COUNTER_BUFFER_DATA_ -
SIZE

BUFFER_DATA_SIZE

ATOMIC_COUNTER_BUFFER_ACTIVE_-—
ATOMIC_COUNTERS

NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_ACTIVE_-
ATOMIC_COUNTER_INDICES

ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_VERTEX_SHADER

REFERENCED_BY_ VERTEX_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_CONTROL_—
SHADER

REFERENCED_BY_TESS_CONTROL_—
SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_-
EVALUATION_SHADER

REFERENCED_BY_TESS_ -
EVALUATION_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_GEOMETRY_SHADER

REFERENCED_BY_GEOMETRY_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_FRAGMENT_SHADER

REFERENCED_BY_ FRAGMENT_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_COMPUTE_SHADER

REFERENCED_BY_COMPUTE_SHADER

Table 7.8: GetProgramResourceiv properties used by GetActiveAtomicCoun-

terBufferiv.

where the value of prop is taken from table 7.8, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that

would be written to params.

7.6.1 Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables except for subroutine uniforms and
atomic counters, of the default uniform block of the active program object, use

the commands

void Uniform{1234}{ifd wi}(int location, T value);
void Uniform{1234}{ifd ui}v(int location, sizei count,

const T *value);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 133

void UniformMatrix{234}{fd}v(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location and associated with a uniform variable.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform defined as a float, a floating-point vector, or an array of either
of these types.

The Uniform*d{v} commands will load count sets of one to four double-
precision floating-point values into a uniform defined as a double, a double vector,
or an array of either of these types.

The Uniform*i{v} commands will load count sets of one to four integer values
into a uniform defined as a sampler, an image, an integer, an integer vector, or an
array of any of these types. Only the Uniform1i{v} commands can be used to load
sampler and image values (see sections 7.10 and 7.11).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform defined as a unsigned integer, an unsigned integer
vector, or an array of either of these types.

The UniformMatrix{234}fv and UniformMatrix{234}dv commands will
load count 2 x 2, 3 x 3, or 4 x 4 matrices (corresponding to 2, 3, or 4 in the
command name) of single- or double-precision floating-point values, respectively,
into a uniform defined as a matrix or an array of matrices. If transpose is FALSE,
the matrix is specified in column major order, otherwise in row major order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv and UniformMa-
trix{2x3,3x2,2x4,4x2,3x4,4x3 }dv commands will load count 2 x 3,3 x 2,2 x 4,
4 x 2,3 x 4, or 4 x 3 matrices (corresponding to the numbers in the command
name) of single- or double-precision floating-point values, respectively, into a
uniform defined as a matrix or an array of matrices. The first number in the
command name is the number of columns; the second is the number of rows.
For example, UniformMatrix2x4fv is used to load a single-precision matrix
consisting of two columns and four rows. If transpose is FALSE, the matrix is

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 134

specified in column major order, otherwise in row major order.

When loading values for a uniform declared as a boolean, a boolean vector,
or an array of either of these types, any of the Uniform*i{v}, Uniform*ui{v},
and Uniform*f{v} commands can be used. Type conversion is done by the GL.
Boolean values are set to FALSE if the corresponding input value is O or 0.0f, and
set to TRUE otherwise. The Uniform* command used must match the size of the
uniform, as declared in the shader. For example, to load a uniform declared as a
bvec2, any of the Uniform2{if ui}* commands may be used.

For all other uniform types loadable with Uniform* commands, the command
used must match the size and type of the uniform, as declared in the shader, and
no type conversions are done. For example, to load a uniform declared as a vec4,
Uniform4f{v} must be used, and to load a uniform declared as a dmat 3, Unifor-
mMatrix3dv must be used.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

Errors

An INVALID_VALUE error is generated if count is negative.

An INVALID_VALUE error is generated if Uniformli{v} is used to set a
sampler uniform to a value less than zero or greater than or equal to the value
of MAX_COMBINED TEXTURE_IMAGE_UNITS.

An INVALID_VALUE error is generated if Uniform1i{v} is used to set an
image uniform to a value less than zero or greater than or equal to the value of
MAX_IMAGE_UNITS.

An INVALID_OPERATION error is generated if any of the following con-
ditions occur:

o the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e the component type and count indicated in the name of the Uniform*
command used does not match the type of the uniform declared in
the shader, where a boolean uniform component type is considered
to match any of the Uniform*i{v}, Uniform*ui{v}, or Uniform*f{v}

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 135

commands.

e count is greater than one, and the uniform declared in the shader is not
an array variable,

e no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

e a sampler or image uniform is loaded with any of the Uniform* com-
mands other than Uniform1i{v}.

e there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{ifd}(uint program,
int location, T value);
void ProgramUniform{1234}{ifd}v(uint program,
int location, sizei count, const T *value);
void ProgramUniform{1234}ui(uint program, int location,
T value);
void ProgramUniform{1234}uiv(uint program,
int location, sizei count, const T *value);
void ProgramUniformMatrix{234}{fd}v(uint program,
int location, sizei count, boolean transpose, const
T *value);
void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3} {fd } v(
uint program, int location, sizei count,
boolean transpose, const T *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter. The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 136

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

In addition, all errors described for the corresponding Uniform* com-
mands apply.

7.6.2 Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of active
uniform blocks used by each shader stage. If the number of uniform blocks used
by any shader stage in the program exceeds its corresponding limit, the program
will fail to link. The limits for vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute shaders can be obtained by calling GetIntegerv
with pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_TESS_CONTROL_-
UNIFORM BLOCKS, MAX TESS_EVALUATION_UNIFORM BLOCKS, MAX_ -
GEOMETRY_UNIFORM_BLOCKS, MAX_FRAGMENT_UNIFORM_BLOCKS, and MAX_-
COMPUTE_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader stage of a program. If a
uniform block is used by multiple shader stages, each such use counts separately
against this combined limit. The combined uniform block use limit can be obtained
by calling GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Finally, the total amount of buffer object storage available for any given uni-
form block is subject to an implementation-dependent limit. The maximum amount
of available space, in basic machine units, can be queried by calling GetIntegerv
with a pname of MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required
for a uniform block exceeds this limit, a program will fail to link.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names, types and layout qualifiers, and in the same
order. If a program contains multiple shaders with different declarations for the
same named uniform block, the program will fail to link.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 137

7.6.2.1 Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type bool, int, uint, float, and double are respectively
extracted from a buffer object by reading a single uint, int, uint, float,
or double value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, float,
or double are extracted as N values in consecutive memory locations be-
ginning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

e Column-major matrices with C' columns and R rows (using the types
dmatCxR and mat C'x R for double-precision and floating-point components
respectively, or simply dmatC and matC respectively if C' = R) are treated
as an array of C' column vectors, each consisting of R double-precision or
floating-point components. The column vectors will be stored in order, with
column zero at the lowest offset. The difference in offsets between consecu-
tive columns of the matrix will be referred to as the column stride, and is con-
stant across the matrix. The column stride is an implementation-dependent
function of the matrix type, and may be determined after a program is linked
by querying the MATRIX_ STRIDE property using GetProgramResourceiv
(see section 7.3.1).

e Row-major matrices with C' columns and R rows (using the types dmat Cx R
and matCxR for double-precision and floating-point components respec-
tively, or simply dmatC and matC respectively if C = R) are treated as
an array of R row vectors, each consisting of C' double-precision or floating-
point components. The row vectors will be stored in order, with row zero at
the lowest offset. The difference in offsets between consecutive rows of the
matrix will be referred to as the row stride, and is constant across the matrix.
The row stride is an implementation-dependent function of the matrix type,
and may be determined after a program is linked by querying the MATRIX_-
STRIDE property using GetProgramResourceiv (see section 7.3.1).

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 138

UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.6.2.2 Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

When using the std140 storage layout, structures will be laid out in buffer
storage with their members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is V.

2. If the member is a two- or four-component vector with components consum-
ing IV basic machine units, the base alignment is 2N or 4NV, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4N .

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.6. UNIFORM VARIABLES 139

10.

. If the member is a column-major matrix with C' columns and R rows, the

matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

. If the member is an array of .S column-major matrices with C' columns and

R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

. If the member is a row-major matrix with C' columns and R rows, the matrix

is stored identically to an array of R row vectors with C' components each,
according to rule (4).

. If the member is an array of S row-major matrices with C' columns and R

rows, the matrix is stored identically to a row of S x R row vectors with C'
components each, according to rule (4).

. If the member is a structure, the base alignment of the structure is /N, where

N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Shader storage blocks (see section 7.8) also support the std140 layout qual-
ifier, as well as a std430 qualifier not supported for uniform blocks. When using
the std430 storage layout, shader storage blocks will be laid out in buffer storage
identically to uniform and shader storage blocks using the std140 layout, except
that the base alignment and stride of arrays of scalars and vectors in rule 4 and of
structures in rule 9 are not rounded up a multiple of the base alignment of a vec4.

7.6.3 Uniform Buffer Object Bindings

The value of an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points may be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.7. ATOMIC COUNTER BUFFERS 140

Regions of buffer objects are bound as storage for uniform blocks by calling
BindBuffer* commands (see section 6) with target set to UNTFORM_BUFFER.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. The binding is established when a program is linked or re-
linked, and the initial value of the binding is specified by a layout qualifier (if
present), or zero otherwise. The binding point can be assigned by calling

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution may be undefined or modified, as described in section 6.4. Shaders may
be executed to process the primitives and vertices specified by any command that
transfers vertices to the GL.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if uniformBlockIndex is not an
active uniform block index of program, or if uniformBlockBinding is greater
than or equal to the value of MAX_UNIFORM BUFFER_BINDINGS.

7.7 Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to
an atomic counter are described in this section.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.7. ATOMIC COUNTER BUFFERS 141

There is a set of implementation-dependent maximums for the number of active
atomic counter buffers referenced by each shader. If the number of atomic counter
buffer bindings referenced by any shader in the program exceeds the corresponding
limit, the program will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be obtained by
calling GetIntegerv with pname values of MAX_VERTEX_ATOMIC_COUNTER_-
BUFFERS, MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS, MAX_-
TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS, MAX_GEOMETRY_ATOMIC_-—
COUNTER_BUFFERS, MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS, and MAX_-
COMPUTE_ATOMIC_COUNTER_BUFFERS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active atomic counter buffers used by each shader stage of a program.
If an atomic counter buffer is used by multiple shader stages, each such use counts
separately against this combined limit. The combined atomic counter buffer use
limit can be obtained by calling GetIntegerv with a pname of MAX_COMBINED_ -
ATOMIC_COUNTER_BUFFERS.

7.7.1 Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

e Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

e Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.7.2 Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.
The number of binding points may be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the BindBuffer* commands (see section 6) with target set to ATOMIC_—
COUNTER_BUFFER.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS142

Each of a program’s active atomic counter buffer bindings has a corresponding
atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the
minimum required size for that buffer (the value of BUFFER_DATA_SIZE returned
by GetProgramResourceiv). For binding points populated by BindBufferRange,
the size in question is the value of the size parameter. If any active atomic counter
buffer is not backed by a sufficiently large buffer object, the results of shader exe-
cution may be undefined or modified, as described in section 6.4.

7.8 Shader Buffer Variables and Shader Storage Blocks

Shaders can declare named buffer variables, as described in the OpenGL Shading
Language Specification. Sets of buffer variables are grouped into interface blocks
called shader storage blocks. The values of each buffer variable in a shader storage
block are read from or written to the data store of a buffer object bound to the
binding point associated with the block. The values of active buffer variables may
be changed by executing shaders that assign values to them or perform atomic
memory operations on them; by modifying the contents of the bound buffer object’s
data store with the commands in sections 6.2, 6.2.1, 6.3, 6.5, and 6.6; by binding
a new buffer object to the binding point associated with the block; or by changing
the binding point associated with the block.

Buffer variables in shader storage blocks are represented in memory in the
same way as uniforms stored in uniform blocks, as described in section 7.6.2.1.
When a program is linked successfully, each active buffer variable is assigned an
offset relative to the base of the buffer object binding associated with its shader
storage block. For buffer variables declared as arrays and matrices, strides between
array elements or matrix columns or rows will also be assigned. Offsets and strides
of buffer variables will be assigned in an implementation-dependent manner unless
the shader storage block is declared using the std140 or std430 storage layout
qualifiers. For std140 and std430 shader storage blocks, offsets will be assigned
using the method described in section 7.6.2.2. If a program is re-linked, existing
buffer variable offsets and strides are invalidated, and a new set of active variables,
offsets, and strides will be generated.

The total amount of buffer object storage that can be accessed in any shader
storage block is subject to an implementation-dependent limit. The maximum
amount of available space, in basic machine units, may be queried by calling

OpenGL 4.5 (Core Profile) - June 29, 2017

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS143

GetIntegerv with pname MAX_SHADER_STORAGE_BLOCK_SIZE. If the amount
of storage required for any shader storage block exceeds this limit, a program will
fail to link.

If the number of active shader storage blocks referenced by the
shaders in a program exceeds implementation-dependent limits, the pro-
gram will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_SHADER_-
STORAGE_BLOCKS, MAX_TESS_CONTROL_SHADER STORAGE_BLOCKS, MAX_ -
TESS_EVALUATION_SHADER_STORAGE_BLOCKS, MAX_GEOMETRY_SHADER_-
STORAGE_BLOCKS, MAX_FRAGMENT SHADER STORAGE_BLOCKS, and MAX -
COMPUTE_SHADER_STORAGE_BLOCKS, respectively. Additionally, a program will
fail to link if the sum of the number of active shader storage blocks referenced by
each shader stage in a program exceeds the value of the implementation-dependent
limit MAX_COMBINED_SHADER_ STORAGE_BLOCKS. If a shader storage block in a
program is referenced by multiple shaders, each such reference counts separately
against this combined limit.

When a named shader storage block is declared by multiple shaders in a pro-
gram, it must be declared identically in each shader. The buffer variables within
the block must be declared with the same names, types, qualification, and decla-
ration order. If a program contains multiple shaders with different declarations for
the same named shader storage block, the program will fail to link.

Regions of buffer objects are bound as storage for shader storage blocks by
calling one of the BindBuffer* commands (see section 6) with target SHADER_ -
STORAGE_BUFFER.

Each of a program’s active shader storage blocks has a corresponding shader
storage buffer object binding point. When a program object is linked, the shader
storage buffer object binding point assigned to each of its active shader storage
blocks is reset to the value specified by the corresponding binding layout qual-
ifier, if present, or zero otherwise. After a program is linked, the command

void ShaderStorageBlockBinding(uint program,
uint storageBlockindex, uint storageBlockBinding);

changes the active shader storage block with an assigned index of storage-
BlockIndex in program object program. ShaderStorageBlockBinding specifies
that program will use the data store of the buffer object bound to the binding point
storageBlockBinding to read and write the values of the buffer variables in the
shader storage block identified by storageBlockIndex.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 144

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ VALUE error is generated if storageBlocklndex is not an
active shader storage block index in program, or if storageBlockBinding is
greater than or equal to the value of MAX_ SHADER STORAGE_BUFFER_-
BINDINGS.

When executing shaders that access shader storage blocks, the binding point
corresponding to each active shader storage block must be populated with a buffer
object with a size no smaller than the minimum required size of the shader storage
block (the value of BUFFER_SIZE for the appropriate SHADER_STORAGE_BUFFER
resource). For binding points populated by BindBufferRange, the size in question
is the value of the size parameter or the size of the buffer minus the value of the
offset parameter, whichever is smaller. If any active shader storage block is not
backed by a sufficiently large buffer object, the results of shader execution may be
undefined or modified, as described in section 6.4.

7.9 Subroutine Uniform Variables

Subroutine uniform variables are similar to uniform variables, except they are con-
text state rather than program state, and apply only to a single program stage. Hav-
ing subroutine uniforms be context state allows them to have different values if the
program is used in multiple contexts simultaneously. There is a set of subroutine
uniforms for each shader stage.

A subroutine uniform may have an explicit location specified in the shader.
At link time, all active subroutine uniforms without an explicit location will be
assigned a unique location. The value of ACTIVE_SUBROUTINE_UNIFORM_-—
LOCATIONS for a program object is the largest specified or assigned location plus
one. An assigned location will never take the location of an explicitly specified
location, even if that subroutine uniform is inactive. Between the location zero and
the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS minus one there may
be unused locations, either because they were not assigned a subroutine uniform or
because the subroutine uniform was determined to be inactive by the linker. These
locations will be ignored when assigning the subroutine index as described below.

There is an implementation-dependent limit on the number of active subrou-
tine uniform locations in each shader stage; a program will fail to link if the num-

OpenGL 4.5 (Core Profile) - June 29, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 145

Interface Shader Type
VERTEX_SUBROUTINE VERTEX_SHADER
TESS_CONTROL_SUBROUTINE TESS_CONTROL_SHADER
TESS_EVALUATION_SUBROUTINE | TESS_EVALUATION_SHADER
GEOMETRY_SUBROUTINE GEOMETRY_SHADER
FRAGMENT_SUBROUTINE FRAGMENT__SHADER
COMPUTE_SUBROUTINE COMPUTE_SHADER

Table 7.9: Interfaces for active subroutines for a particular shader type in a pro-
gram.

ber of subroutine uniform locations required is greater than the value of MAX_ -
SUBROUTINE_UNIFORM_LOCATIONS or if an explicit subroutine uniform location
is outside this limit. For active subroutine uniforms declared as arrays, the declared
array elements are assigned consecutive locations.

Each function in a shader associated with a subroutine type is considered an
active subroutine, unless the compiler conclusively determines that the function
could never be assigned to an active subroutine uniform. The subroutine func-
tions can be assigned an explicit index in the shader between zero and the value
of MAX_SUBROUTINES minus one. At link time, all active subroutines without an
explicit index will be assigned an index between zero and the value of ACTIVE_ -
SUBROUTINES minus one. An assigned index will never take the same index of
an explicitly specified index in the shader, even if that subroutine is inactive. Be-
tween index zero and the vaue of ACTIVE_SUBROUTINES minus one there may
be unused indices either because they weren’t assigned an index by the linker or
because the subroutine was determined to be inactive by the linker. If there are no
explicitly defined subroutine indices in the shader the implementation must assign
indices between zero and the value of ACTIVE_SUBROUTINES minus one with no
index unused. It is recommended, but not required, that the application assigns a
range of tightly packed indices starting from zero to avoid indices between zero
and the value of ACTIVE_SUBROUTINES minus one being unused.

To determine the set of active subroutines and subroutines used by a partic-
ular shader stage of a program, applications can query the properties and active
resources of the interfaces for the shader type, as listed in tables 7.9 and 7.10.

Additionally, dedicated commands are provided to determine properties of ac-
tive subroutines and active subroutine uniforms. The commands

uint GetSubroutinelndex(uint program, enum shadertype,
const char *name);

OpenGL 4.5 (Core Profile) - June 29, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 146

Interface Shader Type
VERTEX_SUBROUTINE_UNIFORM VERTEX_SHADER
TESS_CONTROL_SUBROUTINE_UNIFORM TESS_CONTROL_SHADER
TESS_EVALUATION_SUBROUTINE_UNIFORM | TESS_EVALUATION_SHADER
GEOMETRY_SUBROUT INE_UNIFORM GEOMETRY_SHADER
FRAGMENT_SUBROUT INE_UNIFORM FRAGMENT_SHADER
COMPUTE_SUBROUTINE_UNIFORM COMPUTE_SHADER

Table 7.10: Interfaces for active subroutine uniforms for a particular shader type in
a program.

void GetActiveSubroutineName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);

are equivalent to
GetProgramResourcelndex (program, programiInterface, name) ;
and

GetProgramResourceName (program, programlinterface,
index, bufSize, length, name);

respectively, where programlinterface is taken from table 7.9 according to the value
of shadertype.
The commands

int GetSubroutineUniformLocation(uint program,
enum shadertype, const char *name);
void GetActiveSubroutineUniformName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);
void GetActiveSubroutineUniformiv(uint program,
enum shadertype, uint index, enum pname, int *values);

are equivalent to

GetProgramResourcelLocation (program, programlinterface, name) ;

OpenGL 4.5 (Core Profile) - June 29, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 147

GetProgramResourceName (program, programlinterface,
index, bufSize, length, name);

and

GetProgramResourceiv (program, programliInterface,
index, 1, &pname, maxSize, NULL, walues) ;

respectively, where programlnterface is taken from table 7.10 according to the
value of shadertype. For GetActiveSubroutineUniformiv, pname must be one of
NUM_COMPATIBLE_SUBROUTINES or COMPATIBLE_SUBROUTINES, and maxSize
is taken to specify a sufficiently large buffer to receive all values that would be
written to params.

The command

void UniformSubroutinesuiv(enum shadertype, sizei count,
const uint *indices);

will load all active subroutine uniforms for shader stage shadertype with subrou-
tine indices from indices, storing indices[i] into the uniform at location i. The
indices for any locations between zero and the value of ACTIVE_SUBROUTINE_—
UNIFORM_LOCATIONS minus one which are not used will be ignored.

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if count is negative, is not equal to
the value of ACTIVE_SUBROUTINE_UNIFORM LOCATIONS for the program
currently in use at shader stage shadertype, or if the uniform at location ¢
is used and the value in indices[i] is greater than or equal to the value of
ACTIVE_SUBROUTINES for the shader stage.

An INVALID_VALUE error is generated if the value of indices[i] for a used
uniform location specifies an unused subroutine index.

An INVALID_OPERATION error is generated if, for any subroutine index
being loaded to a particular uniform location, the function corresponding to the
subroutine index was not associated (as defined in section 6.1.2 of the OpenGL
Shading Language Specification) with the type of the subroutine variable at
that location.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.10. SAMPLERS 148

An INVALID_OPERATION error is generated if no program is active for
the shader stage identified by shadertype.

Each subroutine uniform must have at least one subroutine to assign to the uni-
form. A program will fail to link if any stage has one or more subroutine uniforms
that has no subroutine associated with the subroutine type of the uniform.

When the active program for a shader stage is re-linked or changed by a call
to UseProgram, BindProgramPipeline, or UseProgramStages, subroutine uni-
forms for that stage are reset to arbitrarily chosen default functions with compatible
subroutine types.

7.10 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to 7 selects texture
image unit number ¢. The value of ¢ may range from zero to the implementation-
dependent maximum supported number of texture image units minus one.

The type of the sampler identifies the target on the texture image unit, as shown
in table 7.3 for sampler~* types. The texture object bound to that texture image
unit’s target is then used for the texture lookup. For example, a variable of type
sampler2D selects target TEXTURE_2D on its texture image unit. Binding of tex-
ture objects to targets is done as usual with BindTexture. Selecting the texture
image unit to bind to is done as usual with ActiveTexture.

The location of a sampler is queried with GetUniformLocation, just like any
uniform variable. Sampler values must be set by calling Uniform1i{v}.

Errors

It is not allowed to have variables of different sampler types pointing to
the same texture image unit within a program object. This situation can only
be detected at the next rendering command issued which triggers shader invo-
cations, and an INVALID_OPERATION error will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link

OpenGL 4.5 (Core Profile) - June 29, 2017

7.11. IMAGES 149

fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

7.11 Images

Images are special uniforms used in the OpenGL Shading Language to identify a
level of a texture to be read or written using built-in image load, store, or atomic
functions in the manner described in section 8.26. The value of an image uniform is
an integer specifying the image unit accessed. Image units are numbered beginning
at zero, and there is an implementation-dependent number of available image units
(the value of MAX_IMAGE_UNITS).

Note that image units used for image variables are independent of the texture
image units used for sampler variables; the number of units provided by the imple-
mentation may differ. Textures are bound independently and separately to image
and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit; otherwise the result of a load, store, or atomic
operation is undefined (see section 4.1.7.2 of the OpenGL Shading Language Spec-
ification for more details).

The location of an image variable needs to be queried with GetUniformLo-
cation, just like any uniform variable. Image values must be set by calling Uni-
formli{v}.

Unlike samplers, there is no limit on the number of active image variables that
may be used by a program or by any particular shader. However, given that there
is an implementation-dependent limit on the number of unique image units, the
actual number of images that may be used by all shaders in a program is limited.

7.12 Shader Memory Access

As described in the OpenGL Shading Language Specification, shaders may per-
form random-access reads and writes to buffer object memory by reading from,
assigning to, or performing atomic memory operation on shader buffer variables,
or to texture or buffer object memory by using built-in image load, store, and
atomic functions operating on shader image variables. The ability to perform such
random-access reads and writes in systems that may be highly pipelined results in
ordering and synchronization issues discussed in the sections below.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12. SHADER MEMORY ACCESS 150

7.12.1 Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, tessellation evaluation, and in
some cases, fragment), even the number of shader invocations that might perform
loads and stores is undefined.

In particular, the following rules apply:

e While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),
it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection
of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

e For each fragment generated by the GL, the number of fragment shader in-
vocations depends on a number of factors. If the fragment fails the pixel
ownership test (see section 14.9.1), scissor test (see section 14.9.2), or is dis-
carded by any of the multisample fragment operations (see section 14.9.3),
the fragment shader will not be executed

In addition, if early per-fragment tests are enabled (see section 14.9), the
fragment shader will not be executed if the fragment is discarded during the
early per-fragment tests.

When fragment shaders are executed, the number of invocations per frag-
ment is exactly one when the framebuffer has no multisample buffer (the
value of SAMPLE_BUFFERS is zero). Otherwise, the number of invocations
is in the range [1, N|] where N is the number of samples covered by the frag-
ment; if the fragment shader specifies per-sample shading, it will be invoked
exactly IV times.

o If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives
for texture lookups, then stores, atomics, and atomic counter updates have
no effect.

o The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12. SHADER MEMORY ACCESS 151

are always written to the framebuffer in primitive order, stores executed by
fragment shader invocations are not.

e The relative order of invocations of different shader types is largely unde-
fined. However, when executing a shader whose inputs are generated from
a previous programmable stage, the shader invocations from the previous
stage are guaranteed to have executed far enough to generate final values
for all next-stage inputs. That implies shader completion for all stages ex-
cept geometry; geometry shaders are guaranteed only to have executed far
enough to emit all vertices used to generate the primitive being processed by
the fragment shader.

The above limitations on shader invocation order also make some forms of
synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another
invocation assumes that the other invocation has been launched and can complete
its writes. The only case where such a guarantee is made is when the inputs of
one shader invocation are generated from the outputs of a shader invocation in a
previous stage.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The built-
in function memoryBarrier may be used to provide stronger ordering of reads
and writes performed by a single invocation. Calling memoryBarrier guaran-
tees that any memory transactions issued by the shader invocation prior to the call
complete prior to the memory transactions issued after the call. Memory barriers
may be needed for algorithms that require multiple invocations to access the same
memory and require the operations to be performed in a partially-defined relative
order. For example, if one shader invocation does a series of writes, followed by a
memoryBarrier call, followed by another write, then another invocation that sees
the results of the final write will also see the previous writes. Without the memory
barrier, the final write may be visible before the previous writes.

The built-in atomic memory transaction and atomic counter functions may be
used to read and write a given memory address atomically. While built-in atomic
functions issued by multiple shader invocations are executed in undefined order
relative to each other, these functions perform both a read and a write of a memory
address and guarantee that no other memory transaction will write to the underlying
memory between the read and write. Atomics allow shaders to use shared global
addresses for mutual exclusion or as counters, among other uses.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12. SHADER MEMORY ACCESS 152

7.12.2 Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually be
read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When data is written using API commands such as Tex-
SubImage* or BufferSubData, the GL implementation knows when and where
writes occur and can perform implicit synchronization to ensure that operations re-
quested before the update see the original data and that subsequent operations see
the modified data. Without logic to track the target address of each shader instruc-
tion performing a store, automatic synchronization of stores performed by a shader
invocation would require the GL implementation to make worst-case assumptions
at significant performance cost. To permit cases where textures or buffers may
be read or written in different pipeline stages without the overhead of automatic
synchronization, buffer object and texture stores performed by shaders are not au-
tomatically synchronized with other GL operations using the same memory.

Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using
the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bit field barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering
command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

e VERTEX_ ATTRIB_ARRAY BARRIER BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to the
barrier. The set of buffer objects affected by this bit is derived from the buffer
object bindings used for arrays of generic vertex attributes (VERTEX_—
ATTRIB_ARRAY_BUFFER bindings).

e ELEMENT_ARRAY BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_BUFFER binding.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12.

SHADER MEMORY ACCESS 153

UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

TEXTURE_FETCH_BARRIER_BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load, store, and atomic functions issued after the barrier will
reflect data written by shaders prior to the barrier. Additionally, image stores
and atomics issued after the barrier will not execute until all memory ac-
cesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect and DispatchComputelndirect commands after the bar-
rier will reflect data written by shaders prior to the barrier. The buffer ob-
jects affected by this bit are derived from the DRAW_INDIRECT BUFFER and
DISPATCH_INDIRECT_BUFFER bindings.

PIXEL_BUFFER_BARRIER_BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEL_UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, etc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

TEXTURE_UPDATE_BARRIER_BIT: Writes
to a texture via Tex(Sub)Image*, ClearTex*Image, CopyTex*, or Com-
pressedTex*, and reads via GetTexImage after the barrier will not execute
until all shader writes initiated prior to the barrier complete.

BUFFER_UPDATE_BARRIER_BIT: Reads and writes to buffer object mem-
ory after the barrier using the commands in sections 6.2, 6.2.1, 6.3, 6.6,
and 6.5 will reflect data written by shaders prior to the barrier. Additionally,
writes via these commands issued after the barrier will wait on the comple-
tion of any shader writes to the same memory initiated prior to the barrier.

CLIENT_MAPPED_ BUFFER_BARRIER_BIT: Access by the client to persis-
tent mapped regions of buffer objects will reflect data written by shaders
prior to the barrier. Note that this may cause additional synchronization op-
erations.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12. SHADER MEMORY ACCESS 154

e QUERY_BUFFER_BARRIER_BIT: Writes of buffer objects via the QUERY_ -
BUFFER binding (see section 4.2.1) after the barrier will reflect data written
by shaders prior to the barrier. Additionally, buffer object writes issued after
the barrier will wait on the completion of all shader writes initiated prior to
the barrier.

e FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

e TRANSFORM_FEEDBACK_BARRIER BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

e ATOMIC_COUNTER_BARRIER BIT: Memory accesses using shader atomic
counter built-in functions issued after the barrier will reflect data written by
shaders prior to the barrier. Additionally, atomic counter function invoca-
tions after the barrier will not execute until all memory accesses (e.g., loads,
stores, texture fetches, vertex fetches) initiated prior to the barrier complete.

e SHADER_STORAGE_BARRIER BIT: Memory accesses using shader buffer
variables issued after the barrier will reflect data written by shaders prior to
the barrier. Additionally, assignments to and atomic operations performed
on shader buffer variables after the barrier will not execute until all memory
accesses initiated prior to the barrier complete.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER_BITS, and has any bits set other than those described above.

Implementations may cache buffer object and texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable
by other pipeline stages or other shader invocations because the value stored may

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12. SHADER MEMORY ACCESS 155

remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address
is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemeoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

e Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via
commands such as BufferSubData will invalidate shader caches implicitly
as required.

e Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

e Data written by one shader invocation and consumed by other shader in-
vocations launched as a result of its execution (dependent invocations)
should use coherent variables in the producing shader invocation and call
memoryBarrier after the last write. The consuming shader invocation
should also use coherent variables.

e Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier. Calling
MemoryBarrier with the SHADER_TMAGE_ACCESS_BARRIER_BIT set in
barriers between passes is necessary.

e Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-

OpenGL 4.5 (Core Profile) - June 29, 2017

7.12. SHADER MEMORY ACCESS 156

herent variables or memoryBarrier. Calling MemoryBarrier with the ap-
propriate bits set in barriers between passes is necessary.

The command
void MemoryBarrierByRegion(bitfield barriers);

behaves as described above for MemoryBarrier, with two differences:

First, it narrows the region under consideration so that only reads and writes of
prior fragment shaders that are invoked for a smaller region of the framebuffer will
be completed/reflected prior to subsequent reads and writes of following fragment
shaders. The size of the region is implementation-dependent and may be as small
as one framebuffer pixel.

Second, it only applies to memory transactions that may be read by or written
by a fragment shader. Therefore, only the barrier bits

e ATOMIC_COUNTER_BARRIER_BIT

e FRAMEBUFFER BARRIER_BIT

e SHADER_IMAGE_ACCESS_BARRIER_BIT
e SHADER_STORAGE_BARRIER_BIT

e TEXTURE_FETCH_BARRIER_BIT

e UNIFORM_BARRIER_BIT

are supported.

When barriers is ALL_BARRIER_BITS, shader memory accesses will be syn-
chronized relative to all these barrier bits, but not to other barrier bits specific to
MemoryBarrier. This implies that reads and writes for scatter/gather-like algo-
rithms may or may not be completed/reflected after a MemoryBarrierByRegion
command. However, for uses such as deferred shading, where a linked list of vis-
ible surfaces with the head at a framebuffer address may be constructed, and the
entirety of the list is only dependent on previous executions at that framebuffer ad-
dress, MemoryBarrierByRegion may be significantly more efficient than Mem-
oryBarrier.

Errors

An INVALID_VALUE error is generated if barriers is not the special value

OpenGL 4.5 (Core Profile) - June 29, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 157
ALL_BARRIER_BITS, and has any bits set other than those described above.

7.13 Shader, Program, and Program Pipeline Queries
The command
void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, one of the values from table 7.1 corresponding to
the type of shader is returned.

If pname is DELETE_STATUS, TRUE is returned if the shader has been flagged
for deletion and FALSE is returned otherwise.

If pname is COMPILE_STATUS, TRUE is returned if the shader was last com-
piled successfully, and FALSE is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is an empty info log, zero is returned.

If pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the
source strings making up the shader source, including a null terminator, is returned.
If no source has been defined, zero is returned.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_ENUM error is generated if pname is not SHADER_TYPE,
DELETE_STATUS, COMPILE_STATUS, INFO_LOG_LENGTH, or SHADER_ -
SOURCE_LENGTH.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

Most properties set within program objects are specified not to take effect until
the next call to LinkProgram or ProgramBinary. Some properties further require

OpenGL 4.5 (Core Profile) - June 29, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 158

a successful call to either of these commands before taking effect. GetProgramiv
returns the properties currently in effect for program, which may differ from the
properties set within program since the most recent call to LinkProgram or Pro-
gramBinary, which have not yet taken effect. If there has been no such call putting
changes to pname into effect, initial values are returned.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise.

If pname is LINK_STATUS, TRUE is returned if the program was last linked
successfully, and FALSE is returned otherwise.

If pname is VALIDATE_STATUS, TRUE is returned if the last call to Vali-
dateProgram (see section 11.1.3.11) with program was successful, and FALSE
is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is an empty info log, zero is returned.

If pname is ATTACHED_SHADERS, the number of objects attached is returned.

If pname is ACTIVE_ATTRIBUTES, the number of active attributes (see sec-
tion 7.3.1) in program is returned. If no active attributes exist, zero is returned.

If pname is ACTIVE_ATTRIBUTE_MAX_LENGTH, the length of the longest ac-
tive attribute name, including a null terminator, is returned. If no active attributes
exist, zero is returned.

If pname is ACTIVE_UNIFORMS, the number of active uniforms is returned. If
no active uniforms exist, zero is returned.

If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of the longest active
uniform name, including a null terminator, is returned. If no active uniforms exist,
zero is returned.

If pname is TRANSFORM_FEEDBACK_BUFFER_MODE, the buffer mode used
when transform feedback (see section 11.1.2.1) is active is returned. It can be
one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS.

If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of output vari-
ables to capture in transform feedback mode for the program is returned.

If pname is TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of
the longest output variable name specified to be used for transform feedback, in-
cluding a null terminator, is returned. If no outputs are used for transform feedback,
zero is returned.

If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for
program containing active uniforms is returned.

If pname is ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the
longest active uniform block name, including the null terminator, is returned.

If pname is GEOMETRY_VERTICES_OUT, the maximum number of vertices the
geometry shader (see section 11.3) will output is returned.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 159

If pname is GEOMETRY_INPUT_TYPE, the geometry shader input type,
which must be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or
TRIANGLES_ADJACENCY, is returned.

If pname is GEOMETRY_OUTPUT_TYPE, the geometry shader output type,
which must be one of POINTS, LINE_STRIP or TRIANGLE_STRIP, is returned.

If pname is GEOMETRY_SHADER_INVOCATIONS, the number of geometry
shader invocations per primitive will be returned.

If pname is TESS_CONTROL_OUTPUT_VERTICES, the number of vertices in
the tessellation control shader (see section 11.2.1) output patch is returned.

If pname is TESS_GEN_MODE, QUADS, TRIANGLES, or ISOLINES is returned,
depending on the primitive mode declaration in the tessellation evaluation shader
(see section 11.2.3).

If pname is
TESS_GEN_SPACING, EQUAL, FRACTIONAL_EVEN, or FRACTIONAL_ODD is re-
turned, depending on the spacing declaration in the tessellation evaluation shader.

If pname is TESS_GEN_VERTEX_ORDER, CCW or CW is returned, depending on
the vertex order declaration in the tessellation evaluation shader.

If pname is TESS_GEN_POINT_MODE, TRUE is returned if point mode is en-
abled in a tessellation evaluation shader declaration; FALSE is returned otherwise.

If pname is COMPUTE_WORK_GROUP_SIZE, an array of three integers contain-
ing the local work group size of the compute program (see chapter 19), as specified
by its input layout qualifier(s), is returned.

If pname is PROGRAM_SEPARABLE, TRUE is returned if the program has been
flagged for use as a separable program object that can be bound to individual shader
stages with UseProgramStages.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, the value of whether
the binary retrieval hint is enabled for program is returned.

If pname is ACTIVE_ATOMIC_COUNTER_BUFFERS, the number of active
atomic counter buffers used by program is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

An INVALID_OPERATION error is generated if GEOMETRY_VERTICES_-

OpenGL 4.5 (Core Profile) - June 29, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 160

OUT, GEOMETRY_INPUT_TYPE, GEOMETRY_OUTPUT_TYPE, Or GEOMETRY_ -
SHADER_INVOCATIONS are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader.

An INVALID_OPERATION error is generated if TESS_CONTROL_-
OUTPUT_VERTICES is queried for a program which has not been linked suc-
cessfully, or which does not contain objects to form a tessellation control
shader.

An INVALID_OPERATION error is generated if TESS_GEN_MODE,
TESS_GEN_SPACING, TESS_GEN_VERTEX_ ORDER, Oor TESS_GEN_POINT -
MODE are queried for a program which has not been linked successfully, or
which does not contain objects to form a tessellation evaluation shader.

An INVALID_OPERATION error is generated if COMPUTE_WORK_-—
GROUP_SIZE is queried for a program which has not been linked successfully,
or which does not contain objects to form a compute shader,

The command

void GetProgramPipelineiv(uint pipeline, enum pname,
int *params);

returns properties of the program pipeline object named pipeline in params. The
parameter value to return is specified by pname.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

If pname is ACTIVE_PROGRAM, the name of the active program object (used
for uniform updates) of pipeline is returned.

If pname is one of the shader stage fype arguments in table 7.1, the name of the
program object current for the corresponding shader stage of pipeline is returned.

If pname is VALIDATE_STATUS, the validation status of pipeline, as deter-
mined by ValidateProgramPipeline (see section 11.1.3.11) is returned.

If pname is INFO_LOG_LENGTH, the length of the info log for pipeline, includ-
ing a null terminator, is returned. If there is an empty info log, zero is returned.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

OpenGL 4.5 (Core Profile) - June 29, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 161

An INVALID_ENUM error is generated if pname is not ACTIVE_PROGRAM,
INFO_LOG_LENGTH, VALIDATE_STATUS, or one of the fype arguments in
table 7.1.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizel *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders
are attached, count is set to zero. If count is NULL then it is ignored. The max-
imum number of shader names that may be written into shaders is specified by
maxCount. The number of objects attached to program may be queried by calling
GetProgramiv with ATTACHED_SHADERS.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if maxCount is negative.

A string that contains information about the last compilation attempt on a
shader object, last link or validation attempt on a program object, or last valida-
tion attempt on a program pipeline object, called the info log, can be obtained with
the commands

void GetShaderInfol.og(uint shader