The OpenGL® Graphics System:

A Specification
(Version 4.1 (Compatibility Profile) - July 25, 2010)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.1): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2010 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.1.1 Formatting of the Compatibility Profile 1

1.1.2 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 OurView 3
1.6 The Deprecation Model 3
1.7 Companion Documents 3
1.7.1 OpenGL Shading Language 3

1.7.2 Window System Bindings 4

2 OpenGL Operation 5
2.1 OpenGL Fundamentals 5
2.1.1 Numeric Computation 7

2.1.2 Fixed-Point Data Conversions 11

22 GLState 13
2.2.1 Shared ObjectState 13

23 GLCommand Syntax 13
24 BasicGLOperation 15
25 GLErrors oo 18
2.6 Begin/End Paradigm 19
2.6.1 BeginandEnd 20

2.6.2 PolygonEdges, 30

2.6.3 GL Commands within Begin/End 31

2.7 Vertex Specification 31
2.8 VerteX Arrayso i e e e e 38
2.8.1 Packed Vertex Data Formats 45

CONTENTS ii

29

2.10
2.11
2.12

2.13

2.14

2.15

2.8.2 Drawing Commands 46
BufferObjects 55
2.9.1 Creating and Binding Buffer Objects 56
2.9.2 Creating Buffer Object Data Stores 58
2.9.3 Mapping and Unmapping BufferData 60
2.9.4 Effects of Accessing Outside Buffer Bounds 64
2.9.5 Copying Between Buffers 64
2.9.6 Vertex Arrays in Buffer Objects 65
2.9.7 Array Indices in Buffer Objects 66
2.9.8 Indirect Commands in Buffer Objects 66
2.9.9 BufferObjectState 67
Vertex Array Objects 67
Rectangles 68
Fixed-Function Vertex Transformations 69
2121 Matriceso 70
2.12.2 Normal Transformation. 75
2.12.3 Generating Texture Coordinates 77
Fixed-Function Vertex Lighting and Coloring 79
2.13.1 Lighting. 80
2.13.2 Lighting Parameter Specification 85
2.13.3 ColorMaterial 86
2.134 LightingState 89
2.13.5 Color Index Lighting 89
2.13.6 Clampingor Masking 90
Vertex Shaders oo 91
2.14.1 Shader Objects 92
2.14.2 Loading Shader Binaries 94
2.14.3 Program Objects 95
2.14.4 Program Pipeline Objects 99
2.14.5 Program Binaries L. 104
2.14.6 Vertex Attributeso Lo 106
2.147 Uniform Variables 110
2.14.8 Subroutine Uniform Variables 128
2,149 Samplers 131
2.14.10 Varying Variables 132
2.14.11 Shader Execution 136
2.14.12Required State 145
Tessellation 146
2.15.1 Tessellation Control Shaders 147
2.15.2 Tessellation Primitive Generation 153

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

CONTENTS iii

3

2.15.3 Tessellation Evaluation Shaders 161
2.16 Geometry Shaders L. 167
2.16.1 Geometry Shader Input Primitives 168
2.16.2 Geometry Shader Output Primitives 169
2.16.3 Geometry Shader Variables 170
2.16.4 Geometry Shader Execution Environment 170
2.17 Coordinate Transformations 177
2.17.1 Controlling the Viewport 177
2.18 Asynchronous Queries, 180
2.19 Conditional Rendering 183
2.20 Transform Feedback 184
2.20.1 Transform Feedback Objects 184
2.20.2 Transform Feedback Primitive Capture 186
2.20.3 Transform Feedback Draw Operations 190
2.21 Primitive Queries 191
2.22 Flatshading 192
2.23 Primitive Clipping 194
2.23.1 Color and Associated Data Clipping 196
2.24 Final Color Processing 197
2.25 Current Raster Position 198
Rasterization 202
3.1 Discarding Primitives Before Rasterization 204
32 Invariance 204
3.3 Antialiasing 204
3.3.1 Multisampling 206
34 Points 208
3.4.1 Basic Point Rasterization 210
3.4.2 Point Rasterization State 214
3.4.3 Point Multisample Rasterization 214
3.5 LineSegments 215
3.5.1 Basic Line Segment Rasterization 215
3.5.2 Other Line Segment Features 218
3.5.3 Line Rasterization State 221
3.54 Line Multisample Rasterization 221
3.6 Polygons 221
3.6.1 Basic Polygon Rasterization 222
3,62 Stippling 224
3.6.3 Antialiasing 225
3.6.4 Options Controlling Polygon Rasterization 225

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

CONTENTS

3.7

3.8
39

3.10
3.11
3.12

3.13
3.14

3,65 DepthOffset
3.6.6 Polygon Multisample Rasterization
3.6.7 Polygon Rasterization State
Pixel Rectangles
3.7.1 Pixel Storage Modes and Pixel Buffer Objects
3772 The Imaging Subset
3.7.3 Pixel TransferModes
3.7.4 Transfer of Pixel Rectangles
3.7.5 Rasterization of Pixel Rectangles
3.7.6 Pixel Transfer Operations
3.7.7 Pixel Rectangle Multisample Rasterization
Bitmaps
Texturing
39.1 TextureObjects
39.2 SamplerObjects
3.9.3 Texture Image Specification
3.9.4 Alternate Texture Image Specification Commands

3.9.5 Compressed Texture Images
3.9.6 Multisample Textures
39.7 BufferTextures
39.8 Texture Parameters
3.9.9 Depth Component Textures
3.9.10 Cube Map Texture Selection
3.9.11 Texture Minification
3.9.12 Texture Magnification
3.9.13 Combined Depth/Stencil Textures
3.9.14 Texture Completeness
3.9.15 Texture State and Proxy State
3.9.16 Texture Environments and Texture Functions
3.9.17 Texture Comparison Modes
3.9.18 sRGB Texture Color Conversion
3.9.19 Shared Exponent Texture Color Conversion
3.9.20 Texture Application.
ColorSum

Fragment Shaders
3.12.1 Shader Variables
3.12.2 Shader Execution
Antialiasing Application oL Lo
Multisample PointFade

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

v

CONTENTS v

4 Per-Fragment Operations and the Framebuffer 349
4.1 Per-Fragment Operations 351
4.1.1 Pixel OwnershipTest 351
412 ScissorTesto 352
4.1.3 Multisample Fragment Operations 353
414 AlphaTest 355
415 Stencil Testo 356
41.6 DepthBufferTest. 358
4.177 Occlusion Queries 359
418 Blending, 359
419 SsRGBConversion 366
4.1.10 Dithering 366
4.1.11 Logical Operation 367
4.1.12 Additional Multisample Fragment Operations 368
4.2 Whole Framebuffer Operations 369
4.2.1 Selecting a Buffer for Writing 370
4.2.2 Fine Control of Buffer Updates 374
423 Clearing the Buffers 375
424 The Accumulation Buffer 379
4.3 Drawing, Reading, and Copying Pixels 380
4.3.1 Writing to the Stencil or Depth/Stencil Buffers 380
432 ReadingPixels 380
433 CopyingPixels 388
434 Pixel Draw/Read State 393
4.4 Framebuffer Objects 393
4.4.1 Binding and Managing Framebuffer Objects 394
4.4.2 Attaching Images to Framebuffer Objects 397
4.4.3 Feedback Loops Between Textures and the Framebuffer . 405
444 Framebuffer Completeness 408

4.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 413
4.4.6 Mapping between Pixel and Element in Attached Image . 413
447 Layered Framebuffers 414
5 Special Functions 417
5.1 Evaluators 417
5.2 Selection 423
53 Feedback 425
54 TimerQueries e 427
5.5 DisplayLists 429

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

CONTENTS vi

5.5.1 Commands Not Usable In Display Lists 432

5.6 FlushandFinish. 434
5.7 SyncObjectsandFences 434
5.7.1 Waiting for Sync Objects 436

572 Signalling 438

5.8 Hints. 438
6 State and State Requests 440
6.1 QueryingGL State 440
6.1.1 SimpleQueries 440

6.1.2 DataConversions 441

6.1.3 Enumerated Queries 443

6.14 TextureQueries 446

6.1.5 Sampler Queries, 449

6.1.6 StippleQuery o 449

6.1.7 ColorMatrixQuery. 450

6.1.8 ColorTableQuery 450

6.1.9 Convolution Query 450
6.1.10 Histogram Query 453
6.1.11 Minmax Query 454
6.1.12 Pointer and String Queries 454
6.1.13 Asynchronous Queries 456
6.1.14 Sync Object Queries 458
6.1.15 Buffer Object Queries 459
6.1.16 Vertex Array Object Queries 461
6.1.17 Transform Feedback Queries 461
6.1.18 Shader and Program Queries 461
6.1.19 Framebuffer Object Queries 469
6.1.20 Renderbuffer Object Queries 472
6.1.21 Saving and Restoring State 473

6.2 StateTables 475
A Invariance 542
A.1 Repeatability 542
A.2 Multi-pass Algorithms L. 543
A3 InvarianceRules. L ... 543
A4 Tessellation Invariance 545
A5 WhatAllThisMeans 547
B Corollaries 548

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

CONTENTS

C Compressed Texture Image Formats
C.1 RGTC Compressed Texture Image Formats
C.1.1 Format COMPRESSED_RED_RGTC1
C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1l
C.1.3 Format COMPRESSED_RG_RGTC2 v
C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

D Shared Objects and Multiple Contexts
D.1 Object Deletion Behavior
D.1.1 Side Effects of Shared Context Destruction
D.1.2 Automatic Unbinding of Deleted Objects
D.1.3 Deleted Object and Object Name Lifetimes
D.2 Sync Objects and Multiple Contexts
D.3 Propagating Changes to Objects
D.3.1 Determining Completion of Changes to an object
D.3.2 Definitionso
D33 Rules

E Profiles and the Deprecation Model
E.1 Core and Compatibility Profiles
E.2 Deprecated and Removed Features
E.2.1 Deprecated But Still Supported Features
E.2.2 Removed Features

F Version 3.0 and Before
F1 NewPFeatures
F2 Deprecation Model
F3 ChangedTokens
F4 Changelog
E5 Credits and Acknowledgements

G Version 3.1
G.1 NewPFeatures
G.2 DeprecationModel
G3 Changelog
G.4 Credits and Acknowledgements

H Version 3.2
H.1 NewPFeatures,
H.2 Deprecation Model

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

vii

551
551
552
553
554
554

555
555
555
556
556
557
557
558
558
558

560
561
561
561
562

567
567
568
569
569
571

574
574
575
575
576

CONTENTS

H.3 ChangedTokens.
H4 Changelog
H.5 Credits and Acknowledgements

I.1
1.2
I3
1.4

J.1
J2
J.3
J4

K.1
K.2
K.3
K.4
K.5

L.1

Version 3.3

New Features
DeprecationModel
Changelog
Credits and Acknowledgements

Version 4.0

New Features
DeprecationModel L.
ChangelLog
Credits and Acknowledgements

Version 4.1

New Features
DeprecationModel L o
Changed Tokens
Changelog
Credits and Acknowledgements

Extension Registry, Header Files, and ARB Extensions

Extension Registry
L.2 HeaderFiles e
L3 ARBEXtensions. v

L.3.1
L3.2
L.3.3
L3.4
L.3.5
L.3.6
L.3.7
L.3.8
L.3.9

Naming Conventions
Promoting Extensions to Core Features
Multitexture oL
Transpose Matrix
Multisample
Texture Add Environment Mode
Cube Map Textures
Compressed Textures
Texture Border Clamp

L.3.10 Point Parameters
L.3.11 VertexBlend
L.3.12 Matrix Palette
L.3.13 Texture Combine Environment Mode

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

viii

580
581
583

586
586
587
588
588

590
590
592
592
592

595
595
596
596
596
596

CONTENTS

L.3.14
L.3.15
L.3.16
L.3.17
L.3.18
L.3.19
L.3.20
L.3.21
L.3.22
L.3.23
L.3.24
L.3.25
L.3.26
L.3.27
L.3.28
L.3.29
L.3.30
L.3.31
L.3.32
L.3.33
L.3.34
L.3.35
L.3.36
L.3.37
L.3.38
L.3.39
L.3.40
L.3.41
L.3.42
L.3.43
L.3.44
L.3.45
L.3.46
L.3.47
L.3.48
L.3.49
L.3.50
L.3.51
L.3.52
L.3.53

Texture Crossbar Environment Mode
Texture Dot3 Environment Mode
Texture Mirrored Repeat
Depth Texture
Shadow
Shadow Ambient
Window Raster Position
Low-Level Vertex Programming
Low-Level Fragment Programming
Buffer Objects
Occlusion Queries
Shader Objects
High-Level Vertex Programming
High-Level Fragment Programming
OpenGL Shading Language
Non-Power-Of-Two Textures
Point Sprites oo
Fragment Program Shadow
Multiple Render Targets
Rectangular Textures
Floating-Point Color Buffers
Half-Precision Floating Point
Floating-Point Textures
Pixel Buffer Objects
Floating-Point Depth Buffers
Instanced Rendering
Framebuffer Objects
SRGB Framebuffers
Geometry Shaders
Half-Precision Vertex Data
Instanced Rendering
Flexible Buffer Mapping
Texture Buffer Objects
RGTC Texture Compression Formats
One- and Two-Component Texture Formats
Vertex Array Objects
Versioned Context Creation
Uniform Buffer Objects
Restoration of features removed from OpenGL 3.0
Fast Buffer-to-Buffer Copies

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

X

CONTENTS

L.3.54
L.3.55
L.3.56
L.3.57
L.3.58
L.3.59
L.3.60
L.3.61
L.3.62
L.3.63
L.3.64
L.3.65
L.3.66
L.3.67
L.3.68
L.3.69
L.3.70
L.3.71
L.3.72
L.3.73
L.3.74
L.3.75
L.3.76
L.3.77
L.3.78
L.3.79
L.3.80
L.3.81
L.3.82
L.3.83
L.3.84
L.3.85
L.3.86
L.3.87
L.3.88
L.3.89
L.3.90
L.3.91
L.3.92
L.3.93

X
Shader Texture Level of Detail Control 610
Depth Clamp Control 610
Base Vertex Offset Drawing Commands 610
Fragment Coordinate Convention Control 610
Provoking Vertex Control 610
SeamlessCubeMaps, 611
Fence Sync Objects 611
Multisample Textures 611
BGRA Attribute Component Ordering 611
Per-Buffer Blend Control 611
Sample Shading Control 611
Cube Map Array Textures 611
Texture Gather 612
Texture Level-Of-Detail Queries 612
Profiled Context Creation 612
Shading Language Include 612
BPTC texture compression 612
Extended Blend Functions 613
Explicit Attribute Location 613
Boolean Occlusion Queries 613
Sampler Objects 613
Shader Bit Encoding, 613
RGB10A2 Integer Textures 613
Texture Swizzle 614
Timer Queries 614
Packed 2.10.10.10 Vertex Formats 614
Draw Indirect L oL 614
GPU Shader5 Miscellaneous Functionality 614
Double-Precision Floating-Point Shader Support 614
Shader Subroutines oL 614
Tessellation Shaders 615
RGB32 Texture Buffer Objects 615
Transform Feedback2 615
Transform Feedback3 615
OpenGL ES 2.0 Compatibility 615
Program Binary Support oL 615
Separate Shader Objects 615
Shader Precision Restrictions 616
Double Precision Vertex Shader Inputs 616
Viewport ATrayso e e e e e 616

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

CONTENTS xi

L.3.94 Robust Context Creation 616
L.3.95 OpenCL Event Sharing 616
L.3.96 Debug Output Notification 616
L.3.97 ContextRobustness 617
L.3.98 Shader Stencil Export 617

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

List of Figures

2.1
2.2

23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10

Block diagramofthe GL. 15
Creation of a processed vertex from a transformed vertex and cur-

rentvalues. o 20
Primitive assembly and processing. 20
Triangle strips, fans, and independent triangles. 23
Quadrilateral strips and independent quadrilaterals. 24
Lines with adjacency. 25
Triangles with adjacency. 27
Triangle strips with adjacency. 27
Vertex transformation sequence. 69
Processing of RGBA colors. 79
Processing of colorindices. 79
ColorMaterial operation. 86
Domain parameterization for tessellation. 153
Inner triangle tessellation. 157
Inner quad tessellation. 159
Isoline tessellation. 161
Current raster position. 199
Rasterization. 202
Rasterization of non-antialiased wide points. 211
Rasterization of antialiased wide points. 211
Visualization of Bresenham’s algorithm. 216
Rasterization of non-antialiased wide lines. 219
The region used in rasterizing an antialiased line segment. 220
Transfer of pixel rectangles. 242
Selecting a subimage from animage 247
A bitmap and its associated parameters. 268
A texture image and the coordinates used to accessit. 290

Xii

LIST OF FIGURES xiii

3.11 Example of the components returned for textureGather. 316
3.12 Multitexture pipeline. L L 335
4.1 Per-fragment operations. 351
4.2 Operation of ReadPixels. 380
4.3 Operation of CopyPixels. 388
5.1 MapEvaluation.. L o 419
5.2 Feedbacksyntax. 428

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39

GL command suffixes 15
GL datatypes e 16
Summary of GL errors 19
Triangles generated by triangle strips with adjacency. 29
Vertex array sizes (values per vertex) and data types 40
Packed component layout for non-BGRA formats. 46
Packed component layout for BGRA format. 46
Variables that direct the execution of InterleavedArrays. 54
Buffer object binding targets. 56
Buffer object parameters and their values. 57
Buffer object initial state. L. 59
Buffer object state set by MapBufferRange. 62
Summary of lighting parameters. 82
Correspondence of lighting parameter symbols to names. 87
Scalar and vector vertex attribute types 107
OpenGL Shading Language type tokens 119
Transform feedback modes 187
Provoking vertex selection. 193
PixelStore parameters., 229
PixelTransfer parameters. 231
PixelMap parameters. 232
Color tablenames. 234
Pixeldatatypes. 244
Pixel data formats. 245
Swap Bytes bitordering.o L. 246
Packed pixel formats. 248
UNSIGNED_BYTE formats. Bit numbers are indicated for each

COMPONENL. . .« v v v v v e e et e e e e e e e e 249

X1V

LIST OF TABLES

3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20
3.21
322
3.23
3.24
3.25

3.26
3.27
3.28
3.29
3.30
3.31

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12
4.13

UNSIGNED_SHORT formats
UNSIGNED_INT formats
FLOAT_UNSIGNED_INT formats
Packed pixel field assignments. oL
Color table lookup.,
Computation of filtered color components.
Conversion from RGBA, depth, and stencil pixel components to
internal components.
Sized internal color formats.
Sized internal luminance and intensity formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Internal formats for buffer textures
Texture parameters and their values.
Selection of cube map images.
Texel location wrap mode application.
Correspondence of filtered texture components to texture base
COMPONENLS. . .« « ¢ v v v v v e et e e e e e e e e e et
Texture functions REPLACE, MODULATE, and DECAL
Texture functions BLEND and ADD.
COMBINE texture functions.
Arguments for COMBINE_RGB functions.
Arguments for COMBINE_ALPHA functions.
Depth texture comparison functions.

RGB and Alpha blend equations.
Blending functions.
Arguments to LogicOp and their corresponding operations.
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer
PixelStore parameters.
ReadPixels index masks.

Effective ReadPixels format for DEPTH_STENCIL CopyPixels
OPeration. v v v vt e e e
Correspondence of renderbuffer sized to base internal formats. . .
Framebuffer attachment points.
Layer numbers for cube map texture faces.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

XV

285

390

LIST OF TABLES

5.1
5.2
53
54

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35

Values specified by the targettoMapl.
Correspondence of feedback type to number of values per vertex. .
Initial properties of a sync object created with FenceSync.

Hint targets and descriptions

Texture, table, and filter return values.
Pixel data formats accepted for the imaging queries.
Pixel data types accepted for the imaging queries.
Contextprofilebits
State Variable Types
GL Internal begin-end state variables (inaccessible)
Current Values and Associated Data
Vertex Array Object State
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)
Vertex Array Data (not in Vertex Array objects)
Buffer Object State
Transformationstate
Coloring e
Lighting (see also table 2.13 for defaults)
Lighting (cont.)
Rasterization
Rasterization (cont.)
Multisampling
Textures (state per texture unit and binding point)
Textures (state per texture unit and binding point)(cont.)
Textures (state per texture object)
Textures (state per texture image)
Textures (state per sampler object)
Texture Environment and Generation
Texture Environment and Generation (cont.)
Pixel Operations
Pixel Operations (cont.)
Framebuffer Control
Framebuffer (state per target binding point)
Framebuffer (state per framebuffer object)
Framebuffer (state per attachment point)
Renderbuffer (state per target and binding point)

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

Xvi

491

501

LIST OF TABLES Xvii

6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66

6.67
6.68
6.69
6.70

F.1

Renderbuffer (state per renderbuffer object) 507
Pixels 508
Pixels(cont.)) 509
Pixels(cont.) 510
Pixels (cont.) 511
Pixels(cont.) 512
Pixels(cont.) 513
Evaluators (GetMap takes amapname) 514
Shader Object State 515
Program Object State 516
Program Object State 517
Program Object State (cont.) 518
Program Object State (cont.) 519
Program Object State (cont.) 520
Program Object State (cont.) 521
Program Object State (cont.) 522
Vertex and Geometry Shader State 523
Query Object State 524
Transform Feedback State 525
Sync (state per syncobject) L. 526
Hints. o 527
Implementation Dependent Values 528
Implementation Dependent Values (cont.) 529
Implementation Dependent Values (cont.) 530
Implementation Dependent Version and Extension Support 531
Implementation Dependent Vertex Shader Limits 532
Implementation Dependent Tessellation Shader Limits 533
Implementation Dependent Geometry Shader Limits 534
Implementation Dependent Fragment Processing Limits 535
Implementation Dependent Aggregate Shader Limits 536
Implementation Dependent Aggregate Shader Limits (cont.)

T The minimum value for each stage is
MAX_stage_UNIFORM_BLOCKS X MAX_UNIFORM_BLOCK_SIZE

/ 4 +MAX_stage_UNIFORM_COMPONENTS 537
Implementation Dependent Values (cont.) 538
Implementation Dependent Transform Feedback Limits 539
Framebuffer Dependent Values 540
Miscellaneous o 541
Newtokennames, 569

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

LIST OF TABLES

H.1 New token names

K.1 New token names

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of the OpenGL Specification

1.1.1 Formatting of the Compatibility Profile

E

1.1.2 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section 3.7.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section 3.7.2). State table entries which are
optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions

1.3. PROGRAMMER’S VIEW OF OPENGL 2

that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.
Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines,
but the way that some of this drawing occurs (such as when antialiasing
is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.
OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

1.5. OUR VIEW 3

available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

1.6 The Deprecation Model

GL features marked as deprecated in one version of the specification are expected
to be removed in a future version, allowing applications time to transition away
from use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.14
and 3.12). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 4.1 implementations are guaranteed to support version 4.10 of the
OpenGL Shading Language. All references to sections of that specification refer
to version 4.10. The supported version of the shading language may be queried as
described in section 6.1.5.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

1.7. COMPANION DOCUMENTS 4

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix L).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader

programs. Each primitive is a point, line segment,
Each mode may be changed independently; the setting of one does not affect the
settings of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other GL
operations described by sending commands in the form of function or procedure
calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all

2.1. OPENGL FUNDAMENTALS 6

previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL. command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL confexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.1. OPENGL FUNDAMENTALS 7

section 1.7.2.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations will normally perform computations in floating-point, and
must meet the range and precision requirements defined under ’Floating-Point
Computation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and per-fragment
operations. Range and precision requirements during shader execution differ and
are as specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the
details of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.1. OPENGL FUNDAMENTALS 8

point operations are accurate to about 1 part in 10°. The maximum representable
magnitude of a floating-point number used to represent positional, normal, or tex-
ture coordinates must be at least 232; the maximum representable magnitude for
colors must be at least 2!°. The maximum representable magnitude for all other
floating-point values must be at least 232, z-0 = 0 - 2 = 0 for any non-infinite and
non-NaNz. 1-z2=2-1=2.2+0=0+z=2. 0°= 1. (Occasionally further
requirements will be specified.) Most single-precision floating-point formats meet
these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value Na/N encodes “Not A Number” values resulting
from undefined arithmetic operations such as %. Implementations are permitted,
but not required, to support Infs and NaNs in their floating-point computations.

Any representable floating-point value is legal as input to a GL. command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (.5), a 5-bit exponent (), and a
10-bit mantissa (M). The value V' of a 16-bit floating-point number is determined
by the following:

((—1)% x 0.0, E=0,M=0
(—1)% x 274 x JL E=0,M%#0
V=9(Dx2E 5 (1+45), 0<E<31
(—1)° x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer NV, then

g N mod 65536J
32768

5o \‘N mod 32768J
1024

M =N mod 1024.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.1. OPENGL FUNDAMENTALS 9

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaNV) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number
is determined by the following:

0.0, E=0,M=0
—14 M —
271 % &, E=0,M#0
V=928 (1+4), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer NV, then

N
E=|—
M =N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Unsigned 10-Bit Floating-Point Numbers

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.1. OPENGL FUNDAMENTALS 10

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number
is determined by the following:

0.0, E=0,M=0
-4, M —
271 % 22, E=0,M#0
V=92 % (1+4]), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

p=|N
32
M =N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or Na/N) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed rep-
resentation with 16 bits to the right of the binary point (fraction bits).

General Requirements

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.1. OPENGL FUNDAMENTALS 11

2.1.2 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.9.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer. For framebuffer
and renderbuffer A components, b must be at least 2 if the buffer does not contain
an A component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively. The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

Cc

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f may be performed in two ways:

2c+1

f= %1 (2.2)

In this case the full range of the representation is used, so that —2°~! corre-
sponds to -1.0 and 2°~! — 1 corresponds to 1.0. For example, if b = 8, then the
integer value -128 corresponds to -1.0 and the value 127 corresponds to 1.0. Note

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.1. OPENGL FUNDAMENTALS 12

that it is not possible to exactly express 0 in this representation. In general, this rep-
resentation is used for signed normalized fixed-point parameters in GL. commands,
such as vertex attribute values.

Alternatively, conversion may be performed using

c
f:ma:c{zb_l_l,—l.()}. (2.3)

In this case only the range [—2°~! + 1,2°~! — 1] is used to represent signed
fixed-point values in the range [—1,1]. For example, if b = 8, then the integer
value -127 corresponds to -1.0 and the value 127 corresponds to 1.0. Note that
while zero can be exactly expressed in this representation, one value (-128 in the
example) is outside the representable range, and must be clamped before use. In
general, this representation is used for signed normalized fixed-point texture or
framebuffer values.

Everywhere that signed normalized fixed-point values are converted, the equa-
tion used is specified.

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

fl=fx(@2b-1). (2.4)

f is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ may be performed in two ways, both beginning by
clamping f to the range [—1, 1]:

flf=fx2-1)-1
2
In general, this conversion is used when querying floating-point state (see sec-
tion 6) and returning integers.
Alternatively, conversion may be performed using

(2.5)

fr=frx@t-1). (2.6)

In general, this conversion is used when specifying signed normalized fixed-
point texture or framebuffer values.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.2. GL STATE 13

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

Everywhere that floating-point values are converted to signed normalized fixed-
point, the equation used is specified.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.3. GL COMMAND SYNTAX

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformd4f(int location, £loat v0, float vl,
float v2, float v3);

and
void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

rtype Name{e1234}{c b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. € indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The NV arguments arg/ through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then IV is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of IV values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);
void Uniformlf(int location, f£loat value);

'The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

14

2.4. BASIC GL OPERATION

15

Type Descriptor | Corresponding GL Type

b byte
S short
i int
i64 into64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uinto4

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void Uniform2i(int location,

void Uniform2f(int location,

void Uniform3i(int location,

void Uniform3f(int location,
float v2);

void Uniformdi(int location,
int v3);

void Uniformdf(int location,
float v2, float v3);

int v0, int vl);

float v0, float vl);
int v0, int vl, int v2);
float vl, float v2,

int v0, int vl, int v2,

float v0, float vl,

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these

types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages.

are effectively sent through a processing pipeline.

The first stage

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.4. BASIC GL OPERATION 16

GL Type Minimum | Description
Bit Width

boolean 1 Boolean

byte 8 Signed twos complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed twos complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed twos complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed 2’s complement 16.16 scaled
integer

int64 64 Signed twos complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 5.7)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.4. BASIC GL OPERATION 17

Display
List
Per-Vertex
] Y Operations Rasteriz— Per—
Evaluator Primitive ation gragmte_:nt Framebuffer
Assembly perations
A
Texture
Memory
- Y > Pixel
Operations |
Figure 2.1.

operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, followed by assembly into
geometric primitives, which may optionally be used by the next stage, geometry
shading, to generate new primitives. The final resulting primitives are clipped to
a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional
description of a point, line segment, or polygon. Each fragment so produced is
fed to the next stage that performs operations on individual fragments before they
finally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.
Finally,

values may also be read
back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.5. GL ERRORS 18

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 19

Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID_FRAMEBUFFER_OPERATION || Framebuffer object is not com- | Yes
plete

OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command

Table 2.3: Summary of GL errors

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
between Begin / End pairs. Points, lines, polygons, and a variety of related
geometric objects (see section 2.6.1) can be drawn in this way.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, multiple current generic
vertex attributes, current color, current secondary color, and current fog coordi-
nate may be used in processing each vertex. Normals are used by the GL in lighting
calculations; the current normal is a three-dimensional vector that may be set by
sending three coordinates that specify it. Texture coordinates determine how a tex-
ture image is mapped onto a primitive. Multiple sets of texture coordinates may
be used to specify how multiple texture images are mapped onto a primitive. The
number of texture units supported is implementation-dependent but must be at least

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 20

two. The number of texture units supported can be queried with the state MAX_—
TEXTURE_UNITS. Generic vertex attributes can be accessed from within vertex
shaders (section 2.14) and used to compute values for consumption by later pro-
cessing stages.

Primary and secondary colors are associated with each vertex (see sec-
tion 3.10). These associated colors are either based on the current color and current
secondary color or produced by lighting, depending on whether or not lighting is
enabled. Texture and fog coordinates are similarly associated with each vertex.
Multiple sets of texture coordinates may be associated with a vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-
formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section 2.13.2), the current fog co-
ordinate, the multiple generic vertex attribute sets, and the multiple current texture
coordinate sets. Because color assignment is done vertex-by-vertex, a processed
vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate, its as-
signed colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin(enum mode);
void End(void);

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM

Vertex
Coordinates In

Y

vertex / normal Transformed
L transformation L)
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | gl Associated
Colors & T> T Data
Materials (Colors, Edge Flag)
Fog and Texture
Coordinates)
Current
Edge Flag &
Fog Coord 0—0{
Current
Texture J— texgen | texture
matrix 0
Coord Set 0 T
| {
Current

Texture texgen Qe texture
Coord Set 1 _| T

matrix 1
I—O{

Current
Texture texgen | r;ez;trLiJ;ez
Coord Set 2 _| T
o(
Current
Texture texgen | rtr1e;:ttrlij>:e3
Coord Set 3 _| T
Figure 2.2.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 22

Point culling;
Line Segment
Coordinates | Point, »| OrPolygon |
Line Segment, or o Clipping
P\r/ocgssed Polygon Rasterization
ertices »ocociated > (Primitive) > I
Data Assembly Color
Processing
A
Begin/End
State
Figure 2.3.
The mode parameter of determines the type of primitives to be

drawn using the vertices. The types, and the corresponding mode parameters, are:

Points
A series of individual points may be specified with mode POINTS. Each vertex
defines a separate point.

Line Strips

A series of one or more connected line segments may be specified with mode
LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the ith vertex (for ¢ > 1) specifies the beginning of
the ith segment and the end of the ¢ — 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops
Line loops may be specified with mode LINE_LOOP. Loops are the same as
line strips except that a final segment is added from the final specified vertex to the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 23

first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines

Individual line segments, each specified by a pair of vertices, may be specified
with mode 1L.INES. The first two vertices between a Begin and End pair define the
first segment, with subsequent pairs of vertices each defining one more segment.
If the number of specified vertices is odd, then the last one is ignored. The state
required is the same as for line strips but it is used differently: a processed ver-
tex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons

A polygon is described by specifying its boundary as a series of line segments.
When Begin is called with POLYGON, the bounding line segments are specified in
the same way as line loops. A polygon described with fewer than three vertices
does not generate a primitive.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified.

Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and may
be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant, just as for polygons). Each
subsequent vertex defines a new triangle using that point along with two vertices
from the previous triangle. If fewer than three vertices are specified, no primitive
is produced. See figure 2.4.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
After a Begin (TRIANGLE _STRIP), the pointer is initialized to point to vertex A.
Each successive vertex toggles the pointer. Therefore, the first vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and so on.
Any vertex after the second one sent forms a triangle from vertex A, vertex B, and
the current vertex (in that order).

Triangle Fans
A triangle fan is the same as a triangle strip with one exception: each vertex

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 24

NN

1 3

(@) (b) ()

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, The 3i +
1st, 37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each
1=0,1,...,n — 1, where there are 3n + k vertices drawn. k is either 0, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
31 and vertex B is vertex 37 + 1. Otherwise, separate triangles are the same as a
triangle strip.

Quadrilateral (quad) strips
Quad strips generate a series of edge-sharing quadrilaterals from vertices ap-
pearing between Begin and End, when Begin is called with QUAD_STRIP. If the

m vertices between the Begin and End are vy, ..., Um, Where v; is the jth spec-
ified vertex, then quad 7 has vertices (in order) vo;, V2,41, V2;+3, and vg; o With
i =0,...,|m/2]. The state required is thus three processed vertices, to store the

last two vertices of the previous quad along with the third vertex (the first new ver-
tex) of the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip between Begin and End is odd, the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 25

2 :4 :ﬂ > 6 >
A A A A
- Y Yy _ \j A \j
1 3 5 1 4 5 8
(@) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices between Begin and End.

final vertex is ignored.

Separate Quadrilaterals

Separate quads are just like quad strips except that each group of four vertices,
the 45 + 1st, the 45 + 2nd, the 45 + 3rd, and the 45 + 4th, generate a single quad,
fory =0,1,..., n — 1. The total number of vertices between Begin and End is
In+ k, where 0 < k < 3; if k is not zero, the final k vertices are ignored. Separate
quads are generated by calling Begin with the argument value QUADS.

Lines with Adjacency

Lines with adjacency are independent line segments where each endpoint has
a corresponding adjacent vertex that can be accessed by a geometry shader (sec-
tion 2.16). If a geometry shader is not active, the adjacent vertices are ignored.
They are generated with mode LINES_ADJACENCY.

A line segment is drawn from the 47 + 2nd vertex to the 47 + 3rd vertex for
eacht = 0,1,...,n — 1, where there are 4n + k vertices between a Begin and
End pair. k is either O, 1, 2, or 3; if k is not zero, the final k vertices are ignored.
For line segment 7, the 4¢ + 1st and 4¢ + 4th vertices are considered adjacent to the
47 4 2nd and 47 4 3rd vertices, respectively (see figure 2.6).

Line Strips with Adjacency

Line strips with adjacency are similar to line strips, except that each line seg-
ment has a pair of adjacent vertices that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode LINE_STRIP_ADJACENCY.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM

26

@ ---O—@ -

& ---O—0O--®

@ ---O—O— O @

Figure 2.6. Lines with adjacency (a) and line strips with adjacency (b). The vertices
connected with solid lines belong to the main primitives; the vertices connected by
dashed lines are the adjacent vertices that may be used in a geometry shader.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 27

Figure 2.7. Triangles with adjacency. The vertices connected with solid lines be-
long to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

A line segment is drawn from the ¢ 4+ 2nd vertex to the 7 + 3rd vertex for each
1 =0,1,...,n — 1, where there are n 4+ 3 vertices
If there are fewer than four vertices, all vertices are ignored. For line segment 7,
the ¢ 4+ 1st and ¢ 4 4th vertex are considered adjacent to the 7 + 2nd and i + 3rd
vertices, respectively (see figure 2.6).

Triangles with Adjacency

Triangles with adjacency are similar to separate triangles, except that each tri-
angle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLES_ADJACENCY.

The 67 + 1st, 6¢ + 3rd, and 67 + 5th vertices (in that order) determine a triangle
foreach: =0,1,...,n — 1, where there are 6n + k vertices

k is either O, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are

ignored. For triangle ¢, the ¢ + 2nd, ¢ + 4th, and ¢ 4 6th vertices are considered
adjacent to edges from the ¢ + 1st to the 7 4+ 3rd, from the ¢ + 3rd to the ¢ 4 5th,
and from the ¢ 4 5th to the ¢ + 1st vertices, respectively (see figure 2.7).

Triangle Strips with Adjacency
Triangle strips with adjacency are similar to triangle strips, except that each line

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM

Figure 2.8. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 29

Primitive Vertices Adjacent Vertices
Primitive Ist [2nd | 3rd | 122 | 23 | 3/1
only 4 =0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (¢ even) 2041 | 2¢04+3 | 26+5 | 2¢0—1 | 20+7 | 2044
last(t=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last(t=mn—1,9even) | 20+1 | 20+3 | 20+5 | 20—1 | 20+6 | 20 +4

Table 2.4: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (i = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex is numbered 1 and the first triangle is
numbered 0.

triangle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLE_STRIP_ADJACENCY.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices k is either O or 1; if k£ is 1, the final
vertex is ignored. If there are fewer than 6 vertices, the entire primitive is ignored.
Table 2.4 describes the vertices and order used to draw each triangle, and which
vertices are considered adjacent to each edge of the triangle (see figure 2.8).

Separate Patches

A patch is an ordered collection of vertices used for primitive tessellation (sec-
tion 2.15). The vertices comprising a patch have no implied geometric ordering.
The vertices of a patch are used by tessellation shaders and a fixed-function tes-
sellator to generate new point, line, or triangle primitives. Separate patches are
generated with mode PATCHES.

Each patch in the series has a fixed number of vertices, which is specified by
calling

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.6. BEGIN/END PARADIGM 30

void PatchParameteri(enum pname, int value);

with pname set to PATCH_VERTICES. The error INVALID_VALUE is generated
if value is less than or equal to zero or is greater than the implementation-dependent
maximum patch size (the value of MAX_PATCH_VERTICES). The patch size is ini-
tially three vertices.

If the number of vertices in a patch is given by v, the vi + 1st through vi + vth
vertices (in that order) determine a patch for each ¢ = 0,1,...n — 1, where there
are vn + k vertices. k is in the range [0, v — 1]; if k is not zero, the final k vertices
are ignored.

General Considerations For Polygon Primitives

Depending on the current state of the GL, a polygon primitive gener-
ated from a drawing command with mode POLYGON, QUADS, QUAD_ STRIP,
TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, Or
TRIANGLE_STRIP_ADJACENCY may be rendered in one of several ways, such as
outlining its border or filling its interior. The order of vertices in such a prim-
itive is significant in lighting, polygon rasterization, and fragment shading (see
sections 2.13.1, 3.6.1, and 3.12.2). Only convex polygons are guaranteed to be
drawn correctly by the GL. If a specified polygon is nonconvex when projected
onto the window, then the rendered polygon need only lie within the convex hull
of the projected vertices defining its boundary.

The state required for Begin and End consists of a sixteen-valued integer indi-
cating either one of the possible Begin / End modes, or that no Begin / End mode
is being processed.

Calling Begin will result in an INVALID_FRAMEBUFFER_OPERATION error if
the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 4.4.4).

2.6.2 Polygon Edges

Each edge of each polygon primitive generated is flagged as either boundary or
non-boundary. These classifications are used during polygon rasterization; some
modes affect the interpretation of polygon boundary edges (see section 3.6.4). By
default, all edges are boundary edges, but the flagging of polygons, separate trian-
gles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(const boolean *flag);

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.7. VERTEX SPECIFICATION

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair be-
gins an edge. If the edge flag bit is TRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit is FALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin / End

The only GL commands that are allowed within any Begin / End pairs are the
commands for specifying vertex coordinates, vertex colors, normal coordinates,
texture coordinates, generic vertex attributes, and fog coordinates (Vertex, Color,
SecondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexAttrib,
FogCoord), the ArrayElement command (see section 2.8), the EvalCoord and
EvalPoint commands (see section 5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 2.13.2), display list invocation
commands (CallList and CallLists; see section 5.5), and the EdgeFlag command.
Executing any other GL. command between the execution of Begin and the corre-
sponding execution of End results in the error INVALID_OPERATION. Executing
Begin after Begin has already been executed but before an End is executed gen-
erates the INVALID_OPERATION error, as does executing End without a previous
corresponding Begin.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin / End pair, but
an error may or may not be generated if such execution occurs. If an error is not
generated, GL operation is undefined. (These commands are described in sections
2.8,3.7.1, and chapter 6.)

2.7 Vertex Specification

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

31

2.7. VERTEX SPECIFICATION 32

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(const T coords);

Vertex coordinates may be stored as packed components within a larger natural
type. Such data may be specified using

void VertexP{234}ui (enum fype, uint coords)
void VertexP{234}uiv (enum type, const uint *coords)

These commands specify up to four coordinates as described above, packed
into a single natural type as described in section 2.8.1. The fype parameter
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data respectively. The first two (x,y), three (z,y, 2),
or four (x,y, z,w) components of the packed data are consumed by VertexP2ui,
VertexP3ui, and VertexP4ui, respectively. For VertexP*uiv, coords contains the
address of a single uint containing the packed coordinate components.

A call to any Vertex command specifies four coordinates: x, y, z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A call
to Vertex*2* sets the and y coordinates; the z coordinate is implicitly set to zero
and the w coordinate to one. Vertex*3* sets x, y, and z to the provided values
and w to one. Vertex*4* sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking a Vertex command outside of a
Begin / End pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section 2.5. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(const T coords);

specify the current homogeneous texture coordinates, named s, ¢, r, and q.
Texture coordinates may be stored as packed components within a larger natu-
ral type. Such data may be specified using

void TexCoordP{1234}ui (enum type, uint coords)

void TexCoordP{1234}uiv (enum fype, const uint
*coords)

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.7. VERTEX SPECIFICATION

This command specifies up to four components as described above, packed
into a single natural type as described in section 2.8.1. The fype parameter
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data, respectively. The first one (x), two (z,y), three
(x,y, z), or four (z,y, z,w) components of the packed data are consumed by Tex-
CoordP1ui*, TexCoordP2ui*, TexCoordP3ui*, and TexCoordP4ui*, respec-
tively. For TexCoordP*uiv, coords contains the address of a single uint con-
taining the packed texture coordinate components.

The TexCoord*1* family of commands set the s coordinate to the provided
single argument while setting ¢ and 7 to 0 and ¢ to 1. Similarly, TexCoord*2* sets
s and ¢ to the specified values, r to 0 and ¢ to 1; TexCoord*3* sets s, ¢, and r, with
q set to 1, and TexCoord*4* sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd} (enum texture, T coords)
void MultiTexCoord{1234}{sifd}v (enum fexture, const T
coords)
void MultiTexCoordP{1234}ui (enum texture, enum
type, uint coords)
void MultiTexCoordP{1234}uiv (enum texture, enum
type, const uint *coords)

take the coordinate set to be modified as the texture parameter. fexture is a symbolic
constant of the form TEXTURE(, indicating that texture coordinate set i is to be
modified. The constants obey TEXTURE:; = TEXTUREO + ¢ (¢ is in the range O to
k — 1, where k is the implementation-dependent number of texture coordinate sets
defined by MAX_TEXTURE_COORDS).

The TexCoord commands are exactly equivalent to the corresponding Multi-
TexCoord commands with fexture set to TEXTUREO.

Gets of CURRENT_TEXTURE_ COORDS return the texture coordinate set defined
by the value of ACTIVE_TEXTURE.

Specifying an invalid texture coordinate set for the fexture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(const T coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as described in equation 2.2 for the corresponding (signed) type.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

33

2.7. VERTEX SPECIFICATION

Normals may be stored as packed components within a larger natural type.
Such data may be specified using

void NormalP3ui (enum fype, uint normal)
void NormalP3uiv (enum type, uint *normal)

This specifies a three component normal, packed into the first three (z,y, z)
components of the natural type as described in section 2.8.1. fype must be INT_-
2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying signed or
unsigned data, respectively. For NormalP3uiv, normal contains the address of a
single uint containing the packed normal components.

The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(const T coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(const T components);
void SecondaryColor3{bsifd ubusui}(T components);
void SecondaryColor3{bsifd ubusui}v(const

T components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 2.13.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.13 on colors and color-
ing). Values outside [0, 1] are not clamped.

RGBA colors may be stored as packed components within a larger natural type.
Such data may be specified using

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

34

2.7. VERTEX SPECIFICATION 35

void ColorP{34}ui (enum type, uint coords)

void ColorP{34}uiv (enum type, const uint *coords)

void SecondaryColorP3ui (enum type, uint coords)

void SecondaryColorP3uiv (enum type, const uint
*coords)

The ColorP* commands set the primary color similarly to Color*, above. The
SecondaryColorP* commands set the secondary color similarly to Secondary-
Color*. type must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_-
10_REV, specifying signed or unsigned data, respectively. Colors are packed into
a single natural type as described in section 2.8.1. The first three (x,y, z) or four
(x,y,z,w) components of the packed data are consumed by *ColorP3ui* and
ColorP4ui, respectively. For ColorP*uiv and SecondaryColorP*uiv, coords
contains the address of a single uint containing the packed color components.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(const T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

Vertex shaders (see section 2.14) can be written to access an array of 4-
component generic vertex attributes in addition to the conventional attributes spec-
ified previously. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);

void VertexAttrib{123}{sfd}v(uint index, const
T values);

void VertexAttrib4{bsifd ub us ui}v(uint index, const
T values);

void VertexAttribdNub(uint index, T values);

void VertexAttrib4N{bsi ub us ui}v(uint index, const
T values);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.7. VERTEX SPECIFICATION 36

spectively. The other commands specify values that are converted directly to the
internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

To load values of a generic shader attribute declared as a signed or unsigned
integer or integer vector, use the commands

void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const

T values);
void VertexAttribI4{bs ubus}v(uint index, const

T values);

These commands specify values that are extended to full signed or unsigned
integers, then loaded into the generic attribute at slot index in the same fashion as
described above.

To load values into a generic shader attribute declared as a double, or into
vectors or matrices thereof, use the commands

void VertexAttribL1,2,3,4d(uint index, T values);
void VertexAttribL1,2,3,4dv(uint index, T values);

These commands specify one, two, three or four values. Note that attribute
variables declared with double types must be loaded with VertexAttribL*d{v};
loading attributes with VertexAttrib*d{v} will produce undefined results.

For all VertexAttrib* commands, the error INVALID_VALUE is generated if
index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

The full set of VertexAttrib* commands specify generic attributes with com-
ponents one of six data types:

o floating-point values (VertexAttrib*),

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.7. VERTEX SPECIFICATION 37

e signed or unsigned integers (VertexAttribI*), and

e double-precision floating-point values (VertexAttribL*d*).

The values loaded into a shader attribute variable bound to generic attribute
index are undefined if the data type of the attribute components specified by the
most recent VertexAttrib* command do not match the data type of the variable.

Vertex data may be stored as packed components within a larger natural type.
Such data may be specified using

void VertexAttribP{1234}ui (uint index, enum
type, boolean normalized, uint value)

void VertexAttribP{1234}uiv (uint index, enum
type, boolean normalized, const uint *value)

These commands specify up to four attribute component values, packed into a
single natural type as described in section 2.8.1, and load it into the generic attribute
at slot index. The type parameter mustbe INT_2_10_10_10_REV Oor UNSIGNED_-—
INT_2_10_10_10_REV, specifying signed or unsigned data respectively. The first
one (x), two (x,y), three (x,y, z), or four (z,y, z, w) components of the packed
data are consumed by VertexAttribPlui, VertexAttribP2ui, VertexAttribP3ui,
and VertexAttribP4ui, respectively. Data specified by VertexAttribP* will be
converted to floating point by normalizing if normalized is TRUE, and converted
directly to floating point otherwise. For VertexAttribP*uiv, value contains the
address of a single uint containing the packed attribute components.

The error INVALID_VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX_VERTEX_ATTRIBS.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. A Vertex2, Vertex3, or Vertex4
command is completely equivalent to the corresponding VertexAttrib* command
with an index of zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX_VERTEX_ATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, t, 7,
and ¢, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS

current RGBA secondary color, one floating-point value to store the current color
index, and the value of MAX VERTEX ATTRIBES — | four-component vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s,t,7,q) =
(0,0,0,1) for each texture coordinate set. The initial current normal has coor-
dinates (0,0,1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1,1,1,1) and the initial RGBA secondary color is (0,0,0,1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0.0,0.0,0.0,1.0).

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space (described here) or in the server’s address space (described
in section 2.9). Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL. command. The client
may specify up to seven plus the values of MAX TEXTURE_COORDS and MAX -
VERTEX_ATTRIBS arrays: one each to store vertex coordinates, normals, colors,
secondary colors, color indices, edge flags, fog coordinates, two or more texture
coordinate sets, and MAX_VERTEX_ATTRIBS arrays to store one or more generic
vertex attributes. The commands

void VertexPointer(int size, enumtype, sizei stride,
const void *pointer);

void NormalPointer(enum type, sizei stride, const
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
const wvoid *pointer);

void SecondaryColorPointer(int size, enum type,
sizei stride, const void *pointer);

void IndexPointer(enum type, sizei stride, const
void *pointer);

void EdgeFlagPointer(sizei stride, const void *pointer);

void FogCoordPointer(enum type, sizei stride, const
void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
const wvoid *pointer);

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

38

2.8. VERTEX ARRAYS 39

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, fype
specifies the data type of the values stored in the array. Because edge flags are al-
ways type boolean, EdgeFlagPointer has no rype argument. size, when present,
indicates the number of values per vertex that are stored in the array as well as their
component ordering. Because normals are always specified with three values, Nor-
malPointer has no size argument. Likewise, because color indices and edge flags
are always specified with a single value, IndexPointer and EdgeFlagPointer also
have no size argument. Table 2.5 indicates the allowable values for size and type
(when present). For type the values BYTE, SHORT, INT, FIXED, FLOAT, HALF_—
FLOAT, and DOUBLE indicate types byte, short, int, fixed, float, half,
and double, respectively; the values UNSIGNED_BYTE, UNSIGNED_SHORT, and
UNSIGNED_INT indicate types ubyte, ushort, and uint, respectively; and the
values INT_2_10_10_10_REV and UNSIGNED_INT_2_10_10_10_REV, indicat-
ing respectively four signed or unsigned elements packed into a single uint, both
correspond to the term packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.5 for the corresponding command.

An INVALID_OPERATION error is generated under any of the following con-
ditions:

size is BGRA and fype is not UNSIGNED_BYTE, INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV;

® fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV,
and size is neither 4 or BGRA,;

o for VertexAttribPointer only, size is BGRA and normalized is FALSE;

e any of the *Pointer commands specifying the location and organization of
vertex array data are called while a non-zero vertex array object is bound (see
section 2.10), zero is bound to the ARRAY_BUFFER buffer object binding
point (see section 2.9.6), and the pointer argument is not 107,72,

2 This error makes it impossible to create a vertex array object containing client array pointers,
while still allowing buffer objects to be unbound.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 40

Sizes and
Component Integer
Command Ordering Handling | Types

VertexAttribPointer 1,2,3,4,BGRA | flag byte, ubyte, short,
ushort, int, uint,
fixed, float, half,
double, packed

VertexAttribIPointer 1,2,3,4 integer byte, ubyte, short,

ushort, int, uint

Table 2.5: Vertex array sizes (values per vertex) and data types. The “Integer
Handling” column indicates how fixed-point data types are handled: “cast” means
that they are converted to floating-point directly, “normalize” means that they are
converted to floating-point by normalizing to [0, 1] (for unsigned types) or [—1, 1]
(for signed types), “integer” means that they remain as integer values, and “flag”
means that either “cast” or “normalized” applies, depending on the setting of the
normalized flag in VertexAttribPointer. If size is BGRA, vertex array values are
always normalized, irrespective of the “normalize” table entry. packed is not a GL
type, but indicates commands accepting multiple components packed into a single
uint.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 41

The index parameter in the VertexAttribPointer and VertexAttribIPointer
commands identifies the generic vertex attribute array being described. The er-
ror INVALID_VALUE is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS. Generic attribute arrays with integer fype arguments can
be handled in one of three ways: converted to float by normalizing to [0, 1] or
[—1,1] as described in equations 2.1 and 2.2, respectively; converted directly to
float, or left as integers. Data for an array specified by VertexAttribPointer will
be converted to floating-point by normalizing if normalized is TRUE, and converted
directly to floating-point otherwise. Data for an array specified by VertexAttribl-
Pointer will always be left as integer values; such data are referred to as pure
integers.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. When size is BGRA, it indicates four values. The values
within each array element are stored sequentially in memory. However, if size is
BGRA, the first, second, third, and fourth values of each array element are taken
from the third, second, first, and fourth values in memory respectively. If stride
is specified as zero, then array elements are stored sequentially as well. The error
INVALID_VALUE is generated if stride is negative. Otherwise pointers to the ith
and (i 4+ 1)st elements of an array differ by stride basic machine units (typically
unsigned bytes), the pointer to the (i + 1)st element being greater. For each com-
mand, pointer specifies of the first value of the first element
of the array being specified.

The command

void VertexAttribLPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

specifies state for a generic vertex attribute array associated with a shader attribute
variable declared with 64-bit double precision components. fype must be DOUBLE.
index, size, and stride behave as defined in all other VertexAttrib*Pointer com-
mands; size may be one, two, three or four.

Each component of an array specified by VertexAttribL.Pointer will be en-
coded into one or more generic attribute components as specified for the Vertex-
AttribL* commands in section 2.7. The error INVALID_VALUE is generated if
index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 42

with array set to VERTEX_ARRAY, NORMAL_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY, INDEX_ARRAY, EDGE_FLAG_ARRAY, FOG_-
COORD_ARRAY, or TEXTURE_COORD_ARRAY, for the vertex, normal, color,
secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-
VERTEX_ATTRIBS.

The command

void VertexAttribDivisor(uint index, uint divisor);

modifies the rate at which generic vertex attributes advance when rendering multi-
ple instances of primitives in a single draw call. If divisor is zero, the attribute at
slot index advances once per vertex. If divisor is non-zero, the attribute advances
once per divisor instances of the set(s) of vertices being rendered. An attribute is
referred to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

The command

void ClientActiveTexture(enum texture);

is used to select the vertex array client state parameters to be modified by the Tex-
CoordPointer command and the array affected by EnableClientState and Dis-
ableClientState with parameter TEXTURE_COORD_ARRAY. This command sets the
client state variable CLIENT ACTIVE_ TEXTURE. Each texture coordinate set has
a client state vector which is selected when this command is invoked. This state
vector includes the vertex array state. This call also selects the texture coordinate
set state used for queries of client state.

Specifying an invalid fexture generates the error INVALID_ENUM. Valid values
of texture are the same as for the MultiTexCoord commands described in sec-
tion 2.7.

The command

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 43

void ArrayElementInstanced(int i, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this

section. This command transfers the ith element of every enabled, non-instanced

array, and the | 22X |*th element of every enabled, instanced array to the GL.
wLSoT

The effect of

ArrayElementInstanced (i, instance);
is the same as the effect of the command sequence

if (normal array enabled)
Normal3[type]v (normal array element i) ;
if (color array enabled)
Color[size][type]v (color array element i) ;
if (secondary color array enabled)
SecondaryColor3[type]v (secondary color array element i) ;
if (fog coordinate array enabled)
FogCoord[type]v (fog coordinate array element i) ;
for (3 = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)
MultiTexCoord[size][type]v (TEXTUREO + j, texcoord(7,
}
if (color index array enabled)
Index[type]v (color index array element i) ;
if (edge flag array enabled)
EdgeFlagv (edge flag array element 1) ;
for (j = 1; j < genericAttributes; j++) {
if (generic vertex attribute j array enabled) {
if (vertex attrib array divisor 3 > 0)

k = floor (instance / vertex attrib array divisor 7j);
else
k = 1;

VertexAttrib[size][type]v (j, genattrib(j, k));
}
}
if (generic vertex attribute array 0 enabled) {
if (vertex attrib array divisor 0 > 0)

k = floor (instance / vertex attrib array divisor 0) ;
else

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

i));

2.8. VERTEX ARRAYS 44

k = 1i;
VertexAttrib[size][type]v (0, genattrib (0, k));
} else if (vertex array enabled) {
Vertex[size][type]v (vertex array element 1) ;
}

genattrib (attrib, 1) represents the ith element of the vertex array for
generic attribute attrib, and texcoord (coord, 1) represents the ith element
of the vertex array for texture coordinate set coord. textureUnits and genericAt-
tributes give the number of texture coordinate sets and generic vertex attributes
supported by the implementation, respectively. “[size]” and “[type]” correspond
to the size and type of the corresponding array. For generic vertex attributes, it is
assumed that a complete set of vertex attribute commands exists, even though not
all such commands are provided by the GL.

When an array contains packed data, the pseudocode above will use the packed
equivalent with the type of that data. For example, when a generic vertex attribute
array contains packed data, the VertexAttribP[size]uiv command will be called
instead of VertexAttrib[size][type]v.

Similarly when a generic vertex attribute array contains pure integer data,
VertexAttribl[size][type]v will be called; when an array contains fixed-point
data, attribute values are specified in the signed 2’s complement 16.16 fixed-
point fixed format; when an array contains double-precision data, VertexAt-
tribL[size][type]v will be called; and when a generic attribute array normalization
flag is set, and the array data type is not FLOAT, HALF_FLOAT, or DOUBLE, Ver-
texAttrib[size]N[type]v will be called.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElementInstanced that are
made within the same Begin / End period in non-sequential ways. That is, a call
to ArrayElementInstanced that precedes a change to array data may access the
changed data, and a call that follows a change to array data may access original
data.

Specifying 7 < 0 results in undefined behavior. ~Generating the error
INVALID_VALUE is recommended in this case.

The command

void ArrayElement(int i);
behaves identically to

ArrayElementInstanced (i, 0) .

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 45

Primitive restarting is enabled or disabled by calling one of the commands
void Enable(enum rarget);
and
void Disable(enum rarget);
with farget PRIMITIVE_RESTART. The command
void PrimitiveRestartIndex(uint index);

specifies the index of a vertex array element that is treated specially when prim-
itive restarting is enabled. This value is called the primitive restart index. When
ArrayElementInstanced is called between an execution of Begin and the corre-
sponding execution of End, if ¢ is equal to the primitive restart index, then no
vertex data is dereferenced, and no current vertex state is modified. Instead, it is
as if End were called, followed by a call to Begin where mode is the same as the
mode used by the previous Begin.

When one of the *BaseVertex drawing commands specified in section 2.8.2 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

2.8.1 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REVand INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (2) components are represented as 10-bit unsigned integer
values and the fourth (w) component is represented as a 2-bit unsigned integer
value.

For the INT_2_10_10_10_REV vertex data format, the z, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 2.6 and 2.7 describe how these components are laid out in a 32-bit word.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 46

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Table 2.6: Packed component layout for non-BGRA formats. Bit numbers are indi-
cated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

Table 2.7: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

2.8.2 Drawing Commands

The command

void DrawArraysOnelnstance(enum mode, int first,
sizei count, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives using el-
ements first through first + count — 1 of each enabled array. mode specifies
what kind of primitives are constructed, and accepts the same token values as the
mode parameter of the Begin command. If mode is not a valid primitive type, an
INVALID_ENUM error is generated. If count is negative, an INVALID_VALUE error
is generated.
The effect of

DrawArraysOnelnstance (mode, first, count, instance) ;
is the same as the effect of the command sequence

Begin (mode) ;

for (int 1 = 0; i < count ; i++)
ArrayElementInstanced (first + i, instance) ;
End () ;

with one exception: the current normal coordinate, color, secondary color, color in-
dex, edge flag, fog coordinate, texture coordinates, and generic attribute values are

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 47

not modified by the execution of DrawArraysOnelnstance, if the corresponding
array is enabled. Current values corresponding to disabled arrays are not modified
by the execution of DrawArraysOnelnstance.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.
The command

void DrawArrays(enum mode, int first, sizei count);
is equivalent to the command sequence
DrawArraysOnelnstance (mode, first, count, 0);

The internal counter instancelD is a 32-bit integer value which may be read by
a vertex shader as g1_InstanceID, as described in section 2.14.11. The value of
this counter is always zero, except as noted below.

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

behaves identically to DrawArrays except that primcount instances of the range
of elements are executed, the value of instancelD advances for each iteration, and
the instanced elements advance per instance depending on the value of the divisor
for that vertex attribute set with VertexAttribDivisor. It has the same effect as:

if (mode or count is invalid)
generate appropriate error
else {
for (i = 0; i < primcount; i++) {
instancelD = 1i;
DrawArraysOnelnstance (mode, first, count, 1i);

}

instanceID = 0;

}

The command

void DrawArraysIndirect(enum mode, const
void *indirect);

has the same effect as:

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 48

typedef struct {

uint count;

uint primCount;

uint first;

uint reservedMustBeZero;
} DrawArraysIndirectCommand;

DrawArraysIndirectCommand xcmd =
(DrawArraysIndirectCommand =) indirect;
DrawArraysInstanced (node, cmd->first, cmd->count, cmd->primCount);

Unlike DrawArraysInstanced, first is unsigned
and cannot cause an error. Results are undefined if reservedMustBeZero is non-
zero, but must not lead to GL interruption or termination.

All elements of DrawArraysIndirectCommand are tightly packed 32 bit val-
ues.
The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei primcount);

behaves identically to DrawArraysInstanced except that primcount separate
ranges of elements are specified instead, all elements are treated as though they
are not instanced, and the value of instancelD stays at 0. It has the same effect as:

if (mode is invalid)
generate appropriate error
else {
for (i = 0; i < primcount; i++) {
if (count[i] > 0)
DrawArraysOnelnstance (mode, first[i], count[i], 0);

}

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum fype, const void *indices);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 49

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives using the count
elements whose indices are stored in indices. type must be one of UNSIGNED_ -
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the index values are
of GL type ubyte, ushort, or uint respectively. mode specifies what kind of
primitives are constructed, and accepts the same token values as the mode parame-
ter of the Begin command.
The effect of

DrawElementsOnelnstance (mode, count, type, indices) ;
is the same as the effect of the command sequence

Begin (mode) ;

for (int 1 = 0; 1 < count ; i++)
ArrayElementInstanced (indices[1], instance) ;
End () ;

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are not
modified by the execution of DrawElementsOnelnstance, if the corresponding
array is enabled. Current values corresponding to disabled arrays are not modified
by the execution of DrawElementsOnelnstance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOnelnstance with the instance parameter set
to zero; the effect of calling

DrawElements (mode, count, type, indices) ;
is equivalent to the command sequence:
if (mode, count or type is invalid)
generate appropriate error

else
DrawElementsOnelnstance (mode, count, type, indices, 0);

The command

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 50

void DrawElementsInstanced(enum mode, sizei count,
enum fype, const void *indices, sizei primcount);

behaves identically to DrawElements except that primcount instances of the set of
elements are executed, the value of instancelD advances between each set, and the
instance advances between each set. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
instancelD = 1i;
DrawElementsOnelnstance (mode, count, type, indices, 1i);

}

instancelID = 0;

}

The command

void MultiDrawElements(enum mode, const
sizei *count, enumtype, const void **indices,
sizei primcount);

behaves identically to DrawElementsInstanced except that primcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instancelD stays at 0. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
DrawElementsOnelnstance (mode, count[i], type, indices[1i], 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enumtype, const
void *indices);

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS 51

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values other than the primitive restart
index to lie outside the range [start, end], but implementations are not required to
check for this. Such indices will cause implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *ndices, int basevertex);
void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);
void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizei primcount, int basevertex);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the ith element transferred by the corresponding draw call will
be taken from element indices|i] + basevertex of each enabled array. If the result-
ing value is larger than the maximum value representable by type, it should behave
as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative
and should be handled as described in section 2.9.4. For DrawRangeElementsBa-
seVertex, the index values must lie between start and end inclusive, prior to adding
the basevertex offset. Index values lying outside the range [start, end] are treated
in the same way as DrawRangeElements.
The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS

has the same effect as:

typedef struct {
uint count;
uint primCount;
uint firstIndex;
int baseVertex;
uint reservedMustBeZero;
} DrawElementsIndirectCommand;

if (no element array buffer is bound) {

generate appropriate error
} else {

DrawElementsIndirectCommand *cmd =
(DrawElementsIndirectCommand =*)indirect;

DrawkElementsInstancedBaseVertex (mode, cmd->count,
cmd->firstIndex x size-of-type,
cmd->primCount, cmd->baseVertex);

}

As with DrawElementsInstancedBaseVertex, vertex attributes may be
sourced from client arrays or vertex buffer objects. Unlike DrawElementsIn-
stancedBaseVertex, indices may not come from a client array and must come from
an index buffer. If no element array buffer is bound, an INVALID_OPERATION
error is generated. Results are undefined if reservedMustBeZero is non-zero,
but must not lead to GL interruption or termination.

All elements of DrawElementsIndirectCommand are tightly packed.

The command

void MultiDrawElementsBaseVertex(enum mode, const
sizei *count, enumtype, const void **indices,
sizei primcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that primcount separate
lists of elements are specified instead. It has the same effect as:

for (int i = 0; 1 < primcount; i++)
if (count[i] > 0)
DrawElementsBaseVertex (mode, count[i], type,
indices[1], basevertex[1i]) ;

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

52

type,

2.8. VERTEX ARRAYS 53

The command

void InterleavedArrays(enum format, sizei stride, const
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 configurations.

format must be one of 14 symbolic constants: V2F, V3F, C4UB_V2F, C4UB_-

V3F, C3F_V3F, N3F_V3F, CAF_N3F_V3F, T2F_V3F, T4F_VA4F, T2F_C4UB_V3F,

T2F_C3F_V3F, T2F_N3F_V3F, T2F_CA4F_N3F_V3F, or TAF_C4F_N3F_VA4F.
The effect of

InterleavedArrays (format, stride, pointer) ;

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
int str;
set €, €c, €, Sty Scy Suy ey Pes Py Pu, and s as a function
of table 2.8 and the value of format.
str = stride;
if (striszero)
str = s;
DisableClientState
DisableClientState
DisableClientState
DisableClientState
if (er) |
EnableClientState (TEXTURE_COORD_ARRAY) ;
TexCoordPointer (s;, FLOAT, str, pointer) ;

EDGE_FLAG_ARRAY) ;
INDEX_ARRAY) ;
SECONDARY_COLOR_ARRAY) ;
FOG_COORD_ARRAY) ;

e

} else
DisableClientState (TEXTURE_COORD_ARRAY) ;
if (eo) {

EnableClientState (COLOR_ARRAY) ;
ColorPointer (s, t., str, pointer + p.) ;

} else
DisableClientState (COLOR_ARRAY) ;

if (en) |
EnableClientState (NORMAL_ARRAY) ;
NormalPointer (FLOAT, str, pointer + p,) ;

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.8. VERTEX ARRAYS

54

‘ format ey ‘ e ‘ en ‘ St ‘ Se ‘ Su te
V2F False | False | False 2
V3F False | False | False 3
C4UB_V2F False | True | Fualse 4 | 2 | UNSIGNED_BYTE
C4UB_V3F False | True | False 4 | 3 | UNSIGNED_BYTE
C3F_V3F False | True | False 313 FLOAT
N3F_V3F False | False | True 3
C4F_N3F_V3F False | True | True 4 1 3 FLOAT
T2F_V3F True | False | False | 2 3
T4F_VA4F True | False | False | 4 4
T2F_CAUB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED_BYTE
T2F_C3F_V3F True | True | False | 2 | 3 | 3 FLOAT
T2F_N3F_V3F True | False | True | 2 3
T2F_C4F_N3F_V3F | True | True | True | 2 | 4 | 3 FLOAT
T4F_CAF_N3F_V4F | True | True | True | 4 | 4 | 4 FLOAT
’ format De ‘ Dn ‘ Dy ‘ S
V2F 0 2f
V3F 0 3f
CAUB_V2F 0 c c+2f
C4UB_V3F 0 c c+3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
C4F_N3F_V3F 0 | 4f 7f 10f
T2F_V3F 2f 5f
T4F_VAF 4f 8f
T2F_C4UB_V3F 2f c+2f | c+5f
T2F_C3F_V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_CA4F_N3F_V3F | 2f | 6f 9f 12f
TAF_CA4F_N3F_V4F | 4f | 8f 11f 15f

Table 2.8: Variables that direct the execution of InterleavedArrays. f is
sizeof (FLOAT). c is 4 times sizeof (UNSIGNED_BYTE), rounded up to
the nearest multiple of f. All pointer arithmetic is performed in units of
sizeof (UNSIGNED_BYTE).

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 55

} else
DisableClientState (NORMAL_ARRAY) ;
EnableClientState (VERTEX_ARRAY) ;
VertexPointer (s, FLOAT, str, pointer + py) ;
1
J

[f the number of supported texture units (the value of MAX_TEXTURE_COORDS)
is m and the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the state required to implement vertex arrays consists
of an integer for the client active texture unit selector, 7 + m 4+ n boolean values,
7 + m + n memory pointers, 7 + m + n integer stride values, 7 + m + n sym-
bolic constants representing array types, 3 4+ m -+ n integers representing values
per element, n boolean values indicating normalization, n boolean values indicat-
ing whether the attribute values are pure integers, n integers representing vertex
attribute divisors, and an unsigned integer representing the restart index.

In the initial state, the client active texture unit selector is TEXTUREO, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, the integers representing values per
element are each four, the normalized and pure integer flags are each false, the
divisors are each zero, and the restart index is zero.

2.9 Buffer Objects

Vertex array data (described in section 2.8) are stored in client memory. It is some-

times desirable to store frequently used client data, such as vertex array and pixel

data, in high-performance server memory. GL buffer objects provide a mechanism

that clients can use to allocate, initialize, and render from such memory. The name

space for buffer objects is the unsigned integers, with zero reserved for the GL.
The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 56

Target name Purpose Described in section(s) ‘
ARRAY_BUFFER Vertex attributes 2.9.6
COPY_READ_BUFFER Buffer copy source 2.9.5
COPY_WRITE_BUFFER Buffer copy destination 2.9.5
DRAW_INDIRECT_BUFFER Indirect command arguments | 2.9.8
ELEMENT_ARRAY_BUFFER Vertex array indices 2.9.7
PIXEL_PACK_BUFFER Pixel read target 4.3.2,6.1
PIXEL_UNPACK_BUFFER Texture data source 3.7
TEXTURE_BUFFER Texture data buffer 3.9.7
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 2.20
UNIFORM_BUFFER Uniform block storage 2.14.7

Table 2.9: Buffer object binding targets.

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding to a buffer target. The
binding is effected by calling

void BindBuffer(enum rarget, uint buffer);

target must be one of the targets listed in table 2.9. If the buffer object named
buffer has not been previously bound,

the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising the state values listed in table 2.10.

Buffer objects created by binding to any of the valid fargets
are formally equivalent, but the GL may make different choices about storage lo-
cation and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 57

Name Type Initial Value Legal Values

BUFFER_SIZE int64 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS | int 0 See section 2.9.3

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET int64 0 any non-negative integer

BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 2.10: Buffer object parameters and their values.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts and other threads are not affected, but
attempting to use a deleted buffer in another thread produces undefined results,
including but not limited to possible GL errors and rendering corruption. Using
a deleted buffer in another context or thread may not, however, result in program

termination.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

Binding Buffer Objects to Indexed Targets

Buffer objects may be bound to indexed targets by calling one of the commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

void BindBufferBase(enum farget, uint index, uint buffer);

target must be TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Addi-
tional language specific to each target is included in sections referred to for each

target in table 2.9.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 58

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions (e.g. BindBuffer, MapBuffer). Both commands bind the buffer
object named by buffer to both the general binding point, and to the binding point
in the array given by index. The error INVALID_VALUE is generated if index is
greater than or equal to the number of target-specific indexed binding points.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from the buffer object
while used as an indexed target. Both offset and size are in basic machine units.
The error INVALID_VALUE is generated if size is less than or equal to zero or if
offset + size is greater than the value of BUFFER_SIZE. Additional errors may be
generated if offser violates target-specific alignment requirements.

BindBufferBase is equivalent to calling BindBufferRange with offser zero
and size equal to the size of buffer.

2.9.2 Creating Buffer Object Data Stores
The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with farget set to one of the targets listed in table 2.9, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 59

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_ACCESS_FLAGS | 0
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.11: Buffer object initial state.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_copryY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.11.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /V basic machine units be a multiple of N.

If the GL is unable to create a data store of the requested size, the error OUT_ -
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 60

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.9. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE
error is generated if offset or size is less than zero or if offset + size is greater than
the value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any
part of the specified buffer range is mapped with MapBufferRange or MapBuffer
(see section 2.9.3).

2.9.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with farget set to one of the targets listed in table 2.9. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 61

pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 62

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.12: Buffer object state set by MapBufferRange.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, Or MAP_READ_BIT|MAP_WRITE_BIT.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.12.

Errors

If an error occurs, MapBufferRange returns a NULL pointer.

An INVALID_VALUE error is generated if offset or length is negative, if offset+
length is greater than the value of BUFFER_SIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

e The buffer is already in a mapped state.
e Neither MAP_ READ_BIT nor MAP_ WRITE_BIT iS set.

e MAP_READ_BIT is set and any of MAP_ INVALIDATE_RANGE_BIT, MAP_ -
INVALIDATE BUFFER_BIT, or MAP_ UNSYNCHRONIZED_BIT is set.

e MAP FLUSH EXPLICIT_BIT is set and MAP_ WRITE_BIT iS not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 63

void *MapBuffer(enum target, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same target, offset
of zero, length equal to the value of BUFFER_SIZE, and the access bitfield
value passed to MapBufferRange equal to

e MAP_READ_BIT, if mbaccess is READ_ONLY
e MAP_ WRITE_BIT, if mbaccess i8S WRITE_ONLY

e MAP_READ_BIT|MAP_WRITE_BIT, if mbaccess is READ_WRITE

and mbaccess is the value of the access enum parameter passed to MapBuffer.
INVALID_ENUM is generated if access is not one of the values described above.
Other errors are generated as described above for MapBufferRange.
If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum farget, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.9. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID_OPERATION error is generated if zero is bound to farget.

An INVALID_OPERATION error is generated if the buffer bound to target is
not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum target);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 64

with farget set to one of the targets listed in table 2.9. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_-
MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_-
OFFSET, and BUFFER_MAP_LENGTH state variables to the initial values shown in
table 2.11.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

Effects of Mapping Buffers on Other GL Commands

Most, but not all GL commands will detect attempts to read data from a mapped
buffer object. When such an attempt is detected, an INVALID_OPERATION error
will be generated. Any command which does not detect these attempts, and per-
forms such an invalid read, has undefined results and may result in GL interruption
or termination.

2.9.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error will be generated. Any command which does not detect these attempts,
and performs such an invalid read or write, has undefined results, and may result
in GL interruption or termination.

2.9.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void *CopyBufferSubData(enum readtarget,
enum writetarget, intptr readoffset, intptr writeoffset,

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 65

sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 2.9.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_-
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use. writeoffset
and size specify the range of data in the buffer object bound to writetarget that is
to be replaced, in terms of basic machine units. readoffset and size specify the
range of data in the buffer object bound to readtarget that is to be copied to the
corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset, readoffset + size) and
[writeoffset, writeoffset + size) overlap.

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.6 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes. A buffer object binding point is added to the
client state associated with each vertex array type. The commands that specify
the locations and organizations of vertex arrays copy the buffer object name that
is bound to ARRAY_BUFFER to the binding point corresponding to the vertex ar-
ray of the type being specified. For example, the VertexAttribPointer command
copies the value of ARRAY_BUFFER_BINDING (the queriable name of the buffer
binding corresponding to the target ARRAY_BUFFER) to the client state variable
VERTEX_ATTRIB_ARRAY BUFFER_BINDING for the specified index.

Rendering commands ArrayElement, DrawArrays, and the other drawing
commands defined in section 2.8.2 operate as previously defined, except that data
for enabled vertex and attrib arrays are sourced from buffers if the array’s buffer
binding is non-zero. When an array is sourced from a buffer object, the pointer

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.9. BUFFER OBJECTS 66

value of that array is used to compute an offset, in basic machine units, into the
data store of the buffer object. This offset is computed by subtracting a null pointer
from the pointer value, where both pointers are treated as pointers to basic machine
units.

It is acceptable for vertex or attrib arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.

2.9.7 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT_ARRAY_BUFFER, indicating that DrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as their indices parameters,
and that MultiDrawElements is to source its indices from the array of pointers to
arrays passed in as its indices parameter.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from that buffer object, using their indices parameters as offsets into
the buffer object in the same fashion as described in section 2.9.6. DrawElements-
BaseVertex, DrawRangeElementsBaseVertex, and DrawElementsInstanced-
BaseVertex also source their indices from that buffer object, adding the basevertex
offset to the appropriate vertex index as a final step before indexing into the vertex
buffer; this does not affect the calculation of the base pointer for the index array.
Finally, MultiDrawElements and MultiDrawElementsBaseVertex also source
their indices from that buffer object, using its indices parameter as a pointer to an
array of pointers that represent offsets into the buffer object.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.8 Indirect Commands in Buffer Objects

Arguments to DrawArraysIndirect and DrawElementsIndirect commands may
be stored in buffer objects in the formats described in section 2.8.2 for the
DrawArraysIndirectCommand and DrawElementsIndirectCommand struc-
tures, respectively. Initially zero is bound to DRAW _INDIRECT BUFFER, indicat-

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.10. VERTEX ARRAY OBJECTS 67

A buffer object is bound to DRAW_INDIRECT_BUFFER by calling BindBuffer
with farget set to DRAW_INDIRECT_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

DrawArraysIndirect and DrawElementsIndirect source their arguments from

using their indirect parameters as offsets into the buffer object
in the same fashion as described in section 2.9.6. An INVALID_ OPERATION €error
is generated if these commands source data beyond the end of the buffer object, or
if indirect is not aligned to a multiple of the size, in basic machine units, of uint.

2.9.9 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 2.9, and for each of the indexed buffer targets in sec-
tion 2.9.1. Additionally, each vertex array has an associated binding so there is a
buffer object binding for each of the

vertex attribute arrays. The initial values for all buffer object
bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Vertex array objects are deleted by calling

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.11. RECTANGLES 68

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays are silently
ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state values listed in tables 6.9- 6.12.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

BindVertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with DeleteVertexArrays.

2.11 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Reet{sifd}(T x/, Tyl, Tx2, Ty2);
void Rect{sifd}v(const T vI[2], const Tv2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(z,y) coordinates, or two pointers to arrays each of which contains an x value
followed by a y value. The effect of the Rect command

Rect (21,y1,72,92) ;

is exactly the same as the following sequence of commands:

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 69

Begin (POLYGON) ;
Vertex2 (z1,y1) ;
Vertex2 (z2,y1) ;
Vertex2 (x2,y2) ;
Vertex2 (z1,y2) ;

End () ;

The appropriate Vertex2 command would be invoked depending on which of the
Rect commands is issued.

2.12 Fixed-Function Vertex Transformations

This section and the following discussion through section 2.13 describe the state
values and operations necessary for transforming vertex attributes according to a
fixed-functionality method. An alternate programmable method for transforming
vertex attributes is described in section 2.14.

Vertices, normals, and texture coordinates are transformed before their coordi-
nates are used to produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how this transformation is con-
trolled.

Figure 2.9 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termed object coor-
dinates. The model-view matrix is applied to these coordinates to yield eye coordi-
nates. Then another matrix, called the projection matrix, is applied to eye coordi-
nates to yield clip coordinates. Clip coordinates are further processed as described
in section 2.17.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting of z, y, z, and w coordinates (in that order). The model-view and pro-
jection matrices are thus 4 x 4.

and the model-view matrix

If a vertex in object coordinates is given by

is M, then the vertex’s eye coordinates are found as

Ze T
ye _ M yO
Ze Zo
We Wo

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 70

Normalized

Object Model-View Eye Projection Perspective Device

Coordinates Division Coordinates

Coordinates Matrix Coordinates Matrix

Viewport Window

Transformation Coordinates

Figure 2.9. Vertex transformation sequence.

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are

T Te
Ye | _ P Ye
Ze Ze
We We

2.12.1 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR, Or
PROJECTION as the argument value. TEXTURE is described later in section 2.12.1,
and COLOR is described in section 3.7.3. If the current matrix mode is MODELVIEW,
then matrix operations apply to the model-view matrix; if PROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(const T m/[I6]);

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 71

void MultMatrix{fd}(const T m/[16]);

LoadMatrix takes a pointer to a 4 x 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

ai as ag as

az ag aip a4

az ar ajx ais

a4 ag aiz2 Qe
(This differs from the standard row-major C ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to. Mult-
Matrix takes the same type argument as LoadMatrix, but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. If C'
is the current matrix and M is the matrix pointed to by MultMatrix’s argument,
then the resulting current matrix, C’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}(const T m[I6]);
void MultTransposeMatrix{fd}(const T m[16]);

take pointers to 4 x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

ap a2 a3z a4
as as ar ag
ag aipp ai a2
a3 ai4 ais aie

The effect of
LoadTransposeMatrix[fd] (m) ;

is the same as the effect of
LoadMatrix[fd] (m”) ;

The effect of

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 72

MultTransposeMatrix[fd] (m) ;

is the same as the effect of
MultMatrix[fd] (m”) ;
The command
void Loadldentity(void);

effectively calls LoadMatrix with the identity matrix:
1 0 00
0100
0010

1

There are a variety of other commands that manipulate matrices. Rotate,
Translate, Scale, Frustum, and Ortho manipulate the current matrix. Each com-
putes a matrix and then invokes MultMatrix with this matrix. In the case of

void Rotate{fd}(TH, Tx, Ty, Tz);

0 gives an angle of rotation in degrees; the coordinates of a vector v are given by
v = (xy 2)T. The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0
0
1

0 -2 9
S=147Z 0 -2
_yl LU/ O

then
R =uu’ + cosf(I — uu’) +sin6S.

The arguments to

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 73

void Translate{fd}(Tx, Ty, Tz);

give the coordinates of a translation vector as (z y z)”. The resulting matrix is a
translation by the specified vector:

1 0 0 =«
01 0 y
00 1 =z
0 0 0 1

void Scale{fd}(Tx, Ty, Tz);

produces a general scaling along the x-, y-, and z- axes. The corresponding matrix
is

o ow O
o n O O
— o O O

O O O 8

For

void Frustum(doublel, double r, double b, doublet,
double n, doublef);

the coordinates (I b —n)” and (rt — n)” specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at (0 0 0)7). f gives the distance
from the eye to the far clipping plane. If either n or f is less than or equal to zero,
lis equal to r, b is equal to ¢, or n is equal to f, the error INVALID_VALUE results.
The corresponding matrix is

2 +1
FEEA -
n
o m
n n
0 0 “f-n f-n
0 0 -1 0

void Ortho(doublel, double r, double b, doublet,
double n, doublef);

describes a matrix that produces parallel projection. (I b — n)” and (r t —n)”

specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively. f gives the distance from the eye

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 74

to the far clipping plane. If [is equal to 7, b is equal to ¢, or n is equal to f, the
error INVALID_VALUE results. The corresponding matrix is

2 +1

7Y . Tl

0 O e

n

0 0 -5 -7
0 0 0 1

For each texture coordinate set, a 4 x 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

mp ms M9 M3 s
mg Mg Mg Mi4 t
mg mg mi1 mas | ||’
my4 Mg Mi2 Mig q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode to TEXTURE
causes the already described matrix operations to apply to the texture matrix.

The active texture unit selector (see section 3.9) specifies the texture coordi-
nate set accessed by commands involving texture coordinate processing. Such
commands include those accessing the current matrix stack (if MATRIX_MODE is
TEXTURE), TexEnv commands controlling point sprite coordinate replacement
(see section 3.4), TexGen (section 2.12.3), Enable/Disable (if any texture co-
ordinate generation enum is selected), as well as queries of the current texture
coordinates and current raster texture coordinates. If the texture coordinate set
number corresponding to the current value of ACTIVE_TEXTURE is greater than
or equal to the implementation-dependent constant MAX_TEXTURE_COORDS, the
error INVALID_OPERATION is generated by any such command.

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least 2. Texture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 75

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the error STACK_UNDERFLOW; pushing a matrix onto a
full stack generates STACK_OVERF LOW.

When the current matrix mode is TEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at least two 4 x 4 matrices
for each of COLOR, PROJECTION, and each texture coordinate set, TEXTURE; and
a stack of at least 32 4 x 4 matrices for MODELVIEW. Each matrix stack has an
associated stack pointer. Initially, there is only one matrix on each stack, and all
matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.12.2 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by calling Enable and
Disable with rarget equal to RESCALE_NORMAL or NORMALIZE. This requires two
bits of state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M, then the normal is transformed to eye coordi-
nates by:

(ns' ny n. ¢)=(ne ny n. q)-M*
T
where, if ‘Z are the associated vertex coordinates, then
w
0, w =0,
T
q= _(nx ny nz> y 2.7
z
w W 7£ 0

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 76

Implementations may choose instead to transform (nT Ny nz) to eye coor-
dinates using

(nx’ ny' nz’):(na; ny nz)']Vfufl

where M, is the upper leftmost 3x3 matrix taken from M.
Rescale multiplies the transformed normals by a scale factor

(nx// ny// nz”):f(nx/ ny/ nz/)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is computed
as (m;; denotes the matrix element in row 7 and column j of M - numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

B 1
© Vma2 2
m31~ +m32” + m33
Note that if the normals sent to GL were unit length and the model-view matrix

uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may choose f as

2

1
2 2 2
\/nx/ + ny/ + nzl

recomputing f for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.
After rescaling, the final transformed normal used in lighting, 7, is computed

f=

as

ng=m (nm// ny// nZ//)
If normalization is disabled, then m = 1. Otherwise
1
\/nw//Z +ny//2 + nZ//Q

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix M. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

m =

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 77

2.12.3 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, const
T params);

controls texture coordinate generation. coord must be one of the constants S, T, R,
or Q, indicating that the pertinent coordinate is the s, ¢, r, or ¢ coordinate, respec-
tively. In the first form of the command, param is a symbolic constant specifying a
single-valued texture generation parameter; in the second form, params is a pointer
to an array of values that specify texture generation parameters. pname must be one
of the three symbolic constants TEXTURE_GEN_MODE, OBJECT_PLANE, Oor EYE_ —
PLANE. If pname is TEXTURE_GEN_MODE, then either params points to or param is
an integer that is one of the symbolic constants OBJECT_LINEAR, EYE_LINEAR,
SPHERE_MAP, REFLECTION_MAP, or NORMAL_MAP.

If TEXTURE_GEN_MODE indicates OBJECT_LINEAR, then the generation func-
tion for the coordinate indicated by coord is

g = P1%o + P2Yo + P320 + PaWs.

Zo» Yo, 2o, and w, are the object coordinates of the vertex. py, ..., py are specified
by calling TexGen with pname set to OBJECT_PLANE in which case params points
to an array containing py, ..., p4. There is a distinct group of plane equation co-
efficients for each texture coordinate; coord indicates the coordinate to which the
specified coefficients pertain.

If TEXTURE_GEN_MODE indicates EYE_LINEAR, then the function is

g = Pixe + PoyYe + Phze + Phwe

where
(P, Py ps Py)=(p1 p2 p3 pa) M

Ze, Yer Ze, and w, are the eye coordinates of the vertex. pi,...,ps4 are set by
calling TexGen with pname set to EYE_PLANE in correspondence with setting the
coefficients in the OBJECT_PLANE case. M is the model-view matrix in effect
when py, ..., p4 are specified. Computed texture coordinates may be inaccurate or
undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen with
TEXTURE_GEN_MODE indicating SPHERE_MAP can simulate the reflected image

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 78

of a spherical environment on a polygon. SPHERE_MAP texture coordinates are
generated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) by u. Denote the current normal, after transformation to eye

. T . .
coordinates, by n¢. Letr = (rx Ty rz) , the reflection vector, be given by

r=u—2n¢ (ngu),

and let m = 2\/ r2 472+ (r, + 1)2. Then the value assigned to an s coordinate

(the first TexGen argument value is S) is s = 7, /m + %; the value assigned to a ¢
coordinate is ¢ = r,/m + % Calling TexGen with a coord of either R or Q when
pname indicates SPHERE_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates REFLECTION_MAP, compute the reflection
vector r as described for the SPHERE_MAP mode. Then the value assigned to an s
coordinate is s = r,; the value assigned to a ¢ coordinate is ¢ = r,; and the value
assigned to an 7 coordinate is = r,. Calling TexGen with a coord of 0 when
pname indicates REFLECTION_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates NORMAL_MAP, compute the normal vector
ny as described in section 2.12.2. Then the value assigned to an s coordinate is
s = ny,; the value assigned to a ¢ coordinate is t = n o and the value assigned
to an r coordinate is r = ny_ (the values ny_, n fyr and ny_ are the components
of ny.) Calling TexGen with a coord of Q when pname indicates NORMAL_MAP
generates the error INVALID_ENUM.

A texture coordinate generation function is enabled or disabled using En-
able and Disable with an argument of TEXTURE_GEN_S, TEXTURE_GEN_T,
TEXTURE_GEN_R, or TEXTURE_GEN_Q (each indicates the corresponding texture
coordinate). When enabled, the specified texture coordinate is computed according
to the current EYE_LINEAR, OBJECT_LINEAR or SPHERE_MAP specification, de-
pending on the current setting of TEXTURE_GEN_MODE for that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each of EYE_LINEAR and OBJECT_LINEAR. The initial state has
the texture generation function disabled for all texture coordinates. The initial val-
ues of p; for s are all 0 except p; which is one; for ¢ all the p; are zero except pa,
which is 1. The values of p; for r and q are all 0. These values of p; apply for both
the EYE_ LINEAR and OBJECT_LINEAR versions. Initially all texture generation
modes are EYE_LINEAR.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 79

Convert to

[0.0,1.0] Current 0,
Clamp to
RGBA (ol o b

Color m [0.0, 1.0]
[2Kok-1) g CONVEILIO L | Lighting -0 E

[-1.0,1.0]
an———| Color I E— ,
Clipping

Convert to L Flatshade?

fixed—point : I
P v Primitive

' i Clipping

[0,2K-1] —pm]

float

Figure 2.10. Processing of RGBA colors. The heavy dotted lines indicate both
primary and secondary vertex colors, which are processed in the same fashion. % is
the minimum required bit width of the integer type representing a color component.

2.13 Fixed-Function Vertex Lighting and Coloring

Figures 2.10 and 2.11 diagram the processing of RGBA colors and color indices
before rasterization. Incoming colors arrive in one of several formats. R, G, B, and
A components specified with unsigned and signed integer versions of the Color
command are converted to floating-point as described in equations 2.1 and 2.2, re-
spectively. As a result of limited precision, some converted values will not be rep-
resented exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color (pri-
mary color) and current secondary color are used in further processing. After light-
ing, RGBA colors may be clamped to the range [0, 1] as described in section 2.13.6.
A color index is converted to fixed-point and then its integer portion is masked (see
section 2.13.6). After clamping or masking, a primitive may be flatshaded, indi-
cating that all vertices of the primitive are to have the same colors. Finally, if a
primitive is clipped, then colors (and texture coordinates) must be computed at the
vertices introduced or modified by clipping.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 80

[0,2"-1] —p»] Convertto | gl ~\rent

float Color Mask to

float 1 Index O [0.0, 2N-1]

Color
‘ Clipping -
Convert to ‘_ Flatshade?

fixed—point N
P Primitive

* i Clipping

Figure 2.11. Processing of color indices. n is the number of bits in a color index.

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section 2.13.5.)

Lighting is turned on or off using the generic Enable or Disable commands
with the symbolic value LIGHTING. If lighting is off, the current color and current
secondary color are assigned to the vertex primary and secondary color, respec-
tively. If lighting is on, colors computed from the current lighting parameters are
assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(z, y, 2, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given by x, ¥, and z). A direction

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 81

parameter consists of three floating-point coordinates (x, y, and z) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table 2.13. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There are n light sources, indexed by ¢ = 0, ..., n—1. (n is an implementation-
dependent maximum that must be at least 8.) Note that the default values for d;
and s.;; differ for: = 0 and z > 0.

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involved. If ¢; and cy are col-
ors without alpha where ¢; = (r1,¢1,b1) and ca = (72, g2, bs), then define
¢y * cg = (rire, g1g2,bi1be). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. If d; and d» are directions, then define

di ©dy = max{d1 -ds, 0}.

(Directions are taken to have three coordinates.) If P; and P> are (homogeneous,
with four coordinates) points then let PTP; be the unit vector that points from P,
to P5. Note that if P, has a zero w coordinate and P has non-zero w coordinate,
then PP is the unit vector corresponding to the direction specified by the x, v,
and z coordinateﬂ} P5; if P, has a zero w coordinate and P9 has a non-zero w
coordinate then PP is the unit vector that is the negative of that corresponding
to the direction specified by P;. If both P; and P5 have zero w coordinates, then
ﬁ is the unit vector obtained by normalizing the direction corresponding to
Py, — Py

If d is an arbitrary direction, then let d be the unit vector in d’s direction. Let
|IP1P2|| be the distance between Py and Ps. Finally, let V be the point corre-
sponding to the vertex being lit, and n be the corresponding normal. Let P, be the
eyepoint ((0, 0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color c,,; and a secondary
color c,e.. The values of ¢,; and cg.. depend on the light model color control, c.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 82
Parameter H Type ‘ Default Value ‘ Description
Material Parameters
acm color (0.2,0.2,0.2,1.0) | ambient color of material
den color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm, real 0.0 specular exponent (range:
[0.0,128.0])
Gm real 0.0 ambient color index
dm, real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ac; color (0.0,0.0,0.0,1.0) | ambient intensity of light 4
d;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of light O
dg;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light 0
sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light 4
P position | (0.0,0.0,1.0,0.0) | position of light
Sdli direction | (0.0,0.0,—1.0) | direction of spotlight for light
Syl real 0.0 spotlight exponent for light ¢
(range: [0.0, 128.0])
Crli real 180.0 spotlight cutoff angle for light 7
(range: [0.0,90.0], 180.0)
koi real 1.0 constant attenuation factor for
light i (range: [0.0, 00))
kq; real 0.0 linear attenuation factor for
light i (range: [0.0, c0))
ko; real 0.0 quadratic attenuation factor for
light i (range: [0.0, 00))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Ubs boolean FALSE viewer assumed to be at
(0,0,0) in eye -coordinates
(TRUE) or (0,0, 00) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
tps boolean FALSE use two-sided lighting mode

Table 2.13: Summary of lighting parameters. The range of individual color com-
ponents is (—00, +00).

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 83

If c.s = SINGLE_COLOR, then the equations to compute C,; and C. are

Cori = €cm

+ acgm *Acs

n—1
+ Z(“ﬁi)(sp()ti) [* a;
i=0 + (0O VBy)dem * dg;
+ (f/)(n O] lAlvﬁ)srmScm * Sclz’]
Csee = (0,0,0,1)

If ccs = SEPARATE_SPECULAR_COLOR, then

Cpri = €cm
+ aCTn, * aCS
n—1
+ Z(atti)(SpOti> [acm >ﬁ)f{
=0 + (Il O] VPp[,,j)dpm * d,tu}
n—1
Csec = Z(atti)(spoti)(ﬁ)(n ® D) ™ S * Sl
1=0

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 84

where
1 VB,; #0
fi = ¢ L noVEi£O, 2.8)
0, otherwise,
VP, + VP
hi _ _)pl?, + e - Vps = TRUE, (29)
VB, + (0 0 1)°, wvy, =FALSE,
1 .)
Y lf P)ZL sw # 0’
att, koi + kil VPpii]| + hoil[VPl ' (2.10)
1.0, otherwise.
—) A~ S . —) A
(Poii V © 8413)°, cpyy 7 180.0, Py V © 815 > cos(cp;),
e —
spot; = 0.0, crti # 180.0, Py V © 845 < cos(c,;§2-11)
1.0, Crli = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with dp,.
A is always associated with the primary color c,,;; the alpha component of ¢ is
always 1.

Results of lighting are undefined if the w, coordinate (w in eye coordinates) of
V is zero.

Lighting may operate in two-sided mode ({,s = TRUE), in which a front color
is computed with one set of material parameters (the front material) and a back
color is computed with a second set of material parameters (the back material).
This second computation replaces n with —n. If {;s = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex and geometry shaders can operate in two-sided color
mode. When a vertex or geometry shader is active, front and back colors
can be computed by the shader and written to the gl_FrontColor, gl_-
BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor out-
puts. If VERTEX_PROGRAM_TWO_SIDE is enabled, the GL chooses between front
and back colors, as described below. Otherwise, the front color output is always

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 85

selected. Two-sided color mode is enabled and disabled by calling Enable or Dis-
able with the symbolic value VERTEX_PROGRAM_TWO_SIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is performed based
on the sign of the (clipped or unclipped) polygon’s area a computed in window
coordinates, as described in equation 3.8 of section 3.6.1. If the sign of a (including
the possible reversal of this sign as indicated by the last call to FrontFace) is
positive, the color of each vertex of the polygon becomes the front color computed
for that vertex; otherwise the back color is selected.

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table 2.13). Sets of lighting
parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enumpname, const
T params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, const T params);
void LightModel{if}(enum pname, T param);
void LightModel{if}v(enum pname, const T params);

pname is a symbolic constant indicating which parameter is to be set (see ta-
ble 2.14). In the vector versions of the commands, params is a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions, param is a value
to which to set a single-valued parameter. (If param corresponds to a multi-valued
parameter, the error INVALID_ENUM results.) For the Material command, face
must be one of FRONT, BACK, or FRONT_AND_BACK, indicating that the property
name of the front or back material, or both, respectively, should be set. In the case
of Light, light is a symbolic constant of the form LIGHT4, indicating that light 7 is
to have the specified parameter set. The constants obey LIGHT? = LIGHTO + .
Table 2.14 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified with Material and Light are converted to floating-point values (if
specified as integers) as described in equation 2.2. The error INVALID_VALUE

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 86

occurs if a specified lighting parameter lies outside the allowable range given in
table 2.13. (The symbol “oc0” indicates the maximum representable magnitude for
the indicated type.)

Material properties can be changed inside a Begin / End pair by calling Ma-
terial. However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table 2.14, until the following
End command.

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, if M, is the upper left 3x3
matrix taken from the current model-view matrix M, then the spotlight direction

dy
dy
d,
18 transformed to
d., d
d; =M, | dy
d., d,

An individual light is enabled or disabled by calling Enable or Disable with the
symbolic value LIGHT: (¢ is in the range O to n — 1, where n is the implementation-
dependent number of lights). If light ¢ is disabled, the ith term in the lighting
equation is effectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so

that they continuously track its component values. This behavior is enabled and

disabled by calling Enable or Disable with the symbolic value COLOR_MATERIAL.
The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating whether the front
material, back material, or both are affected by the current color. mode is one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT_AND_DIFFUSE and
specifies which material property or properties track the current color. If mode
1S EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of e, acm,,

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 87

Parameter H Name Number of values
Material Parameters (IMaterial)
aem AMBIENT 4
dem DIFFUSE 4
acm, dem AMBIENT_AND_DIFFUSE 4
Sem SPECULAR 4
€ecm EMISSION 4
Srm. SHININESS 1
Ay Ay Sy COLOR_INDEXES 3
Light Source Parameters (Light)
agy; AMBIENT 4
d; DIFFUSE 4
Scli SPECULAR 4
Py POSITION 4
Sdli SPOT_DIRECTION 3
Srli SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT_ATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATIC_ATTENUATION 1
Lighting Model Parameters (LightModel)
acs LIGHT_MODEL_AMBIENT 4
Vbs LIGHT_MODEL_LOCAL_VIEWER 1
ths LIGHT_MODEL_TWO_SIDE 1
Ces LIGHT_MODEIL_COLOR_CONTROL 1

Table 2.14: Correspondence of lighting parameter symbols to names. AMBIENT_—
AND_DIFFUSE is used to set a.,, and d.,, to the same value.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING

88

Current
Color

Color*() ========== > To subsequent vertex operations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

.Ko’ Front Ambient Ly To lighting equations

Material*(FRONT,AMBIENT) *=====s==s==sssfecssas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

’Ko> Front Diffuse g lighting equations

Material*(FRONT,DIFFUSE) ==========s====sfezzzas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

.KO’ Front Specular |y To lighting equations

Material*(FRONT,SPECULAR) =============p====== »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

K o »| Front Emission L ___ To lighting equations

Material(FRONT,EMISSION) =============x==s=x2= »0 Color

"""" = State values flow along this path only when a command is issued

= State values flow continuously along this path

Figure 2.12. ColorMaterial operation. Material properties are continuously up-
dated from the current color while ColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The

FRONT_AND_BACK.

back material properties are treated identically, except that face must be BACK or

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 89

d., or s.,, respectively, will track the current color. If mode is AMBIENT_AND_ -
DIFFUSE, both a.,;, and d.,, track the current color. The replacements made to
material properties are permanent; the replaced values remain until changed by
either sending a new color or by setting a new material value when ColorMaterial
is not currently enabled to override that particular value. When COLOR_MATERIAL
is enabled, the indicated parameter or parameters always track the current color.
For instance, calling

ColorMaterial (FRONT, AMBIENT)

while COLOR_MATERIAL is enabled sets the front material a.,, to the value of the
current color.

Material properties can be changed inside a Begin / End pair indirectly by
enabling ColorMaterial mode and making Color calls. However, when a ver-
tex shader is active such property changes are not guaranteed to update material
parameters, defined in table 2.14, until the following End command.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front and
back material parameters, lighting model parameters, and at least 8 sets of light pa-
rameters), a bit indicating whether a back color distinct from the front color should
be computed, at least 8 bits to indicate which lights are enabled, a five-valued vari-
able indicating the current ColorMaterial mode, a bit indicating whether or not
COLOR_MATERIAL is enabled, and a single bit to indicate whether lighting is en-
abled or disabled. In the initial state, all lighting parameters have their default val-
ues. Back color evaluation does not take place, ColorMaterial is FRONT_AND_—
BACK and AMBIENT_AND_DIFFUSE, and both lighting and COLOR_MATERIAL are
disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of light ¢ (d.; and s,
respectively) determine color index diffuse and specular light intensities, dj; and
s; from

dii = (.30)R(dei) + (:59)G(deii) + (:11) B(dei)

and
sii = (:30)R(sai) + (:59)G(sei) + (-11) B(seis)-

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 90

R(x) indicates the R component of the color x and similarly for G(x) and B(x).
Next, let

n
s = Z(atti)(spoti)(sli)(ﬁ)(n ©® h;)®rm
i=0
where att; and spot; are given by equations 2.10 and 2.11, respectively, and f; and
h; are given by equations 2.8 and 2.9, respectively. Let s’ = min{s, 1}. Finally,
let

d =" (att;)(spot;)(dy;)(n ® VB,y,).
1=0

Then color index lighting produces a value ¢, given by
c=am+d(1—5)(dn—an)+ 8 (sm—an).

The final color index is
¢ = min{c, s, }.

The values a,,, d,,, and s,,, are material properties described in tables 2.13 and 2.14.
Any ambient light intensities are incorporated into a,,. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of 5, and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The values a,,, d,,, and s,, are set with Material using a pname of COLOR_-
INDEXES. Their initial values are 0, 1, and 1, respectively. The additional state
consists of three floating-point values. These values have no effect on RGBA light-
ing.

2.13.6 Clamping or Masking

When the GL is in RGBA mode and vertex color clamping is enabled, all com-
ponents of both primary and secondary colors are clamped to the range [0, 1] af-
ter lighting. If color clamping is disabled, the primary and secondary colors are
unmodified. Vertex color clamping is controlled by calling ClampColor, as de-
scribed in section 3.7.5, with a target of CLAMP_VERTEX_COLOR.

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with 2" — 1, where n is the number of
bits in a color in the color index buffer (buffers are discussed in chapter 4).

The state required for vertex color clamping is a three-valued integer, initially
set to TRUE.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 91

2.14 Vertex Shaders

2.12 2.13

describe the operations that occur on vertex values and their associ-
ated data.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader ob-
ject and then compiled. A shader object corresponds to a stage in the rendering
pipeline referred to as its shader stage or type. Alternatively, pre-compiled
shader binary code may be directly loaded into a shader object. A GL implementa-
tion must support shader compilation (the boolean value SHADER_COMP ILER must
be TRUE). If the integer value of NUM_SHADER_BINARY_FORMATS is greater than
zero, then shader binary loading is supported.

One or more vertex shader objects are attached to a program object. The pro-
gram object is then linked, which generates executable code from all the compiled
shader objects attached to the program. Alternatively, pre-compiled program bi-
nary code may be directly loaded into a program object (see section 2.14.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for the vertex stage
includes a vertex shader, it is considered the active program object for the vertex
stage. The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage
individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for the vertex stage, the
executable code for the vertex shaders it contains is used to process vertices.

In addition to vertex shaders, tessellation control shaders, tessellation evalu-
ation shaders, geometry shaders and fragment shaders can be created, compiled,
and linked into program objects. Tessellation control and evaluation shaders are
used to control the operation of the tessellator, and are described in section 2.15.
Geometry shaders affect the processing of primitives assembled from vertices (see
section 2.16). Fragment shaders affect the processing of fragments during ras-
terization (see section 3.12). A single program object can contain all of vertex,
tessellation control, tessellation evaluation, geometry, and fragment shaders, or
any subset thereof.

When the program object currently in use for the vertex stage includes a vertex

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 92

shader, its vertex shader is considered active and is used to process vertices. If the
current vertex stage program object has no vertex shader, or no program object is
current for the vertex stage,

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a
special form of uniform used for texturing (section 3.9). Varying variables hold
the results of vertex shader execution that are used later in the pipeline. Each of
these variable types is described in more detail below.

2.14.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_—
VALUE if the provided name is not the name of either a shader or program object
and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 93

the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.
The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.
Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.18). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfoLog to obtain more information about the compilation attempt (see
section 6.1.18).

An INVALID_OPERATION error is generated if shader is not the name of a
valid shader object generated by CreateShader.

Resources allocated by the shader compiler may be released with the command

void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShader Compiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 6.1.18).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 94

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.18). DeleteShader will silently ignore
the value zero.

2.14.2 Loading Shader Binaries

Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type (vertex shader or fragment shader). binary points to length
bytes of pre-compiled binary shader code in client memory, and binaryformat de-
notes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. GL defines no specific binary formats, but
does provide a mechanism to obtain token values for such formats provided by
extensions. The number of shader binary formats supported can be obtained by
querying the value of NUM_SHADER_BINARY_FORMATS. The list of specific binary
formats supported can be obtained by querying the value of SHADER_BINARY_—
FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary vertex or fragment shaders, or load an executable binary
that contains an optimized pair of vertex and fragment shaders stored in the same
binary.

An INVALID_ENUM error is generated if binaryformat is not a supported format
returned in SHADER_BINARY_FORMATS. An INVALID_VALUE error is generated
if the data pointed to by binary does not match the specified binaryformat. Addi-
tional errors corresponding to specific binary formats may be generated as specified
by the extensions defining those formats. An INVALID_OPERATION error is gen-
erated if more than one of the handles refers to the same type of shader (vertex or
fragment shader.)

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized pair of vertex and fragment shader binaries that were

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 95

compiled together be specified to LinkProgram. Not specifying an optimized pair
may cause LinkProgram to fail.

2.14.3 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.18). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise.

Linking can fail for a variety variety of reasons as specified in the OpenGL
Shading Language Specification, as well as any of the following reasons:

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS

e One or more of the shader objects attached to program are not compiled
successfully.

e More active uniform or active sampler variables are used in program than
allowed (see sections 2.14.7, 2.14.9, and 2.16.3).

e The program object contains objects to form a tessellation control shader
(see section 2.15.1), and

— the program is not separable and contains no objects to form a vertex
shader;

— the output patch vertex count is not specified in any compiled tessella-
tion control shader object; or

— the output patch vertex count is specified differently in multiple tessel-
lation control shader objects.

e The program object contains objects to form a tessellation evaluation shader
(see section 2.15.3), and

— the program is not separable and contains no objects to form a vertex
shader;

— the tessellation primitive mode is not specified in any compiled tessel-
lation evaluation shader object; or

— the tessellation primitive mode, spacing, vertex order, or point mode is
specified differently in multiple tessellation evaluation shader objects.

e The program object contains objects to form a geometry shader (see sec-
tion 2.16), and

— the program is not separable and contains no objects to form a vertex
shader;

— the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in any compiled geometry shader object; or

— the input primitive type, output primitive type, or maximum output ver-
tex count is specified differently in multiple geometry shader objects.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoL.og to

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

96

2.14. VERTEX SHADERS 97

obtain more information about the link operation or the validation information (see
section 6.1.18).

If a program has been successfully linked by LinkProgram, it can be made
part of the current rendering state for all shader stages with the command

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last successfully linked. If UsePro-
gram is called with program set to zero, then there is no current program object.
If program has not been successfully linked, the error INVALID_OPERATION is
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by Use-
Program, that program is considered current for all stages. Otherwise, if there is
a bound program pipeline object (see section 2.14.4), the program bound to the
appropriate stage of the pipeline object is considered current. If there is no cur-
rent program object or bound program pipeline object, no program is current for
any stage. The current program for a stage is considered active if it contains ex-
ecutable code for that stage; otherwise, no program is considered active for that
stage. If there is no active program for the vertex or fragment shader stages,

If there is no active program for the tessellation control, tessellation
evaluation, or geometry shader stages, those stages are ignored.

If a program object that is active for any shader stage is re-linked successfully,
the LinkProgram command will install the generated executable code as part of
the current rendering state for all shader stages where the Additionally, the newly
generated executable code is made part of the state of any program pipeline for all
stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call
to UseProgram, UseProgramStages, or BindProgramPipeline removes them
from use. If such a program is attached to any program pipeline object, the exist-
ing executables and associated state will remain part of the program pipeline object

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 98

until a subsequent call to UseProgramStages removes them from use. An unsuc-
cessfully linked program may not be made part of the current rendering state by
UseProgram or added to program pipeline objects by UseProgramStages until it
is successfully re-linked. If such a program was attached to a program pipeline at
the time of a failed link, its existing executable may still be made part of the current
rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked. Other legal values for pname and value are
discussed in section 2.14.5.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char **strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent to the following
command sequence:

const uint shader = CreateShader (type) ;

if (shader) {
ShaderSource (shader, count, strings, NULL);
CompileShader (shader) ;

const uint program CreateProgram () ;

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS

if (program) {
int compiled = FALSE;
GetShaderiv (shader, COMPILE_STATUS, &compiled);

ProgramParameteri (program, PROGRAM_SEPARABLE, TRUE) ;

if (compiled) {
AttachShader (program, shader);
LinkProgram (program) ;
DetachShader (program, shader) ;
¥
append-shader-info-log-to-program-info-log
}
DeleteShader (shader) ;
return program;
} else {
return O;
}

The program may not actually link if the output variables in the shader attached
to the final stage of the linked program take up too many locations. If this situation
arises, the info log may explain this.

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

2.14.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

Program bindings associating program objects with shader types are collected
to form a program pipeline object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

99

2.14. VERTEX SHADERS 100

Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes unused.
If an object that is currently bound is deleted, the binding for that object reverts to
zero and no program pipeline object becomes current. Unused names in pipelines
are silently ignored, as is the value zero.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program
pipeline object is a new state vector, comprising ACTIVE_PROGRAM, VERTEX_—
SHADER, GEOMETRY_ SHADER, FRAGMENT SHADER, TESS_CONTROL_SHADER,
and TESS_EVALUATION_SHADER.

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 2.14.3).

BindProgramPipeline fails and an INVALID_OPERATION error is gener-
ated if pipeline is not zero or a name returned from a previous call to Gen-
ProgramPipelines, or if such a name has since been deleted with DeletePro-
gramPipelines.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command:

void UseProgramStages(uint pipeline, bit field stages,
uint program);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 101

where pipeline is the program pipeline object to be updated, stages is the bitwise
OR of accepted constants representing shader stages, and program is the program
object from which the executables are taken. The bits set in stages indicate the
program stages for which the program object named by program becomes cur-
rent. These stages may include tessellation control, tessellation evaluation, ver-
tex, geometry, or fragment indicated by TESS_CONTROL_SHADER BIT, TESS_-—
EVALUATION_SHADER_BIT, VERTEX_SHADER_BIT, GEOMETRY_ SHADER_BIT,
or FRAGMENT_SHADER_BIT respectively. The constant ALL_SHADER BITS in-
dicates program is to be made current for all shader stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramsStages is called with program
set to zero or with a program object that contains no executable code for the given
stages, it is as if the pipeline object has no programmable stage configured for the
indicated shader stages. If stages is not the special value ALL_SHADER BITS, and
has a bit set that is not recognized, the error INVALID_VALUE is generated. If the
program object named by program was linked without the PROGRAM _SEPARABLE
parameter set, or was not linked successfully, the error INVALID_OPERATION is
generated and the corresponding shader stages in the pipeline program pipeline
object are not modified.

If pipeline is a name that has been generated (without subsequent deletion)
by GenProgramPipelines, but refers to a program pipeline object that has not
been previously bound, the GL first creates a new state vector in the same man-
ner as when BindProgramPipeline creates a new program pipeline object. If
pipeline is not a name returned from a previous call to GenProgramPipelines or if
such a name has since been deleted by DeleteProgramPipelines, an INVALID_-
OPERATION error is generated.

The command

void ActiveShaderProgram(uint pipeline, uint program);

sets the linked program named by program to be the active program (discussed
later in the secion 2.14.4) for the program pipeline object pipeline . If program
has not been successfully linked, the error INVALID_OPERATION is generated and
active program is not modified.

If pipeline is a name that has been generated (without subsequent deletion)
by GenProgramPipelines, but refers to a program pipeline object that has not
been previously bound, the GL first creates a new state vector in the same man-
ner as when BindProgramPipeline creates a new program pipeline object. If
pipeline is not a name returned from a previous call to GenProgramPipelines or if

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 102

such a name has since been deleted by DeleteProgramPipelines, an INVALID_-
OPERATION error is generated.

Shader Interface Matching

When linking a non-separable program object with multiple shader types, the out-
puts of one stage form an interface with the inputs of the next stage. These inputs
and outputs must typically match in name, type, and qualification. When both
sides of an interface are contained in the same program object, LinkProgram will
detect mismatches on an interface and generate link errors.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because the
programs are linked separately. When each such program is linked, all inputs or
outputs interfacing with another program stage are treated as active. The linker will
generate an executable that assumes the presence of a compatible program on the
other side of the interface. If a mismatch between programs occurs, no GL error
will be generated, but some or all of the inputs on the interface will be undefined.

On an interface between program objects, the inputs and outputs are considered
to match exactly if and only if:

e For each user-defined input block declared, there is a matching output block
in the previous shader. Two blocks are considered to match if they have
the same name, and the members of the block match exactly in name, type,
qualification, and declaration order.

e For every user-declared input variable declared, there is an output variable
declared in the previous shader matching exactly in name, type, and qualifi-
cation.

e There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined unless the corresponding outputs were not writ-
ten in the previous shader. However, any mismatch between inputs and outputs
results in all inputs being undefined except for cases noted below. Even if an in-
put has a corresponding output that matches exactly, mismatches on other inputs

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 103

or outputs may adversely affect the executable code generated to read or write the
matching variable.

The inputs and outputs on an interface between programs need not match ex-
actly when input and output location qualifiers (sections 4.3.8.1 and 4.3.8.2 of the
OpenGL Shading Language Specification) are used. When using location quali-
fiers, any input with an input location qualifier will be well-defined as long as the
other program writes to an output with the same location qualifier, data type, and
qualification. Also, an input will be well-defined if the other program writes to
an output matching the input in everything but data type as long as the output data
type has the same basic component type and more components. The names of
variables need not match when matching by location. For the purposes of interface
matching, an input with a location qualifier is considered to match a corresponding
output only if that output has an identical location qualifier.

To use any built-in input or output in the gl Pervertex and gl -
pPerFragment blocks in separable program objects, shader code must redeclare
those blocks prior to use. A separable program will fail to link if:

e it contains multiple shaders of a single type with different redeclarations of
these built-in input and output blocks; or

e any shader uses a built-in block member not found in the redeclaration of
that block.

There is one exception to this rule described below.

As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members members match exactly in name, type, qualification, and declara-
tion order. At an interface involving the fragment shader stage, a g1_PerVertex
output block is considered to match a g1_PerFragment input block if all of the
following conditions apply:

e the gl_PerVertex block includes either gl_FrontColor or gl_ -
BackColor if and only if the g1_PerFragment block includes g1_Color;

e the gl_PerVertex block includes either g1_FrontSecondaryColor or
gl_BackSecondaryColor if and only if the g1_PerFragment block in-

~

cludes g1_SecondaryColor;

e the gl_PerVertex block includes g1_FogFragCoord if and only if the
gl_PerFragment block also includes g1_FogFragCoord; and

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 104

Built-in inputs or outputs not found in blocks do not affect interface match-
ing. Any such built-in inputs are well-defined unless they are derived from built-in
outputs not written by the previous shader stage.

Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

e Six unsigned integers (initially all zero) are required to hold each respective
name of the current vertex stage program, current geometry stage program,
current fragment stage program, current tessellation control stage program,
current tessellation evaluation stage program, and active program respec-
tively.

e A boolean holding the status of the last validation attempt, initially false.
e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

2.14.5 Program Binaries

The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. If bufSize is less
than the number of bytes in the program binary, then an INVALID_OPERATION er-
ror is thrown. Otherwise, the actual number of bytes written into binary is returned

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 105

in length and its format is returned in binaryFormat. If length is NULL, then no
length is returned.

The number of bytes in the program binary can be queried by calling Get-
Programiv with pname PROGRAM_BINARY_LENGTH. When a program object’s
LINK_STATUS is FALSE, its program binary length is zero, and a call to GetPro-
gramBinary will generate an INVALID_OPERATION error.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful for future instantiations of the GL to avoid online com-
pilation, while still using OpenGL Shading Language source shaders as a portable
initial format. binaryFormat and binary must be those returned by a previous
call to GetProgramBinary, and length must be the length of the program binary
as returned by GetProgramBinary or GetProgramiv with pname PROGRAM_-
BINARY_LENGTH. The program binary will fail, setting the LINK_STATUS of pro-
gram to FALSE, if these conditions are not met.

A program binary may also fail if the implementation determines that there has
been a change in hardware or software configuration from when the program bi-
nary was produced such as having been compiled with an incompatible or outdated
version of the compiler. In this case the application should fall back to providing
the original OpenGL Shading Language source shaders, and perhaps again retrieve
the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfol.og, to provide details about warnings
Or erTors.

A successful call to ProgramBinary will reset all uniform variables to their
initial values. The initial value is either the value of the variable’s initializer as
specified in the original shader source, or zero if no initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
that were in effect when the program was linked before saving are restored when
ProgramBinary is called.

If ProgramBinary failed, any information about a previous link or load of that
program object is lost. Thus, a failed load does not restore the old state of program.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 106

The failure does not alter other program state not affected by linking such as the
attached shaders, and the vertex attribute and fragment data location bindings as
set by BindAttribLocation and BindFragDatal.ocation.

Queries of values NUM_PROGRAM_BINARY_FORMATS and PROGRAM_-—
BINARY_FORMATS return the number of program binary formats and the list of
program binary format values supported by an implementation. The binaryFormat
returned by GetProgramBinary must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector. If an implementation needs to recompile or otherwise modify pro-
gram executables based on GL state outside the program, GetProgramBinary is
required to save enough information to allow such recompilation. To indicate that
a program binary is likely to be retrieved, ProgramParameteri should be called
with pname PROGRAM_BINARY_RETRIEVABLE_HINT and value GL_TRUE. This
setting will not be in effect until the next time LinkProgram or ProgramBinary
has been called successfully. Additionally, GetProgramBinary calls may be de-
ferred until after using the program with all non-program state vectors that it is
likely to encounter. Such deferral may allow implementations to save additional
information in the program binary that would minimize recompilation in future
uses of the program binary.”

2.14.6 Vertex Attributes

Vertex shaders can

define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, or automatically assigned by the GL
when the program is linked.

When an attribute variable declared using one of the scalar or vector data types
enumerated in table 2.15 is bound to a generic attribute index i, its value(s) are
taken from the components of generic attribute i. Scalars are extracted from the =
component; two-, three-, and four-component vectors are extracted from the (x, y),
(x,y, 2), or (x,y, z, w) components, respectively.

When an attribute variable is declared as amat 2, mat 3x2 or mat 4x2, its matrix
columns are taken from the (x,y) components of generic attributes ¢ and i + 1
(mat2), from attributes ¢ through 7 4 2 (mat 3x2), or from attributes ¢ through ¢ + 3
(mat4x2). When an attribute variable is declared as a mat2x3, mat3 or mat4x3,
its matrix columns are taken from the (x,y, z) components of generic attributes

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 107

Data type | Command

int VertexAttribI1i
ivec2 VertexA ttribI2i
ivec3 VertexAttribI3i
ivecd VertexAttribldi
uint VertexAttribI1ui
uvec? VertexAttribI2ui
uvec3 VertexAttribI3ui
uvecd VertexAttribI4ui

float VertexAttrib1*
vec?2 VertexAttrib2*
vec3 VertexAttrib3*
vecd VertexAttrib4*

double VertexAttribL1d
dvec?2 VertexAttribL2d
dvec3 VertexAttribL3d
dvecd VertexAttribL4d

Table 2.15: Scalar and vector vertex attribute types and VertexAttrib* commands
used to set the values of the corresponding generic attribute.

t and ¢ + 1 (mat2x3), from attributes ¢ through ¢ + 2 (mat3), or from attributes
¢ through ¢ + 3 (mat4x3). When an attribute variable is declared as a mat2x4,
mat3x4 Oor mat4, its matrix columns are taken from the (z, y, z, w) components of
generic attributes ¢ and ¢ + 1 (mat2x4), from attributes ¢ through 7 4+ 2 (mat 3x4),
or from attributes ¢ through ¢ + 3 (mat4).

For the 64-bit double precision types listed in table 2.15, no default attribute
values are provided if the values of the vertex attribute variable are specified with
fewer components than required for the attribute variable. For example, the fourth
component of a variable of type dvec4 will be undefined if specified using Vertex-
AttribL3dv, or using a vertex array specified with VertexAttribLPointer and a
size of three.

is considered active if it
is determined by the compiler and linker that the attribute may be accessed when
the shader is executed. Attribute variables that are declared in a vertex shader but
never used will not count against the limit. In cases where the compiler and linker
cannot make a conclusive determination, an attribute will be considered active. A
program object will fail to link if the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 108

attributes exceeds MAX_VERTEX_ATTRIBS. For the purposes of this
comparison, attribute variables of the type dvec3, dvec4, dmat2x3, dmat2x4,
dmat3, dmat3x4, dmat4x3, and dmat4 may count as consuming twice as many
attributes as equivalent single-precision types.
To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES — 1
selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.18). If index is greater than or equal to
ACTIVE_ATTRIBUTES, the error INVALID_VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The returned attribute name

The length of
the longest attribute name in program is given by ACTIVE_ATTRIBUTE_MAX_—
LENGTH, which can be queried with GetProgramiv (see section 6.1.18).

For the selected attribute, the type of the attribute is returned into type. The
size of the attribute is returned into size. The value in size is in units of the type
returned in fype. The type returned can be any of the types whose “Attrib” column
is checked in table 2.16.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 109

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, or if an error occurs, -1 will be
returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings can be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_—
ATTRIBS). LinkProgram will fail if the attribute bindings assigned by BindAt-
tribLocation do not leave not enough space to assign a location for an active ma-
trix attribute or an active attribute array, both of which require multiple contiguous
generic attributes. If an active attribute has a binding explicitly set within the shader
text and a different binding assigned by BindAttribLocation, the assignment in
the shader text is used.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 110

BindAttribLocation may be issued before any vertex shader objects are at-

tached to a program object. Hence it is allowed to bind any name

to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index ¢ are part of
current If a new program object has
been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to index 1.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

2.14.7 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms can be grouped into uniform blocks. The values of each uni-
form in such a set are extracted from the data store of a buffer object corresponding
to the uniform block. OpenGL Shading Language syntax serves to delimit named
blocks of uniforms that can be backed by a buffer object. These are referred to
as named uniform blocks, and are assigned a uniform block index. Uniforms that
are declared outside of a named uniform block are said to be part of the default

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 111

uniform block. Default uniform blocks have no name or uniform block index. Like
uniforms, uniform blocks can be active or inactive. Active uniform blocks are those
that contain active uniforms after a program has been compiled and linked.

The amount of storage available for uniform variables in the default uniform
block accessed by a vertex shader is specified by the value of the implementation-
dependent constant MAX_VERTEX_UNIFORM_COMPONENTS. The implementation-
dependent constant MAX_VERTEX_UNIFORM_VECTORS has a value equal to the
value of MAX_VERTEX_ UNIFORM_COMPONENTS divided by four. The to-
tal amount of combined storage available for uniform variables in all uniform
blocks accessed by a vertex shader (including the default uniform block) is spec-
ified by the value of the implementation-dependent constant MAX_COMBINED_-
VERTEX_UNIFORM_COMPONENTS. These values represent the numbers of individ-
ual floating-point, integer, or boolean values that can be held in uniform variable
storage for a vertex shader. A uniform matrix with single- or double-precision
components will consume no more than 4 x min(r, c) or 8 x min(r, ¢) uniform
components, respectively. A scalar or vector uniform with double-precision com-
ponents will consume no more than 2n components, where #n is 1 for scalars, and
the component count for vectors. A link error is generated if an attempt is made to
utilize more than the space available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object’s default uniform block are initialized as defined by the version of
the OpenGL Shading Language used to compile the program. A successful link
will also generate a location for each active uniform in the default uniform block.
The values of active uniforms in the default uniform block can be changed using
this location and the appropriate Uniform* command (see below). These locations
are invalidated and new ones assigned after each successful re-link.

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Uniforms in a named
uniform block are not assigned a location and may not be modified using the
Uniform* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 112

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name if it is as-
sociated with the default uniform block. name must be a null-terminated string,
without white space. The value -1 will be returned if

if name does not correspond to an active uniform variable
name in program, or if name is associated with a named uniform block.

If program has not been successfully linked, the error INVALID_OPERATION
is generated. After a program is linked, the location of a uniform variable will not
change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0]". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

Named uniform blocks, like uniforms, are identified by name strings. Uniform
block indices corresponding to uniform block names can be queried by calling

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockName must contain a null-terminated string specifying the name
of a uniform block.

GetUniformBlockIndex returns the uniform block index for the uniform block
named uniformBlockName of program. If uniformBlockName does not identify an
active uniform block of program, or an error occurred, then INVALID_INDEX is
returned. The indices of the active uniform blocks of a program are assigned in
consecutive order, beginning with zero.

An active uniform block’s name string can be queried from its uniform block
index by calling

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 113

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei *length,
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex must be an active uniform block index of program, in the
range zero to the value of ACTIVE_UNIFORM_BLOCKS - 1. The value of ACTIVE_-—
UNIFORM_BLOCKS can be queried with GetProgramiv (see section 6.1.18). If
uniformBlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.

Information about an active uniform block can be queried by calling

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex is an active uniform block index of program. If uniform-
BlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_BLOCKS, or
is not the index of an active uniform block in program, the error INVALID_VALUE
is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNTFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point last selected by the uniform block specified by uniformBlockIndex
for program is returned. If no uniform block has been previously specified, zero is
returned.

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 114

hold all active uniforms in the uniform block identified by uniformBlockindex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this
is the std140 uniform block layout, which guarantees specific packing behavior
and does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.14.7).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetIntegerv with
the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNTFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNTFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER,
UNIFORM_BLOCK_REFERENCED_BY TESS_CONTROL_SHADER, UNIFORM_-
BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER, UNIFORM_BLOCK_-
REFERENCED_BY GEOMETRY_SHADER, oOr UNIFORM BLOCK_REFERENCED_-
BY_FRAGMENT_SHADER, then a boolean value indicating whether the uniform
block identified by uniformBlocklndex is referenced by the vertex, tessellation
control, tessellation evaluation, geometry, or fragment programming stages of
program, respectively, is returned.

Each active uniform, whether in a named uniform block or in the default block,
is assigned an index when a program is linked. Indices are assigned in consecutive
order, beginning with zero. The indices assigned to a set of uniforms in a program
may be queried by calling

void GetUniformIndices(uint program,
sizei uniformCount, const char **uniformNames,
uint *uniformindices);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 115

successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformCount indicates both the number of elements in the array of names
uniformNames and the number of indices that may be written to uniformlindices.

uniformNames contains a list of uniformCount name strings identifying the uni-
form names to be queried for indices. For each name string in uniformNames, the
index assigned to the active uniform of that name will be written to the correspond-
ing element of uniformindices. 1f a string in uniformNames is not the name of an
active uniform, the value INVALID_INDEX will be written to the corresponding
element of uniformindices.

If an error occurs, nothing is written to uniformlindices.

The name of an active uniform may be queried from the corresponding uniform
index by calling

void GetActiveUniformName(uint program,
uint uniformlndex, sizei bufSize, sizei *length,
char *uniformName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformlndex must be an active uniform index of the program program, in
the range zero to the value of ACTIVE_UNIFORMS - 1. The value of ACTIVE_ -
UNIFORMS can be queried with GetProgramiv. If uniformindex is greater than or
equal to the value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

The name of the uniform identified by uniformindex is returned as a null-
terminated string in uniformName. The actual number of characters written into
uniformName, excluding the null terminator, is returned in length. If length is
NULL, no length is returned. The maximum number of characters that may be writ-
ten into uniformName, including the null terminator, is specified by bufSize. The
returned uniform name can be the name of built-in uniform state as well. The com-
plete list of built-in uniform state is described in section 7.5 of the OpenGL Shad-
ing Language Specification. The length of the longest uniform name in program
is given by the value of ACTIVE_UNIFORM_MAX_LENGTH, which can be queried
with GetProgramiv.

If GetActiveUniformName is not successful, nothing is written to length or

uniformName.
Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 116

legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.
Information about active uniforms can be obtained by calling either

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

or

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

These commands provide information about the uniform or uniforms selected
by index or uniformindices, respectively. In GetActiveUniform, an index of 0
selects the first active uniform, and an index of the value of ACTIVE_UNIFORMS
- 1 selects the last active uniform. In GetActiveUniformsiv, uniformindices is an
array of such active uniform indices. If any index is greater than or equal to the
value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in
uniform state is described in section 7.5 of the OpenGL Shading Language Speci-
fication. The length of the longest uniform name in program is given by ACTIVE_—
UNIFORM_MAX_LENGTH.

Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is
legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform is into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.16, correspond-
ing to OpenGL Shading Language type keywords also shown in that table.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 117

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

If an error occurs, nothing is written to length, size, type, or name.

Type Name Token Keyword Attrib| Xfb
FLOAT float o °
FLOAT_VEC2 vec?2 ° °
FLOAT_VEC3 vec3 L] o
FLOAT_VEC4 vecd ° °
DOUBLE double (] °
DOUBLE_VEC2 dvec?2 o °
DOUBLE_VEC3 dvec3 o o
DOUBLE_VEC4 dvecd o °
INT int ° °
INT_VEC2 ivec2 o °
INT_VEC3 ivec3 (] °
INT_VEC4 ivecd ° °
UNSIGNED_INT unsigned int °]
UNSIGNED_INT_VEC2 uvec?2 o °
UNSIGNED_INT_VEC3 uvec3 o °
UNSIGNED_INT_VEC4 uvec4d o °
BOOL bool
BOOL_VEC2 bvec2
BOOL_VEC3 bvec3
BOOL_VEC4 bvec4d
FLOAT_MAT?2 mat?2 ° °
FLOAT_MAT3 mat3 L] o
FLOAT_MATA4 mat4 o °
FLOAT_MAT2x3 mat2x3 ° °
FLOAT_MAT2x4 mat2x4 ° °
(Continued on next page)

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 118
OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword Attrib| Xfb
FLOAT_MAT3x2 mat3x2 ° °
FLOAT_MAT3x4 mat3x4 L] o
FLOAT_MAT4x2 matédx2 [°
FLOAT_MAT4x3 mat4x3 (] °
DOUBLE_MAT?2 dmat?2 ° °
DOUBLE_MAT3 dmat3 ° °
DOUBLE_MAT4 dmat4 o °
DOUBLE_MAT2x3 dmat2x3 ° °
DOUBLE_MAT2x4 dmat2x4 ° °
DOUBLE_MAT3x2 dmat3x2 o o
DOUBLE_MAT3x4 dmat3x4 L] o
DOUBLE_MAT4x2 dmat4x2 [°
DOUBLE_MAT4x3 dmat4x3 L] o
SAMPLER_1D samplerlD
SAMPLER_2D sampler2D
SAMPLER_ 3D sampler3D
SAMPLER_CUBE samplerCube
SAMPLER_1D_SHADOW samplerlDShadow
SAMPLER_2D_SHADOW sampler2DShadow
SAMPLER_1D_ARRAY samplerlDArray
SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_CUBE_MAP_ARRAY

samplerCubeMapArray

SAMPLER_1D_ARRAY_SHADOW

samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW

sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE

sampler2DMS

SAMPLER_2D_MULTISAMPLE_-—
ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW

samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_ - samplerCubeMap-
SHADOW ArrayShadow
SAMPLER_BUFFER samplerBuffer
SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW

sampler2DRectShadow

INT_SAMPLER_1D

isamplerlD

INT_SAMPLER_2D

isampler2D

(Continued on next page)

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS

119

OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword Attrib| Xfb
INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube
INT_SAMPLER_1D_ARRAY isamplerlDArray
INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_ -
ARRAY

isamplerCubeMapArray

2D_ARRAY

INT_SAMPLER_2D_-— isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_ - isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
INT_SAMPLER_2D_RECT isampler2DRect
UNSIGNED_INT_SAMPLER_1D usamplerlD
UNSIGNED_INT_SAMPLER_2D usampler2D
UNSIGNED_INT_SAMPLER_3D usampler3D
UNSIGNED_INT_ SAMPLER_ - usamplerCube
CUBE

UNSIGNED_INT_SAMPLER_- usamplerlDArray
1D_ARRAY

UNSIGNED_INT_SAMPLER_-— usampler2DArray

UNSIGNED_INT_SAMPLER_
CUBE_MAP_ARRAY

usamplerCubeMapArray

2D_RECT

UNSIGNED_INT_SAMPLER -— usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_-— usampler2DMSArray
2D_MULTISAMPLE_ARRAY

UNSIGNED_INT_SAMPLER_ - usamplerBuffer
BUFFER

UNSIGNED_INT_ SAMPLER_ - usampler2DRect

Table 2.16: OpenGL Shading Language type tokens returned by
GetActiveUniform and GetActiveUniformsiv, and correspond-
ing shading language keywords declaring each such type. Types
whose “Attrib” column are marked may be declared as vertex
attributes (see section 2.14.6). Types whose “Xfb” column are
marked may be the types of variable returned by transform feed-

back (see section 2.14.10).
OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 120

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformindices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformlIndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformlndices is returned. The returned
types can be any of the values in table 2.16.

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformindices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the terminating null character, of the uniform name strings specified by
the corresponding array of uniformindices is returned.

If pname is UNIFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mindices is returned. The index of a uniform associated with the default uniform
block is -1.

If pname is UNIFORM_OFFSET, then an array of uniform buffer offsets is re-
turned. For uniforms in a named uniform block, the returned value will be its offset,
in basic machine units, relative to the beginning of the uniform block in the buffer
object data store. For uniforms in the default uniform block, -1 will be returned.

If pname is UNIFORM_ARRAY_STRIDE, then an array identifying the stride
between elements, in basic machine units, of each of the uniforms specified by
the corresponding array of uniformindices is returned. The stride of a uniform
associated with the default uniform block is -1. Note that this information only
makes sense for uniforms that are arrays. For uniforms that are not arrays, but are
declared in a named uniform block, an array stride of zero is returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformindices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named
uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 121

of the uniforms specified by the corresponding array of uniformlindices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables of the active program object, use the
commands

void Uniform{1234}{ifd}(int location, T value);

void Uniform{1234}{ifd}v(int location, sizei count,
const T value);

void Uniform{1234}ui(int location, T value);

void Uniform{1234}uiv(int location, sizei count, const
T value);

void UniformMatrix{234}{fd}v(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*d{v} commands will load count sets of one to four double-
precision floating-point values into a uniform location defined as a double, a double
vector, or an array of double scalars or vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 122

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234}fv and UniformMatrix{234}dv commands will
load count 2 x 2, 3 x 3, or 4 x 4 matrices (corresponding to 2, 3, or 4 in the
command name) of single- or double-precision floating-point values, respectively,
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fvand UniformMa-
trix{2x3,3x2,2x4,4x2,3x4,4x3 }dv commands will load count 2 x 3,3 x 2,2 x 4,
4 x 2,3 x 4, or 4 x 3 matrices (corresponding to the numbers in the command
name) of single- or double-precision floating-point values, respectively, into a
uniform location defined as a matrix or an array of matrices. The first number in
the command name is the number of columns; the second is the number of rows.
For example, UniformMatrix2x4fv is used to load a single-precision matrix
consisting of two columns and four rows. If transpose is FALSE, the matrix is
specified in column major order, otherwise in row major order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean
values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1liv
would generate an error.

For all other uniform types the Uniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are done.
For example, to load a uniform declared as a vec4, Uniform4f{v} must be used,
and to load a uniform declared as a dmat3, UniformMatrix3dv must be used.
An INVALID_OPERATION error will be generated if an attempt is made to use a
non-matching Uniform* command.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through k + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 123

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

o if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

if there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{ifd}(uint program,
int location, T value);

void ProgramUniform{1234}{ifd}v(uint program,
int location, sizei count, const T value);

void ProgramUniform{1234}ui(uint program, int location,
T value);

void ProgramUniform{1234}uiv(uint program,
int location, sizei count, T value);

void ProgramUniformMatrix{234}{fd}v(uint program,
int location, sizei count, boolean transpose, const
float *value);

void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(
uint program, int location, sizei count,
boolean transpose, const float *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter.The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 124

If program is not the name of a created program or shader object, an
INVALID_VALUE error is generated. If program identifies a shader object or a
program object that has not been linked successfully, an INVALID_OPERATION
error is generated.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number
of active uniform blocks used by each shader. If the number of uni-
form blocks used by any shader in the program exceeds its correspond-
ing limit, the program will fail to link. The limits for vertex, tessellation
control, tessellation evaluation, geometry, and fragment shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_UNIFORM_—
BLOCKS, MAX_TESS_CONTROL_UNIFORM BLOCKS, MAX TESS_EVALUATION_ -
UNIFORM_BLOCKS, MAX_GEOMETRY_UNIFORM_BLOCKS, and MAX_FRAGMENT_-
UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform
block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
Getlntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program
contains multiple shaders with different declarations for the same named uniform
block differs between shader, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type bool are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

e Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14.

VERTEX SHADERS 125

Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

Members of type double are extracted from a buffer object by reading a
single double-typed value at the specified offset.

Vectors with N elements with basic data types of bool, int, uint, float,
or double are extracted as /N values in consecutive memory locations be-
ginning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

Column-major matrices with C' columns and R rows (using the type
matCxR, or simply matC if C' = R) are treated as an array of C' floating-
point column vectors, each consisting of 2 components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-
ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNIFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

Row-major matrices with C' columns and R rows (using the type matCxR,
or simply matC if C' = R) are treated as an array of R floating-point row
vectors, each consisting of C' components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_STRIDE, is
an implementation-dependent value and may be queried after a program is
linked.

Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 126

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The 1ayout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is V.

2. If the member is a two- or four-component vector with components consum-
ing IV basic machine units, the base alignment is 2N or 4NV, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4 V.

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C' columns and R rows, the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 127

matrix is stored identically to an array of C column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of .S column-major matrices with C' columns and
R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C' columns and R rows, the matrix
is stored identically to an array of R row vectors with C' components each,
according to rule (4).

8. If the member is an array of .S row-major matrices with C' columns and R
rows, the matrix is stored identically to a row of S x R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is [N, where
N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with farget set to UNIFORM_BUFFER. In addition to the general errors described in
section 2.9.1, BindBufferRange will generate an INVALID_VALUE error if index
is greater than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS, or if
offset is not a multiple of the implementation-dependent alignment requirement
(the value of UNIFORM_BUFFER_OFFSET_ALIGNMENT).

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 128

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

An INVALID_VALUE error is generated if uniformBlockIndex is not an active
uniform block index of program, or if uniformBlockBinding is greater than or equal
to the value of MAX_UNIFORM_BUFFER_BINDINGS.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified

by vertex array commands (see section 2.8).

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

2.14.8 Subroutine Uniform Variables

Subroutine uniform variables are similar to uniform variables, except they are con-
text state rather than program state. Having subroutine uniforms be context state
allows them to have different values if the program is used in multiple contexts
simultaneously. There is a set of subroutine uniforms for each shader stage.

The command

int GetSubroutineUniformLocation(uint program,
enum shadertype, const char *name);

will return the location of the subroutine uniform variable name in the shader stage
of type shadertype attached to program, with behavior otherwise identical to GetU-
niformLocation. The value -1 will be returned if name is not the name of an active
subroutine uniform. Active subroutine locations are assigned using consecutive in-
tegers in the range from zero to the value of ACTIVE_SUBROUTINE_UNIFORM_ -
LOCATIONS minus one for the shader stage. There is an implementation-dependent

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 129

limit on the number of active subroutine uniform locations in each shader stage; a
program will fail to link if the number of subroutine uniform locations required is
greater than the value of MAX_SUBROUTINE_UNIFORM_LOCATIONS. If program
has not been successfully linked, the error INVALID_OPERATION will be gener-
ated. For active subroutine uniforms declared as arrays, the declared array elements
are assigned consecutive locations.

Each function in a shader associated with a subroutine type is considered an
active subroutine, unless the compiler conclusively determines that the function
could never be assigned to an active subroutine uniform. Each active subroutine
will be assigned an unsigned integer subroutine index that is unique to the shader
stage. This index can be queried with the command

uint GetSubroutinelndex(uint program, enum shadertype,
const char *name);

where name is the null-terminated name of a function in the shader stage of type
shadertype attached to program. Subroutine indices are assigned using consecutive
integers in the range from zero to the value of ACTIVE_SUBROUTINES minus one
for the shader stage. The value INVALID_INDEX will be returned if name is not
the name of an active subroutine in the shader stage. After the program has been
linked, the subroutine index will not change unless the program is re-linked.
There is an implementation-dependent limit on the number of active subrou-
tines in each shader stage; a program will fail to link if the number of subroutines
is greater than the maximum subroutine count, (the value of MAX_SUBROUTINES).
Information about active subroutine uniforms can be obtained by calling

void GetActiveSubroutineUniformiv(uint program,
enum shadertype, uint index, enum pname, int *values);
void GetActiveSubroutineUniformName(uint program,
enum shadertype, uint index, sizei bufsize,
sizei *length, char *name);

program and shadertype specify the program and shader stage. index must be an
active subroutine uniform index in the range from zero to the value of ACTIVE_-
SUBROUTINE_UNIFORMS minus one for the shader stage. If index is greater than
or equal to the value of ACTIVE_SUBROUTINE_UNIFORMS, the error INVALID_ -
VALUE is generated.

For GetActiveSubroutineUniformiv, pname identifies a property of the active
subroutine uniform being queried. If pname is NUM_COMPATIBLE_SUBROUTINES,
a single integer indicating the number of subroutines that can be assigned to the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 130

uniform is returned in values. If pname is COMPATIBLE_SUBROUTINES, an array
of integers is returned in values, with each integer specifying the index of an active
subroutine that can be assigned to the selected subroutine uniform. The number
of integers returned is the same as the value returned for NUM_COMPATIBLE_-—
SUBROUTINES. If pname is UNIFORM_SIZE, a single integer is returned in values.
If the selected subroutine uniform is an array, the declared size of the array is re-
turned; otherwise, one is returned. If pname is UNIFORM_NAME_LENGTH, a single
integer specifying the length of the subroutine uniform name (including the termi-
nating null character) is returned in values.

For GetActiveSubroutineUniformName, the uniform name is returned as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufsize. The length of the longest
subroutine uniform name in program and shadertype is given by the value of
ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH, which can be queried with Get-
ProgramStageiv.

The name of an active subroutine can be queried given its subroutine index
with the command:

void GetActiveSubroutineName(uint program,
enum shadertype, uint index, sizei bufsize,
sizei *length, char *name);

program and shadertype specify the program and shader stage. index must be
an active subroutine index in the range from zero to the value of ACTIVE_-
SUBROUTINES minus one for the shader stage. If index is greater than or equal
to the value of ACTIVE_SUBROUTINES, the error INVALID_VALUE is generated.
The name of the selected subroutine is returned as a null-terminated string in name.
The actual number of characters written into name, excluding the null terminator,
is returned in length. If length is NULL, no length is returned. The maximum num-
ber of characters that may be written into name, including the null terminator, is
specified by bufsize. The length of the longest subroutine name in program and
shadertype is given by the value of ACTIVE_SUBROUTINE_MAX_LENGTH, which
can be queried with GetProgramStageiv.
The command

void UniformSubroutinesuiv(enum shadertype, sizei count,
const uint *indices);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 131

will load all active subroutine uniforms for shader stage shadertype with subroutine
indices from indices, storing indices[i] into the uniform at location i. If count is
not equal to the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the
program currently in use at shader stage shadertype, or if any value in indices is
greater than or equal to the value of ACTIVE_SUBROUTINES for the shader stage,
the error INVALID_VALUE is generated. If, for any subroutine index being loaded
to a particular uniform location, the function corresponding to the subroutine index
was not associated (as defined in section 6.1.2 of the OpenGL Shading Language
Specification) with the type of the subroutine variable at that location, then the error
INVALID_OPERATION is generated. If no program is active, the error INVALID_—
OPERATION is generated.

Each subroutine uniform must have at least one subroutine to assign to the uni-
form. A program will fail to link if any stage has one or more subroutine uniforms
that has no subroutine associated with the subroutine type of the uniform.

When the active program for a shader stage is re-linked or changed by a call
to UseProgram, BindProgramPipeline, or UseProgramStages, subroutine uni-
forms for that stage are reset to arbitrarily chosen default functions with compati-
ble subroutine types.

2.14.9 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to ¢ selects texture
image unit number ¢. The values of ¢ ranges from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID_OPERATION error.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 132

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it de-
termines that the count of active samplers exceeds the allowable limits, then the
link fails (these limits can be different for different types of shaders). Each active
sampler variable counts against the limit, even if multiple samplers refer to the
same texture image unit.

2.14.10 Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language Specification). Varying variables are outputs of a vertex shader. The
OpenGL Shading Language Specification also defines a set of built-in varying and
special variables that vertex shaders can write to (see sections 7.1 and 7.6 of the
OpenGL Shading Language Specification). These varying variables are either used
as the mechanism to communicate values to the next active stage in the vertex pro-
cessing pipeline: either the tessellation control shader, the tessellation evaluation
shader, the geometry shader, or the fixed-function vertex processing stages leading
to rasterization.

If the varying variables are passed directly to the vertex processing stages lead-
ing to rasterization, the values of all varying and special variables are expected to
be interpolated across the primitive being rendered, unless flatshaded. Otherwise
the values of all varying and special variables are collected by the primitive assem-
bly stage and passed on to the subsequent pipeline stage once enough data for one
primitive has been collected.

The number of components (individual scalar numeric values) of varying and
special variables that can be written by the vertex shader, whether or not a tes-
sellation control, tessellation evaluation, or geometry shader is active, is given
by the value of the implementation-dependent constant MAX_VERTEX_OUTPUT_—
COMPONENTS. Outputs declared as vectors, matrices, and arrays will all consume
multiple components. For the purposes of counting input and output components
consumed by a shader, variables declared as vectors, matrices, and arrays will all
consume multiple components. Each component of variables declared as double-
precision floating-point scalars, vectors, or matrices may be counted as consuming
two components.

When a program is linked, all components of any varying and special vari-

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 133

able written by a vertex shader will count against this limit. A program whose
vertex shader writes more than the value of MAX_VERTEX_OUTPUT_COMPONENTS
components worth of varying variables may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as ver-
tex shader outputs or fragment shader inputs. This limit is given by the value
of the implementation-dependent constant MAX_VARYING_COMPONENTS. The
implementation-dependent constant MAX_VARYING_VECTORS has a value equal to
the value of MAX_VARYING_COMPONENTS divided by four. Each varying or spe-
cial variable component used as either a vertex shader output or fragment shader
input count against this limit, except for the components of g1_Position. A
program containing only a vertex and fragment shader that accesses more than this
limit’s worth of components of varying and special variables may fail to link, unless
device-dependent optimizations are able to make the program fit within available
hardware resources.

Each program object can specify a set of output variables from one shader to be
recorded in transform feedback mode (see section 2.20). The variables that can be
recorded are those emitted by the first active shader, in order, from the following
list:

e geometry shader
e tessellation evaluation shader
e tessellation control shader

e vertex shader
The values to record are specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char **varyings, enum bufferMode);

program specifies the program object. count specifies the number of vary-
ing variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the varying variables to use for trans-
form feedback.

Varying vari-
ables are written out in the order they appear in the array varyings. bufferMode is
either INTERLEAVED_ATTRIBS or SEPARATE_ATTRIBS, and identifies the mode
used to capture the varying variables when transform feedback is active. The error

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 134

INVALID_VALUE is generated if bufferMode is SEPARATE_ATTRIBS and count is
greater than the value of the implementation-dependent limit MAX_TRANSFORM_ -
FEEDBACK_SEPARATE_ATTRIBS.

If a string in varyings is g1_NextBuffer, it does not identify a varying vari-
able, but instead serves as a buffer separator value to direct subsequent varyings
at the next transform feedback binding point. If a string in varyings is gl_-
SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3, or gl_-—
SkipComponents4, it also does not identify a specific varying variable. Instead,
such values are treated as requesting that the GL skip the next one to four compo-
nents of varying data. Skipping components this way is equivalent to specifying a
one- to four-component varying with undefined values, except that the correspond-
ing memory in the buffer object is not modified. Such array entries are counted
as being written to the buffer object for the purposes of determining whether the
requested attributes exceed per-buffer component count limits. Each component
skipped is considered to occupy a single float.

The error INVALID_OPERATION is generated if any pointer in varyings
identifies the special names gl_NextBuffer, gl_SkipComponentsl, gl_-—
SkipComponents2, gl_SkipComponents3, or gl_SkipComponents4 and
bufferMode is not INTERLEAVED_ATTRIBS, or if the number of g1_NextBuffer
pointers in varyings is greater than or equal to the limit MAX_TRANSFORM_-—
FEEDBACK_BUFFERS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram is
called, the program is linked so that the values of the specified varying variables
for the vertices of each primitive generated by the GL are written to a single buffer
object (if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects
(if the buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

o the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex, tessellation control, tessellation evaluation, or
geometry shader;

e any variable name specified in the varyings array is not one of gl_-
NextBuffer, gl_SkipComponentsl, gl_SkipComponents2, gl_-
SkipComponents3, or gl_SkipComponents4, and is not declared as an
output in the shader stage whose outputs can be recorded.

e any two entries in the varyings array specify the same varying variable;

o the total number of components to capture in any varying variable in varyings
is greater than the value of MAX_ TRANSFORM FEEDBACK_ SEPARATE_ -
COMPONENTS and the buffer mode is SEPARATE_ATTRIBS;

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 135

e the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS; or

e the set of varyings to capture to any single binding point includes varyings
from more than one vertex stream.

For the purposes of counting the total number of components to capture, each
component of outputs declared as double-precision floating-point scalars, vectors,
or matrices may be counted as consuming two components.

To determine the set of varying variables in a linked program object that will
be captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

provides information about the varying variable selected by index. An index of O
selects the first varying variable specified in the varyings array of TransformFeed-
backVaryings, and an index of TRANSFORM_FEEDBACK_VARYINGS-1 selects the
last such varying variable. The value of TRANSFORM_FEEDBACK_VARYINGS can
be queried with GetProgramiv (see section 6.1.18). If index is greater than or
equal to TRANSFORM_FEEDBACK_VARYINGS, the error INVALID_VALUE is gen-
erated. The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. If program has not been linked,
the error INVALID_OPERATION is generated. If a new set of varying variables is
specified by TransformFeedbackVaryings after a program object has been linked,
the information returned by GetTransformFeedbackVarying will not reflect those
variables until the program is re-linked.

The name of the selected varying is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize.

The length of the longest varying name in program is given by TRANSFORM_ -
FEEDBACK_VARYING_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.18).

For the selected varying variable, its type is returned into fype. The size of the
varying is returned into size. The value in size is in units of the type returned in

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 136

type. The type returned can be any of the types whose “Xfb” column is checked
in table 2.16. If an error occurred, the return parameters length, size, type and
name will be unmodified. This command will return as much information about
the varying variables as possible. If no information is available, length will be set
to zero and name will be an empty string. This situation could arise if GetTrans-
formFeedbackVarying is called after a failed link.

Special varying names (e.g., gl_NextBuffer, gl_SkipComponentsl)
passed to TransformFeedbackVaryings in the varyings array are counted as vary-
ings to be recorded for the purposes of determining the value of TRANSFORM_—
FEEDBACK_VARYINGS and for determining the variable selected by index in Get-
TransformFeedbackVarying. If index identifies gl_NextBuffer, the values
zero and NONE will be written to size and type, respectively. If index is of the form
gl_SkipComponentsn, the value NONE will be written to type and the number of
components n will be written to size.

2.14.11 Shader Execution

If there is an active program object present for the vertex, tessellation control,
tessellation evaluation, or geometry shader stages, the executable code for these
active programs is used to process incoming vertex values, rather than the fixed-
function vertex processing described in sections 2.12 through 2.13. In particular,

e The model-view and projection matrices are not applied to vertex coordi-
nates (section 2.12).

e The texture matrices are not applied to texture coordinates (section 2.12.1).

e Normals are not transformed to eye coordinates, and are not rescaled or nor-
malized (section 2.12.2).

e Normalization of AUTO_NORMAL evaluated normals is not performed. (sec-
tion 5.1).

e Texture coordinates are not generated automatically (section 2.12.3).
e Per vertex lighting is not performed (section 2.13.1).

e Color material computations are not performed (section 2.13.3).

e Color index lighting is not performed (section 2.13.5).

e All of the above applies when setting the current raster position (sec-
tion 2.25).

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14.

VERTEX SHADERS 137

Vertices are processed by the vertex shader (see section 2.14) and assembled
into primitives as described in sections 2.5 through 2.8.

If the current program contains a tessellation control shader, each indi-
vidual patch primitive is processed by the tessellation control shader (sec-
tion 2.15.1). Otherwise, primitives are passed through unmodified. If active,
the tessellation control shader consumes its input patch and produces a new
patch primitive, which is passed to subsequent pipeline stages.

If the current program contains a tessellation evaluation shader, each indi-
vidual patch primitive is processed by the tessellation primitive generator
(section 2.15.2) and tessellation evaluation shader (see section 2.15.3). Oth-
erwise, primitives are passed through unmodified. When a tessellation eval-
uation shader is active, the tessellation primitive generator produces a new
collection of point, line, or triangle primitives to be passed to subsequent
pipeline stages. The vertices of these primitives are processed by the tes-
sellation evaluation shader. The patch primitive passed to the tessellation
primitive generator is consumed by this process.

If the current program contains a geometry shader, each individual primitive
is processed by the geometry shader (section 2.16). Otherwise, primitives
are passed through unmodified. If active, the geometry shader consumes its
input patch. However, each geometry shader invocation may emit new ver-
tices, which are arranged into primitives and passed to subsequent pipeline
stages.

The following fixed-function operations are the applied to vertices of the re-
sulting primitives:

2.13.6
Transform feedback (section 2.20).
Flatshading (section 2.22).
Clipping, including client-defined (section 2.23).
Perspective division on clip coordinates (section 2.17).
Viewport mapping, including depth range scaling (section 2.17.1).

Front face determination 2.13.1

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 138

. attribute clipping (sec-
tion 2.23.1).

2.24

e Rasterization (chapter 3).

There are several special considerations for vertex shader execution described
in the following sections.

Shader Only Texturing

This section describes texture functionality that is accessible through vertex,
tessellation control, tessellation evaluation, geometry, or fragment shaders. Also
refer to section 3.9 and to section 8.7 of the OpenGL Shading Language Specifica-
tion,

Texel Fetches

The OpenGL Shading Language texel fetch functions provide the ability to ex-
tract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used as the texel coordinates (i, j, k) into the tex-
ture image. This in turn means the texture image is point-sampled (no filtering is
performed), but the remaining steps of texture access (described below) are still
applied.

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levelpqge-

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

o the computed level of detail is less than the texture’s base level (levelpqse) or
greater than the maximum level (level,,q:)

o the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

e the layer specified for array textures is negative or greater than the number
of layers in the array texture,

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 139

e the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the specified level of detail, where any of

and the size parameters ws, hs, and dg refer to the width,
height, and depth of the image, as in equation 3.17

o the texture being accessed is not complete, as defined in section 3.9.14.

Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures support only NEAREST filtering.

Additionally, this fetch may only be performed on a multisample texture sam-
pler. No other sample or fetch commands may be performed on a multisample
texture sampler.

Texture Size Query

The OpenGL Shading Language texture size functions provide the ability to query
the size of a texture image. The LOD value lod passed in as an argument to the
texture size functions is added to the levelp,s. Of the texture to determine a tex-
ture image level. The dimensions of that image level, excluding a possible bor-
der, are then returned. If the computed texture image level is outside the range
[levelpgse, levelmay], the results are undefined. When querying the size of an array
texture, both the dimensions and the layer index are returned.

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number
of texture image units available to shaders are the values of the implementation-
dependent constants

e MAX_VERTEX_TEXTURE_IMAGE_UNITS (for vertex shaders),

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 140

e MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS (for tessellation control
shaders),

e MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS (for tessellation eval-
uation shaders),

e MAX_ GEOMETRY_TEXTURE_IMAGE_UNITS (for geometry shaders), and

e MAX_TEXTURE_IMAGE_UNITS (for fragment shaders).

combined cannot use more than the value of MAX_ COMBINED -
TEXTURE_IMAGE_UNITS texture image units. If more than one pipeline stage
accesses the same texture image unit, each such access counts separately against
the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a shader, the filtered texture value 7 is
computed in the manner described in sections 3.9.11 and 3.9.12, and converted to a
texture base color Cj, as shown in table 3.25, followed by application of the texture
swizzle as described in section 3.9.16 to compute the texture source color C's and
As.

The resulting four-component vector (Rs, G, Bs, As) is returned to the shader.
Texture lookup functions (see section 8.7 of the OpenGL Shading Language Spec-
ification) may return floating-point, signed, or unsigned integer values depending
on the function and the internal format of the texture.

In shaders other than fragment shaders, it is not possible to perform automatic
level-of-detail calculations using partial derivatives of the texture coordinates with
respect to window coordinates as described in section 3.9.11. Hence, there is no
automatic selection of an image array level. Minification or magnification of a tex-
ture map is controlled by a level-of-detail value optionally passed as an argument
in the texture lookup functions. If the texture lookup function supplies an explicit
level-of-detail value [, then the pre-bias level-of-detail value \pgse(,y) = [(re-
placing equation 3.18). If the texture lookup function does not supply an explicit
level-of-detail value, then A\pqse(x,y) = 0. The scale factor p(z, y) and its approx-
imation function f(x,y) (see equation 3.22) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with a reference
depth value specified in the coordinates passed to the texture lookup function, as
described in section 3.9.17. The comparison operation is requested in the shader by
using any of the shadow sampler types (samplerlDShadow, sampler2DShadow,
or sampler2DRectShadow), and in the texture using the TEXTURE_COMPARE_ —
MODE parameter. These requests must be consistent; the results of a texture lookup
are undefined if any of the following conditions are true:

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 141

e The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT oOr
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

e The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT Or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

Using a sampler in a shader will return (R, G, B, A) = (0,0, 0, 1) if the sam-
pler’s associated texture is not complete, as defined in section 3.9.14.

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_vertexID and gl_InstanceID.

gl_vertexID holds the integer index ¢ explicitly passed to ArrayElement to
specity the vertex, or implicitly passed by DrawArrays or one of the other drawing
commands defined in section 2.8.2. The value of g1_vertexTD is defined if and
only if:

e the vertex comes from a vertex array command that specifies a complete
primitive (a vertex array drawing command other than ArrayElement).

e all enabled vertex arrays have non-zero buffer object bindings, and

e the vertex does not come from a display list, even if the display list was
compiled using one of the vertex array commands described above with data
sourced from buffer objects.

gl_InstanceID holds the integer index of the current primitive in an in-
stanced draw call (see section 2.8.2).

Section 7.1 of the OpenGL Shading Language Specification also describes
these variables.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 142

Shader Outputs

A vertex shader can write to built-in as well as user-defined varying variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. Refer to section 2.22 and sections 4.3.6, 7.1,
and 7.6 of the OpenGL Shading Language Specification for more detail.

The built-in output variables gl_FrontColor, gl_BackColor, gl_-
FrontSecondaryColor, and gl_BackSecondaryColor hold the front and
back colors for the primary and secondary colors for the current vertex.

The built-in output variable gl_TexCoord[] is an array and holds the set of
texture coordinates for the current vertex.

The built-in output variable g1_FogFragCoord is used as the ¢ value de-
scribed in section 3.11.

The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

The built-in special variables g1 _Clipvertex and gl _ClipDistance re-
spectively hold the vertex coordinate and clip distance(s) used in the clipping stage,
as described in section 2.23. If clipping is enabled, only one of g1_Clipvertex
and gl_ClipDistance should be written.

The built-in special variable g1_PointSize, if written, holds the size of the
point to be rasterized, measured in pixels.

Position Invariance

If a vertex shader uses the built-in function ft ransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same
whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not use
ftransform to generate a position, transformed positions are not guaranteed to
match, even if the sequence of instructions used to compute the position match the
sequence of transformations described in section 2.12.

Validation

It is not always possible to determine at link time if a program object can execute
successfully, given that LinkProgram can not know the state of the remainder
of the pipeline. Therefore validation is done when the first rendering command
is issued, to determine if the set of active program objects can be executed. If
the current set of active program objects cannot be executed, no primitives are
processed and the error INVALID_OPERATION will be generated.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 143

This error is generated by Begin, RasterPos, or any command that performs
an implicit Begin if:

e A program object is active for at least one, but not all of the shader stages
that were present when the program was linked.

e One program object is active for at least two shader stages and a second
program is active for a shader stage between two stages for which the first
program was active.

e There is an active program for tessellation control, tessellation evaluation, or
geometry stages with corresponding executable shader, but there is no active
program with executable vertex shader.

e There is no current unified program object and the current program pipeline
object includes a program object that was relinked since being applied to
the pipeline object via UseProgramStages with the PROGRAM_SEPARABLE
parameter set to FALSE.

e Any two active samplers in the current program object are of different types,
but refer to the same texture image unit.

e Any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type.

e The sum of the number of active samplers in the program and the number of
texture image units enabled for fixed-function fragment processing exceeds
the combined limit on the total number of texture image units allowed.

Fixed-function fragment processing operations will be performed if the pro-
gram object in use has no fragment shader.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 144

validation. This status can be queried with GetProgramiv (see section 6.1.18).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Separable program objects may have validation failures that cannot be detected
without the complete program pipeline. Mismatched interfaces, improper usage
of program objects together, and the same state-dependent failures can result in
validation errors for such program objects. As a development aid, use the command

void ValidateProgramPipeline(uint pipeline);

to validate the program pipeline object pipeline against the current GL state. Each
program pipeline object has a boolean status, VALIDATE_STATUS, that is modified
as a result of validation. This status can be queried with GetProgramPipelineiv
(see section 6.1.18). If validation succeeded, the program pipeline object is guar-
anteed to execute given the current GL state.

If pipeline is a name that has been generated (without subsequent deletion)
by GenProgramPipelines, but refers to a program pipeline object that has not
been previously bound, the GL first creates a new state vector in the same man-
ner as when BindProgramPipeline creates a new program pipeline object. If
pipeline is not a name returned from a previous call to GenProgramPipelines or if
such a name has since been deleted by DeleteProgramPipelines, an INVALID_-
OPERATION error is generated.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.14. VERTEX SHADERS 145

variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

2.14.12 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.

The state required per program object consists of:

e An unsigned integer indicating the program object name.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

e A boolean holding the status of the last validation attempt, initally FALSE.
¢ An integer holding the number of attached shader objects.

o A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 146

e An integer holding the number of active uniforms.

e For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

e An array holding the values of each active uniform.
¢ An integer holding the number of active attributes.

e For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

e A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support vertex shaders consists of:

e A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

e A bit indicating whether or not program point size mode (section 3.4.1) is
enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

2.15 Tessellation

Tessellation is a process that reads a patch primitive and generates new primitives
used by subsequent pipeline stages. The generated primitives are formed by sub-
dividing a single triangle or quad primitive according to fixed or shader-computed
levels of detail and transforming each of the vertices produced during this subdivi-
sion.

Tessellation functionality is controlled by two types of tessellation shaders: tes-
sellation control shaders and tessellation evaluation shaders. Tessellation is con-
sidered active if and only if there is an active tessellation control or tessellation
evaluation program object.

The tessellation control shader is used to read an input patch provided by the
application, and emit an output patch. The tessellation control shader is run once
for each vertex in the output patch and computes the attributes of that vertex. Addi-
tionally, the tessellation control shader may compute additional per-patch attributes

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 147

of the output patch. The most important per-patch outputs are the tessellation lev-
els, which are used to control the number of subdivisions performed by the tessella-
tion primitive generator. The tessellation control shader may also write additional
per-patch attributes for use by the tessellation evaluation shader. If no tessellation
control shader is active, the patch provided is passed through to the tessellation
primitive generator stage unmodified.

If a tessellation evaluation shader is active, the tessellation primitive generator
subdivides a triangle or quad primitive into a collection of points, lines, or triangles
according to the tessellation levels of the patch and the set of layout declarations
specified in the tessellation evaluation shader text. The tessellation levels used to
control subdivision are normally written by the tessellation control shader. If no
tessellation control shader is active, default tessellation levels are instead used.

When a tessellation evaluation shader is active, it is run on each vertex gener-
ated by the tessellation primitive generator to compute the final position and other
attributes of the vertex. The tessellation evaluation shader can read the relative
location of the vertex in the subdivided output primitive, given by an (u,v) or
(u,v,w) coordinate, as well as the position and attributes of any or all of the ver-
tices in the input patch.

Tessellation operates only on patch primitives. If tessellation is active,

will generate an INVALID_-
OPERATION error if the primitive mode is not PATCHES.

Patch primitives are not supported by pipeline stages below the tessellation
evaluation shader. If there is no active tessellation evaluation program, the error
INVALID_OPERATION is generated by

if the primitive mode is PATCHES.

A program object or program pipeline object that includes a tessellation shader
of any kind must also include a vertex shader. If the current program state has a
tessellation shader but no vertex shader when

is called, an INVALID_OPERATION error will be generated.

2.15.1 Tessellation Control Shaders

The tessellation control shader consumes an input patch provided by the applica-
tion and emits a new output patch. The input patch is an array of vertices with at-
tributes corresponding to output variables written by the vertex shader. The output
patch consists of an array of vertices with attributes corresponding to per-vertex
output variables written by the tessellation control shader and a set of per-patch
attributes corresponding to per-patch output variables written by the tessellation
control shader. Tessellation control output variables are per-vertex by default, but
may be declared as per-patch using the patch qualifier.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 148

The number of vertices in the output patch is fixed when the program is linked,
and is specified in tessellation control shader source code using the output layout
qualifier vertices, as described in the OpenGL Shading Language Specification.
A program will fail to link if the output patch vertex count is not specified by
any tessellation control shader object attached to the program, if it is specified
differently by multiple tessellation control shader objects, if it is less than or equal
to zero, or if it is greater than the implementation-dependent maximum patch size.
The output patch vertex count may be queried by calling GetProgramiv with the
symbolic constant TESS_CONTROL_OUTPUT_VERTICES.

Tessellation control shaders are created as described in section 2.14.1, using a
type of TESS_CONTROL_SHADER. When a new input patch is received, the tessel-
lation control shader is run once for each vertex in the output patch. The tessel-
lation control shader invocations collectively specify the per-vertex and per-patch
attributes of the output patch. The per-vertex attributes are obtained from the per-
vertex output variables written by each invocation. Each tessellation control shader
invocation may only write to per-vertex output variables corresponding to its own
output patch vertex. The output patch vertex number corresponding to a given
tessellation control point shader invocation is given by the built-in variable g1_-
InvocationID. Per-patch attributes are taken from the per-patch output variables,
which may be written by any tessellation control shader invocation. While tessella-
tion control shader invocations may read any per-vertex and per-patch output vari-
able and write any per-patch output variable, reading or writing output variables
also written by other invocations has ordering hazards discussed below.

Tessellation Control Shader Variables

Tessellation control shaders can access uniforms belonging to the current pro-
gram object. The amount of storage available for uniform variables in the
default uniform block accessed by a tessellation control shader is specified
by the value of the implementation-dependent constant MAX_TESS_CONTROL_—
UNIFORM_COMPONENTS. The total amount of combined storage available for uni-
form variables in all uniform blocks accessed by a tessellation control shader (in-
cluding the default uniform block) is specified by the value of the implementation-
dependent constant MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS.
These values represent the numbers of individual floating-point, integer, or boolean
values that can be held in uniform variable storage for a tessellation evaluation
shader. A link error is generated if an attempt is made to utilize more than the
space available for tessellation control shader uniform variables. Uniforms are ma-
nipulated as described in section 2.14.7. Tessellation control shaders also have
access to samplers to perform texturing operations, as described in section 2.14.9.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 149

Tessellation control shaders can access the transformed attributes of all vertices
for their input primitive using input variables. A vertex shader writing to output
variables generates the values of these input varying variables, including values for
built-in as well as user-defined varying variables. Values for any varying variables
that are not written by a vertex shader are undefined.

Additionally, tessellation control shaders can write to one or more output vari-
ables, including per-vertex attributes for the vertices of the output patch and per-
patch attributes of the patch. Tessellation control shaders can also write to a set
of built-in per-vertex and per-patch outputs defined in the OpenGL Shading Lan-
guage. The per-vertex and per-patch attributes of the output patch are used by the
tessellation primitive generator (section 2.15.2) and may be read by tessellation
evaluation shader (section 2.15.3).

Tessellation Control Shader Execution Environment

If there is an active program for the tessellation control stage, the executable ver-
sion of the program’s tessellation control shader is used to process patches result-
ing from the primitive assembly stage. When tessellation control shader execu-
tion completes, the input patch is consumed. A new patch is assembled from the
per-vertex and per-patch output variables written by the shader and is passed to
subsequent pipeline stages.

There are several special considerations for tessellation control shader execu-
tion described in the following sections.

Texture Access

The Shader-Only Texturing subsection of section 2.14.11 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to tessellation control shaders.

Tessellation Control Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-
in variable array gl_in available as input to a tessellation control shader. g1_-
in receives values from equivalent built-in output variables written by the ver-
tex shader (section 2.14.11). Each array element of g1_in is a structure holding
values for a specific vertex of the input patch. The length of g1_in is equal to
the implementation-dependent maximum patch size (g1_MaxPatchVertices).
Behavior is undefined if gl_in is indexed with a vertex index greater than
or equal to the current patch size. The members of each element of the

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 150

gl_in array are gl_Position, gl_PointSize, gl_ClipDistance,

Tessellation control shaders have available several other special input variables
not replicated per-vertex and not contained in g1_in, including:

e The variable gl_PatchVerticesIn holds the number of vertices in the
input patch being processed by the tessellation control shader.

e The variable g1_PrimitiveID is filled with the number of primitives pro-
cessed
1S num-
bered zero, and the primitive ID counter is incremented after every individual
point, line, or triangle primitive is processed. Restarting a primitive topology
using the primitive restart index has no effect on the primitive ID counter.

e The variable g1_InvocationID holds an invocation number for the cur-
rent tessellation control shader invocation. Tessellation control shaders are
invoked once per output patch vertex, and invocations are numbered begin-
ning with zero.

Similarly to the built-in varying variables, each user-defined input varying vari-
able has a value for each vertex and thus needs to be declared as arrays or inside
input blocks declared as arrays. Declaring an array size is optional. If no size
is specified, it will be taken from the implementation-dependent maximum patch
size (g1_MaxPatchVertices). If a size is specified, it must match the maximum
patch size; otherwise, a link error will occur. Since the array size may be larger
than the number of vertices found in the input patch, behavior is undefined if a per-
vertex input variable is accessed using an index greater than or equal to the number
of vertices in the input patch. The OpenGL Shading Language doesn’t support
multi-dimensional arrays; therefore, user-defined tessellation control shader inputs
corresponding to vertex shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array.

Similarly to the limit on vertex shader output components (see section 2.14.10),
there is a limit on the number of components of built-in and user-defined input
varying variables that can be read by the tessellation control shader, given by the
value of the implementation-dependent constant MAX_TESS_CONTROIL_INPUT_—
COMPONENTS.

When a program is linked, all components of any varying and special vari-
able read by a tessellation control shader will count against this limit. A program

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 151

whose tessellation control shader exceeds this limit may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.10).

Tessellation Control Shader Outputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array g1_out available as an output for a tessellation control shader. g1_ -
out passes values to equivalent built-in input variables read by subsequent shader
stages or to subsequent fixed functionality vertex processing pipeline stages. Each
array element of g1_out is a structure holding values for a specific vertex of the
output patch. The length of g1_out is equal to the output patch size specified
in the tessellation control shader output layout declaration (gl_verticesOut).
The members of each element of the gl_out array are gl_Position, gl_-—
PointSize,

and behave identically to equivalently
named vertex shader outputs (section 2.14.11).

Tessellation shaders additionally have two built-in per-patch output arrays,
gl_TessLevelOuter and gl_TessLevelInner. These arrays are not repli-
cated for each output patch vertex and are not members of gl_out. gl_-
TessLevelOuter is an array of four floating-point values specifying the approxi-
mate number of segments that the tessellation primitive generator should use when
subdividing each outer edge of the primitive it subdivides. g1_TessLevellInner
is an array of two floating-point values specifying the approximate number of seg-
ments used to produce a regularly-subdivided primitive interior. The values writ-
tento gl_TessLevelOuter and gl_TessLevelInner need not be integers, and
their interpretation depends on the type of primitive the tessellation primitive gener-
ator will subdivide and other tessellation parameters, as discussed in the following
section.

A tessellation control shader may also declare user-defined per-vertex output
variables. User-defined per-vertex output variables are declared with the qualifier
out and have a value for each vertex in the output patch. Such variables must be
declared as arrays or inside output blocks declared as arrays. Declaring an array
size is optional. If no size is specified, it will be taken from output patch size
(gl_verticesoOut) declared in the shader. If a size is specified, it must match
the maximum patch size; otherwise, a link error will occur. The OpenGL Shading
Language doesn’t support multi-dimensional arrays; therefore, user-defined per-

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.15. TESSELLATION 152

vertex tessellation control shader outputs with multiple elements per vertex must
be declared as array members of an output block that is itself declared as an array.

While per-vertex output variables are declared as arrays indexed by vertex
number, each tessellation control shader invocation may write only to those outputs
corresponding to its output patch vertex. Tessellation control shaders must use the
special variable g1_InvocationID as the vertex number index when writing to
per-vertex output variables.

Additionally, a tessellation control shader may declare per-patch output vari-
ables using the qualifier patch out. Unlike per-vertex outputs, per-patch outputs
do not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch outputs declared as arrays have multiple values for the output
patch; similarly declared per-vertex outputs would indicate a single value for each
vertex in the output patch. User-defined per-patch outputs are not used by the tes-
sellation primitive generator, but may be read by tessellation evaluation shaders.

There are several limits on the number of components of built-in and user-
defined output variables that can be written by the tessellation control shader.
The number of components of active per-vertex output variables may not ex-
ceed the value of MAX_TESS_CONTROL_OUTPUT_COMPONENTS. The number of
components of active per-patch output variables may not exceed the value of
MAX_TESS_PATCH_COMPONENTS. The built-in outputs gl_TessLevelOuter
and gl_TessLevelInner are not counted against the per-patch limit. The to-
tal number of components of active per-vertex and per-patch outputs is derived by
multiplying the per-vertex output component count by the output patch size and
then adding the per-patch output component count. The total component count
may not exceed MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS.

When a program is linked, all components of any varying and special variables
written by a tessellation control shader will count against this limit. A program ex-
ceeding any of these limits may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Counting rules for different variable types and variable declarations are the
same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.10).

Tessellation Control Shader Execution Order

For tessellation control shaders with a declared output patch size greater than one,
the shader is invoked more than once for each input patch. The order of execution
of one tessellation control shader invocation relative to the other invocations for
the same input patch is largely undefined. The built-in function barrier provides
some control over relative execution order. When a tessellation control shader calls
the barrier function, its execution pauses until all other invocations have also

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 153

called the same function. Output variable assignments performed by any invocation
executed prior to calling barrier will be visible to any other invocation after the
call to barrier returns. Shader output values read in one invocation but written
by another may be undefined without proper use of barrier; full rules are found
in the OpenGL Shading Language Specification.

The barrier function may only be called inside the main entry point of the
tessellation control shader and may not be called in potentially divergent flow con-
trol. In particular, barrier may not be called inside a switch statement, in either
sub-statement of an if statement, inside a do, for, or while loop, or at any point after
a return statement in the function main.

2.15.2 Tessellation Primitive Generation

If a tessellation evaluation shader is present, the tessellation primitive generator
consumes the input patch and produces a new set of basic primitives (points, lines,
or triangles). These primitives are produced by subdividing a geometric primitive
(rectangle or triangle) according to the per-patch tessellation levels written by the
tessellation control shader, if present, or taken from default patch parameter val-
ues. This subdivision is performed in an implementation-dependent manner. If no
tessellation evaluation shader is present, the tessellation primitive generator passes
incoming primitives through without modification.

The type of subdivision performed by the tessellation primitive generator is
specified by an input layout declaration in the tessellation evaluation shader us-
ing one of the identifiers triangles, quads, and isolines. For triangles,
the primitive generator subdivides a triangle primitive into smaller triangles. For
quads, the primitive generator subdivides a rectangle primitive into smaller tri-
angles. For isolines, the primitive generator subdivides a rectangle primitive
into a collection of line segments arranged in strips stretching horizontally across
the rectangle. Each vertex produced by the primitive generator has an associated
(u,v,w) or (u,v) position in a normalized parameter space, with parameter values
in the range [0, 1], as illustrated in figure 2.13. For t riangles, the vertex position
is a barycentric coordinate (u, v, w), where u + v + w = 1, and indicates the rela-
tive influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u,v) coordinate indicating the relative
horizontal and vertical position of the vertex relative to the subdivided rectangle.
The subdivision process is explained in more detail in subsequent sections.

When no tessellation control shader is present, the tessellation levels are taken
from default patch tessellation levels. These default levels are set by calling

void PatchParameterfv(enum pname, const

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 154

(0,1) oL3 (1,1) (0,1,0)
ILO
oLo IL1 oL2 oLo oL2
ILO
(0,0) oL1 (1,0) (0,0,1) oL1 (1,0,0)
Quads Triangles
(0,1) (1,1)
A (no edge)
oLo!
v
(0,0) oLl (1,0)
Isolines
Figure 2.13. Domain parameterization for tessellation generator primitive modes
(triangles, quads, or isolines). The coordinates illustrate the value of gl_-
TessCoord at the corners of the domain. The labels on the edges indicate the
inner (ILO and IL1) and outer (OLO through OL3) tessellation level values used to
control the number of subdivisions along each edge of the domain.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 155

float *values);

If pname is PATCH_DEFAULT_OUTER_LEVEL, values specifies an array of four
floating-point values corresponding to the four outer tessellation levels for each
subsequent patch. If pname is PATCH_DEFAULT_INNER_LEVEL, values specifies
an array of two floating-point values corresponding to the two inner tessellation
levels.

A patch is discarded by the tessellation primitive generator if any relevant outer
tessellation level is less than or equal to zero. Patches will also be discarded if
any outer tessellation level corresponds to a floating-point NaN (not a number) in
implementations supporting NaN. When patches are discarded, no new primitives
will be generated and the tessellation evaluation program will not be run. For
quads, all four outer levels are relevant. For triangles and isolines, only the
first three or two outer levels, respectively, are relevant. Negative inner levels will
not cause a patch to be discarded; they will be clamped as described below.

Each of the tessellation levels is used to determine the number and spacing
of segments used to subdivide a corresponding edge. The method used to derive
the number and spacing of segments is specified by an input layout declaration
in the tessellation evaluation shader using one of the identifiers equal_spacing,
fractional_even_spacing, or fractional_odd_spacing. If no spacing is
specified in the tessellation evaluation shader, equal_spacing will be used.

If equal_spacing is used, the floating-point tessellation level is first clamped
to the range [1, max], where max is the implementation-dependent maximum tes-
sellation level (the value of MAX_TESS_GEN_LEVEL). The result is rounded up to
the nearest integer n, and the corresponding edge is divided into n segments of
equal length in (u, v) space.

If fractional_even_spacingis used, the tessellation level is first clamped
to the range [2,max] and then rounded up to the nearest even integer n. If
fractional_odd_spacing is used, the tessellation level is clamped to the range
[1, max — 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into
n — 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional seg-
ments relative to the others will decrease monotonically with the value of n — f,
where f is the clamped floating-point tessellation level. When n — f is zero, the
additional segments will have equal length to the other segments. As n — f ap-
proaches 2.0, the relative length of the additional segments approaches zero. The
two additional segments should be placed symmetrically on opposite sides of the
subdivided edge. The relative location of these two segments is undefined, but
must be identical for any pair of subdivided edges with identical values of f.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 156

When the tessellation primitive generator produces triangles (in the
triangles or quads modes), the orientation of all triangles can be specified by
an input layout declaration in the tessellation evaluation shader using the identifiers
cw and ccw. If the order is cw, the vertices of all generated triangles will have a
clockwise ordering in (u,v) or (u,v,w) space, as illustrated in figure 2.13. If the
order is ccw, the vertices will be specified in counter-clockwise order. If no layout
is specified, ccw will be used.

For all primitive modes, the tessellation primitive generator is capable of gen-
erating points instead of lines or triangles. If an input layout declaration in the
tessellation evaluation shader specifies the identifier point_mode, the primitive
generator will generate one point for each unique vertex produced by tessellation.
Otherwise, the primitive generator will produce a collection of line segments or
triangles according to the primitive mode.

The points, lines, or triangles produced by the tessellation primitive generator
are passed to subsequent pipeline stages in an implementation-dependent order.

Triangle Tessellation

If the tessellation primitive mode is triangles, an equilateral triangle is subdi-
vided into a collection of triangles covering the area of the original triangle. First,
the original triangle is subdivided into a collection of concentric equilateral trian-
gles. The edges of each of these triangles are subdivided, and the area between
each triangle pair is filled by triangles produced by joining the vertices on the sub-
divided edges. The number of concentric triangles and the number of subdivisions
along each triangle except the outermost is derived from the first inner tessellation
level. The edges of the outermost triangle are subdivided independently, using the
first, second, and third outer tessellation levels to control the number of subdivi-
sions of the © = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively.
The second inner tessellation level and the fourth outer tessellation level have no
effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are ex-
actly one after clamping and rounding, only a single triangle with (u,v,w) co-
ordinates of (0,0, 1), (1,0,0), and (0, 1,0) is generated. If the inner tessellation
level is one and any of the outer tessellation levels is greater than one, the inner
tessellation level is treated as though it were originally specified as 1 + € and will
be rounded up to result in a two- or three-segment subdivision according to the
tessellation spacing.

If any tessellation level is greater than one, tessellation begins by producing a
set of concentric inner triangles and subdividing their edges. First, the three outer
edges are temporarily subdivided using the clamped and rounded first inner tes-

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 157

(0,1,0)

(0,1,0)

(0,0,1) (1,0,0)

0,0,1) (1,0,0

Figure 2.14. Inner triangle tessellation with inner tessellation levels of (a) five and
(b) four, respectively (not to scale) Solid black circles depict vertices along the
edges of the concentric triangles. The edges of inner triangles are subdivided by
intersecting the edge with segments perpendicular to the edge passing through each
inner vertex of the subdivided outer edge. Dotted lines depict edges connecting
corresponding vertices on the inner and outer triangle edges.

sellation level and the specified tessellation spacing, generating n segments. For
the outermost inner triangle, the inner triangle is degenerate — a single point at the
center of the triangle — if n is two. Otherwise, for each corner of the outer trian-
gle, an inner triangle corner is produced at the intersection of two lines extended
perpendicular to the corner’s two adjacent edges running through the vertex of the
subdivided outer edge nearest that corner. If n is three, the edges of the inner tri-
angle are not subdivided and is the final triangle in the set of concentric triangles.
Otherwise, each edge of the inner triangle is divided into n — 2 segments, with
the n — 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n — 1 innermost vertices of the
subdivision of the outer edge. Once the outermost inner triangle is subdivided, the
previous subdivision process repeats itself, using the generated triangle as an outer
triangle. This subdivision process is illustrated in figure 2.14.

Once all the concentric triangles are produced and their edges are subdivided,
the area between each pair of adjacent inner triangles is filled completely with a

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 158

set of non-overlapping triangles. In this subdivision, two of the three vertices of
each triangle are taken from adjacent vertices on a subdivided edge of one triangle;
the third is one of the vertices on the corresponding edge of the other triangle.
If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle
with the center point. If the innermost triangle is not degenerate, that triangle is
added to the set of generated triangles as-is.

After the area corresponding to any inner triangles is filled, the primitive gen-
erator generates triangles to cover area between the outermost triangle and the out-
ermost inner triangle. To do this, the temporary subdivision of the outer triangle
edge above is discarded. Instead, the u = 0, v = 0, and w = 0 edges are subdi-
vided according to the first, second, and third outer tessellation levels, respectively,
and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by
non-overlapping triangles as described above. If the first (and only) inner triangle
is degenerate, a set of triangles is produced by connecting each vertex on the outer
triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is as-
signed a barycentric (u, v, w) coordinate based on its location relative to the three
vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u, v, w) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will be
covered by multiple triangles. The order in which the generated triangles passed
to subsequent pipeline stages and the order of the vertices in those triangles are
both implementation-dependent. However, when depicted in a manner similar to
figure 2.14, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order layout declara-
tion.

Quad Tessellation

If the tessellation primitive mode is quads, a rectangle is subdivided into a col-
lection of triangles covering the area of the original rectangle. First, the original
rectangle is subdivided into a regular mesh of rectangles, where the number of
rectangles along the v = 0 and v = 1 (vertical) and v = 0 and v = 1 (horizon-
tal) edges are derived from the first and second inner tessellation levels, respec-
tively. All rectangles, except those adjacent to one of the outer rectangle edges,
are decomposed into triangle pairs. The outermost rectangle edges are subdivided
independently, using the first, second, third, and fourth outer tessellation levels to

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 159

control the number of subdivisions of the u = 0 (left), v = 0 (bottom), u = 1
(right), and v = 1 (top) edges, respectively. The area between the inner rectan-
gles of the mesh and the outer rectangle edges are filled by triangles produced by
joining the vertices on the subdivided outer edges to the vertices on the edge of the
inner rectangle mesh.

If both clamped inner tessellation levels and all four clamped outer tessellation
levels are exactly one, only a single triangle pair covering the outer rectangle is
generated. Otherwise, if either clamped inner tessellation level is one, that tessel-
lation level is treated as though it were originally specified as 1 + €, which would
rounded up to result in a two- or three-segment subdivision according to the tessel-
lation spacing.

If any tessellation level is greater than one, tessellation begins by subdividing
the v = 0 and v = 1 edges of the outer rectangle into m segments using the
clamped and rounded first inner tessellation level and the tessellation spacing. The
v = 0 and v = 1 edges are subdivided into n segments using the second inner
tessellation level. Each vertex on the ©w = 0 and v = 0 edges are joined with the
corresponding vertex on the v = 1 and v = 1 edges to produce a set of vertical
and horizontal lines that divide the rectangle into a grid of smaller rectangles. The
primitive generator emits a pair of non-overlapping triangles covering each such
rectangle not adjacent to an edge of the outer rectangle. The boundary of the re-
gion covered by these triangles forms an inner rectangle, the edges of which are
subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s “edges” consist of
a single point. This subdivision is illustrated in figure 2.15.

After the area corresponding to the inner rectangle is filled, the primitive gen-
erator must produce triangles to cover area between the inner and outer rectangles.
To do this, the subdivision of the outer rectangle edge above is discarded. Instead,
thew = 0, v = 0, v = 1, and v = 1 edges are subdivided according to the
first, second, third, and fourth outer tessellation levels, respectively, and the tes-
sellation spacing. The original subdivision of the inner rectangle is retained. The
area between the outer and inner rectangles is completely filled by non-overlapping
triangles. Two of the three vertices of each triangle are adjacent vertices on a sub-
divided edge of one rectangle; the third is one of the vertices on the corresponding
edge of the other triangle. If either edge of the innermost rectangle is degenerate,
the area near the corresponding outer edges is filled by connecting each vertex on
the outer edge with the single vertex making up the inner “edge”.

The algorithm used to subdivide the rectangular domain in (u,v) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will be
covered by multiple triangles. The order in which the generated triangles passed

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 160

(0,1) (1,1)
. *® . *® ®
| S . . A ‘
o ° o ° o
(0,0) (1,0)
(a)
(0,1) (1,1)
. *® . *® . ® ® ®
| S o - .
®------- ® - ------]
®------- g * A * * ® - *
o o ¢ ¢ ¢ ¢ ¢ o
(0,0) (1,0)
(b)
Figure 2.15. Inner quad tessellation with inner tessellation levels of (a) (4,2) and
(b) (7, 4), respectively. Gray regions on the bottom figure depict the 10 inner rectan-
gles, each of which will be subdivided into two triangles. Solid black circles depict
vertices on the boundary of the outer and inner rectangles, where the inner rectangle
on the top figure is degenerate (a single line segment). Dotted lines depict the hor-
izontal and vertical edges connecting corresponding vertices on the inner and outer
rectangle edges.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 161

to subsequent pipeline stages and the order of the vertices in those triangles are
both implementation-dependent. However, when depicted in a manner similar to
figure 2.15, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order layout declara-
tion.

Isoline Tessellation

If the tessellation primitive mode is isolines, a set of independent horizontal
line segments is drawn. The segments are arranged into connected strips, where
each strip has a constant v coordinate, and the u coordinates of the strip cover the
full range [0, 1]. The number of segments in each strip is derived from the first
outer tessellation level; the number of line strips drawn is derived from the second
outer tessellation level. Both inner tessellation levels and the third and fourth outer
tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle.
The v = 0 and v = 1 edges of the rectangle are subdivided according to the
second outer tessellation level. For the purposes of this subdivision, the tessellation
spacing is ignored and treated as EQUAL. A line is drawn from each vertex on the
u = 0 rectangle edge with the corresponding vertex on the v = 1 rectangle edge,
except that no line is drawn between (0,1) and (1,1). If the number of segments on
the subdivided v = 0 and v = 1 edges is n, this process will result in n equally
spaced lines with constant v coordinates of 0, %, %, ce "Tfl

Each of the n lines is then subdivided according to the first outer tessellation
level and the tessellation spacing, resulting in m line segments. Each segment of
each line is emitted by the tessellation primitive generator, as illustrated in fig-
ure 2.16.

The order in which the generated line segments are passed to subsequent
pipeline stages and the order of the vertices in each generated line segment are
both implementation-dependent.

2.15.3 Tessellation Evaluation Shaders

If active, the tessellation evaluation shader takes the (u,v) or (u,v,w) location

of each vertex in the primitive subdivided by the tessellation primitive generator,

and generates a vertex with a position and associated attributes. The tessellation

evaluation shader can read any of the vertices of its input patch, which is the out-

put patch produced by the tessellation control shader (if present) or provided by

the application and transformed by the vertex shader (if no control shader is used).
5.1

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 162

(0,1) (1,1)
©) ©)
(4 @ ® L J

(0,0) (1,0)

(a)

(0,1) (1,1)
©) @)
@ @ @ ® @ @ ®
[@ @ ® @ @ @
[@ @ ® @ @ L
[® @ ® @ ® L

(0,0) (1,0)

(b)

Figure 2.16. Isoline tessellation with the first two outer tessellation levels of (a)

(3,1) and (b) (6,4), respectively. Line segments connecting the vertices marked

with solid black circles are emitted by the primitive generator. Vertices marked

with empty circles correspond to (u,v) coordinates of (0, 1) and (1, 1), where no
line segments are generated.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 163

Tessella-
tion evaluation shaders are created as described in section 2.14.1, using a type of
TESS_EVALUATION_SHADER.

Each invocation of the tessellation evaluation shader writes the attributes of
exactly one vertex. The number of vertices evaluated per patch depends on the
tessellation level values computed by the tessellation control shaders (if present)
or specified as patch parameters. Tessellation evaluation shader invocations run
independently, and no invocation can access the variables belonging to another
invocation. All invocations are capable of accessing all the vertices of their corre-
sponding input patch.

If a tessellation control shader is present, the number of the vertices in the
input patch is fixed and is equal to the tessellation control shader output patch size
parameter in effect when the program was last linked. If no tessellation control
shader is present, the input patch is provided by the application can have a variable
number of vertices, as specified by PatchParameteri.

Tessellation Evaluation Shader Variables

Tessellation evaluation shaders can access uniforms belonging to the cur-
rent program object. The amount of storage available for uniform variables
in the default uniform block accessed by a tessellation evaluation shader is
specified by the value of the implementation-dependent constant MAX_TESS_ -
EVALUATION_UNIFORM_COMPONENTS. The total amount of combined storage
available for uniform variables in all uniform blocks accessed by a tessella-
tion evaluation shader (including the default uniform block) is specified by
the value of the implementation-dependent constant MAX_COMBINED_TESS_—
EVALUATION_UNIFORM_COMPONENTS. These values represent the numbers of in-
dividual floating-point, integer, or boolean values that can be held in uniform vari-
able storage for a tessellation evaluation shader. A link error is generated if an
attempt is made to utilize more than the space available for tessellation evaluation
shader uniform variables. Uniforms are manipulated as described in section 2.14.7.
Tessellation evaluation shaders also have access to samplers to perform texturing
operations, as described in section 2.14.9.

Tessellation evaluation shaders can access the transformed attributes of all ver-
tices for their input primitive using input variables. If active, a tessellation control
shader writing to output variables generates the values of these input varying vari-
ables, including values for built-in as well as user-defined varying variables. If no
tessellation control shader is active, input variables will be obtained from vertex
shader outputs. Values for any varying variables that are not written by a vertex or

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 164

tessellation control shader are undefined.

Additionally, tessellation evaluation shaders can write to one or more built-in
or user-defined output variables that will be passed to subsequent programmable
shader stages or fixed functionality vertex pipeline stages.

Tessellation Evaluation Shader Execution Environment

If there is an active program for the tessellation evaluation stage, the executable
version of the program’s tessellation evaluation shader is used to process vertices
produced by the tessellation primitive generator. During this processing, the shader
may access the input patch processed by the primitive generator. When tessellation
evaluation shader execution completes, a new vertex is assembled from the output
variables written by the shader and is passed to subsequent pipeline stages.

There are several special considerations for tessellation evaluation shader exe-
cution described in the following sections.

Texture Access

The Shader-Only Texturing subsection of section 2.14.11 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to tessellation evaluation shaders.

Tessellation Evaluation Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array gl_in available as input to a tessellation evaluation shader. g1_-—
in receives values from equivalent built-in output variables written by a pre-
vious shader (section 2.14.11). If a tessellation control shader active, the val-
ues of g1_in will be taken from tessellation control shader outputs. Otherwise,
they will be taken from vertex shader outputs. Each array element of g1_in is
a structure holding values for a specific vertex of the input patch. The length
of gl_in is equal to the implementation-dependent maximum patch size (g1_-
MaxPatchVertices). Behavioris undefined if g1_in is indexed with a vertex in-
dex greater than or equal to the current patch size. The members of each element of
the g1_in array are g1_Position, gl_PointSize,

Tessellation evaluation shaders have available several other special input vari-
ables not replicated per-vertex and not contained in g1_in, including:

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 165

e The variables gl_PatchVerticesIn and gl_PrimitiveID are filled
with the number of the vertices in the input patch and a primitive number,
respectively. They behave exactly as the identically named inputs for tessel-
lation control shaders.

e The variable g1_TessCoord is a three-component floating-point vector
consisting of the (u,v,w) coordinate of the vertex being processed by the
tessellation evaluation shader. The values of w, v, and w are in the range
[0, 1], and vary linearly across the primitive being subdivided. For tessella-
tion primitive modes of quads or isolines, the w value is always zero.
The (u,v,w) coordinates are generated by the tessellation primitive gen-
erator in a manner dependent on the primitive mode, as described in sec-
tion 2.15.2. gl_TessCoord is not an array; it specifies the location of the
vertex being processed by the tessellation evaluation shader, not of any ver-
tex in the input patch.

e The variables gl_TessLevelOuter and gl_TessLevellInner are ar-
rays holding outer and inner tessellation levels of the patch, as used by
the tessellation primitive generator. If a tessellation control shader is ac-
tive, the tessellation levels will be taken from the corresponding outputs of
the tessellation control shader. Otherwise, the default levels provided as
patch parameters are used. Tessellation level values loaded in these vari-
ables will be prior to the clamping and rounding operations performed by
the primitive generator as described in section 2.15.2. For triangular tes-
sellation, gl_TessLevelOuter[3] and gl_TessLevelInner[1] will
be undefined. For isoline tessellation, gl_TessLevelQuter[2], gl_-
TessLevelOuter[3], and both values in gl_TessLevelInner are un-
defined.

A tessellation evaluation shader may also declare user-defined per-vertex input
variables. User-defined per-vertex input variables are declared with the qualifier in
and have a value for each vertex in the input patch. User-defined per-vertex input
varying variables have a value for each vertex and thus need to be declared as arrays
or inside input blocks declared as arrays. Declaring an array size is optional. If no
size is specified, it will be taken from the implementation-dependent maximum
patch size (g1_MaxPatchVertices). If a size is specified, it must match the
maximum patch size; otherwise, a link error will occur. Since the array size may
be larger than the number of vertices found in the input patch, behavior is undefined
if a per-vertex input variable is accessed using an index greater than or equal to the
number of vertices in the input patch. The OpenGL Shading Language doesn’t
support multi-dimensional arrays; therefore, user-defined tessellation evaluation

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.15. TESSELLATION 166

shader inputs corresponding to vertex shader outputs declared as arrays must be
declared as array members of an input block that is itself declared as an array.

Additionally, a tessellation evaluation shader may declare per-patch input vari-
ables using the qualifier patch in. Unlike per-vertex inputs, per-patch inputs do
not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch inputs declared as arrays have multiple values for the input
patch; similarly declared per-vertex inputs would indicate a single value for each
vertex in the output patch. User-defined per-patch input variables are filled with
corresponding per-patch output values written by the tessellation control shader. If
no tessellation control shader is active, all such variables are undefined.

Similarly to the limit on vertex shader output components (see section 2.14.10),
there is a limit on the number of components of built-in and user-defined per-vertex
and per-patch input variables that can be read by the tessellation evaluation shader,
given by the values of the implementation-dependent constants MAX_TESS_-
EVALUATION_INPUT_COMPONENTS and MAX_TESS_PATCH_COMPONENTS, re-
spectively. The built-in inputs g1_TessLevelOuter and gl_TessLevellnner
are not counted against the per-patch limit.

When a program is linked, all components of any varying and special vari-
able read by a tessellation evaluation shader will count against this limit. A pro-
gram whose tessellation evaluation shader exceeds this limit may fail to link, unless
device-dependent optimizations are able to make the program fit within available
hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.10).

Tessellation Evaluation Shader Outputs

Tessellation evaluation shaders have a number of built-in output variables used
to pass values to equivalent built-in input variables read by subsequent shader
stages or to subsequent fixed functionality vertex processing pipeline stages.
These variables are g1_Position, gl_PointSize,

and

all behave identically to equivalently named vertex shader outputs (see sec-

tion 2.14.11). A tessellation evaluation shader may also declare user-defined per-
vertex output variables.

Similarly to the limit on vertex shader output components (see section 2.14.10),

there is a limit on the number of components of built-in and user-defined out-

put variables that can be written by the tessellation evaluation shader, given by

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 167

the values of the implementation-dependent constant MAX_TESS_EVALUATION_—
OUTPUT_COMPONENTS.

When a program is linked, all components of any varying and special variable
written by a tessellation evaluation shader will count against this limit. A pro-
gram whose tessellation evaluation shader exceeds this limit may fail to link, unless
device-dependent optimizations are able to make the program fit within available
hardware resources.

Counting rules for different variable types and variable declarations are the
same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.10).

2.16 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 2.6.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders are
defined by source code in the OpenGL Shading Language, in the same manner as
vertex shaders. They operate on a single primitive at a time and emit one or more
output primitives, all of the same type, which are then processed like an equivalent
OpenGL primitive specified by the application. The original primitive is discarded
after geometry shader execution. The inputs available to a geometry shader are the
transformed attributes of all the vertices that belong to the primitive. Additional
adjacency primitives are available which also make the transformed attributes of
neighboring vertices available to the shader. The results of the shader are a new set
of transformed vertices, arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 2.20).

Geometry shaders are created as described in section 2.14.1 using a fype of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 2.14.3. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.
If the program object has no geometry this
stage is bypassed.

A program object or program pipeline object that includes a geometry shader
must also include a vertex shader. If the current program state has a geometry
shader but no vertex shader when

is called, an INVALID_OPERATION error will be generated.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 168

2.16.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided by
the GL. If a geometry shader is active,

will generate an INVALID_OPERATION error if the primitive mode
parameter is incompatible with the input primitive type of the geometry shader of
the active geometry program object, as discussed below.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Specifi-
cation. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried by
calling GetProgramiv with the symbolic constant GEOMETRY_INPUT_TYPE. The
supported types and the corresponding OpenGL Shading Language input layout
qualifier keywords are:

Points (points)

Geometry shaders that operate on points are valid only for the POINTS primi-
tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (1ines)

Geometry shaders that operate on line segments are valid only for the LINES,
LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 2.16.4.

Lines with Adjacency (1ines_adjacency)

Geometry shaders that operate on line segments with adjacent vertices are valid
only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 169

vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)

Geometry shaders that operate on triangles are valid for the TRIANGLES,
TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)

Geometry shaders that operate on triangles with adjacent vertices are valid
for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

2.16.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the man-
ner described in section 2.6.1. The resulting primitives are then further processed
as described in section 2.16.4. If the number of vertices emitted by the geometry
shader is not sufficient to produce a single primitive, nothing is drawn. The number
of vertices output by the geometry shader is limited to a maximum count specified
in the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described in
section 4.3.8.1 of the OpenGL Shading Language Specification. A program will
fail to link if either the output primitive type or maximum output vertex count are
not specified by any geometry shader object attached to the program, or if they
are specified differently by multiple geometry shader objects. The output primi-
tive type and maximum output vertex count of a linked program may be queried
by calling GetProgramiv with the symbolic constants GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 170

2.16.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program ob-
ject. The amount of storage available for geometry shader uniform variables is
specified by the implementation dependent constant MAX_GEOMETRY_UNIFORM_ -
COMPONENTS. This value represents the number of individual floating-point, inte-
ger, or boolean values that can be held in uniform variable storage for a geometry
shader. A link error will be generated if an attempt is made to utilize more than the
space available for geometry shader uniform variables. Uniforms are manipulated
as described in section 2.14.7. Geometry shaders also have access to samplers to
perform texturing operations, as described in sections 2.14.9 and 3.9.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input varying variables. A vertex shader writing to out-
put varying variables generates the values of these input varying variables, includ-
ing values for built-in as well as user-defined varying variables. Values for any
varying variables that are not written by a vertex shader are undefined. Addition-
ally, a geometry shader has access to a built-in variable that holds the ID of the
current primitive. This ID is generated by the primitive assembly stage that sits in
between the vertex and geometry shader.

Additionally, geometry shaders can write to one or more varying variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language varying qualifier £1at) and clipped, then the clipped values
interpolated across the primitive (if not flatshaded). The results of these interpo-
lations are available to

2.16.4 Geometry Shader Execution Environment

If there is an active program for the geometry stage, the executable version of
the program’s geometry shader is used to process primitives resulting from the
primitive assembly stage.

The following operations are applied to the primitives that are the result of
executing a geometry shader:

2.13.6
e Perspective division on clip coordinates (section 2.17).

e Viewport mapping, including depth range scaling (section 2.17.1).

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 171

Flatshading (section 2.22).

e Clipping, including client-defined (section 2.23).
e Front face determination 2.13.1
° attribute clipping (sec-
tion 2.23.1).
2.24

There are several special considerations for geometry shader execution de-
scribed in the following sections.

Texture Access

The Shader Only Texturing subsection of section 2.14.11 describes texture
lookup functionality accessible to a vertex shader. The texel fetch and texture size
query functionality described there also applies to geometry shaders.

Instanced Geometry Shaders

For each input primitive received by the geometry shader pipeline stage, the geom-
etry shader may be run once or multiple times. The number of times a geometry
shader should be executed for each input primitive may be specified using a layout
qualifier in a geometry shader of a linked program. If the invocation count is not
specified in any layout qualifier, the invocation count will be one.

Each separate geometry shader invocation is assigned a unique invocation num-
ber. For a geometry shader with [V invocations, each input primitive spawns N
invocations, numbered 0 through N — 1. The built-in uniform g1_InvocationID
may be used by a geometry shader invocation to determine its invocation number.

When executing instanced geometry shaders, the output primitives generated
from each input primitive are passed to subsequent pipeline stages using the shader
invocation number to order the output. The first primitives received by the subse-
quent pipeline stages are those emitted by the shader invocation numbered zero,
followed by those from the shader invocation numbered one, and so forth. Addi-
tionally, all output primitives generated from a given input primitive are passed to
subsequent pipeline stages before any output primitives generated from subsequent
input primitives.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 172

Geometry Shader Vertex Streams

Geometry shaders may emit primitives to multiple independent vertex streams.
Each vertex emitted by the geometry shader is directed at one of the vertex streams.
As vertices are received on each stream, they are arranged into primitives of the
type specified by the geometry shader output primitive type. The shading language
built-in functions EndPrimitive and EndStreamPrimitive may be used to
end the primitive being assembled on a given vertex stream and start a new empty
primitive of the same type. If an implementation supports /N vertex streams, the
individual streams are numbered O through N — 1. There is no requirement on the
order of the streams to which vertices are emitted, and the number of vertices emit-
ted to each stream may be completely independent, subject only to implementation-
dependent output limits.

The primitives emitted to all vertex streams are passed to the transform feed-
back stage to be captured and written to buffer objects in the manner specified
by the transform feedback state. The primitives emitted to all streams but stream
zero are discarded after transform feedback. Primitives emitted to stream zero are
passed to subsequent pipeline stages for clipping, rasterization, and subsequent
fragment processing.

Geometry shaders that emit vertices to multiple vertex streams are currently
limited to using only the points output primitive type. A program will fail to
link if it includes a geometry shader that calls the EmitStreamVertex built-in
function and has any other output primitive type parameter.

Geometry Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array g1_in [] available as input to a geometry shader. g1_in[] receives
values from equivalent built-in output variables written by the vertex shader, and
each array element of g1_in[] is a structure holding values for a specific vertex of
the input primitive. The length of g1_in[] is determined by the geometry shader
input type (see section 2.16.1). The members of each element of the g1_in[]
array are:

e Structure member gl_ClipDistance[] holds the per-vertex array of clip
distances, as written by the vertex shader to its built-in output variable g1_-
ClipDistancel[].

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 173

e Structure members gl_FrontColor, gl_BackColor, gl_-
FrontSecondaryColor and gl_BackSecondaryColor hold the
per-vertex front and back colors of the primary and secondary colors, as

written by the vertex shader to the corresponding built-in output variables.

e Structure member gl_FogFragCoord holds the per-vertex fog coordi-
nate, as written by the vertex shader to its built-in output variable g1_-

FogFragCoord.

e Structure member g1_TexCoord[] holds the per-vertex array of texture co-
ordinates written by the vertex shader to its built-in output varying variable

gl_TexCoord[].

e Structure member gl_PointSize holds the per-vertex point size written
by the vertex shader to its built-in output varying variable g1_PointSize.
If the vertex shader does not write gl_PointSize, the value of gl_-
PointSize is undefined, regardless of the value of the enable PROGRAM -
POINT_SIZE.

e Structure member gl_Position holds the per-vertex position, as written
by the vertex shader to its built-in output variable g1_Position. Note that
writing to g1_Position from either the vertex or geometry shader is op-
tional (also see section 7.1 of the OpenGL Shading Language Specification)

Geometry shaders also have available the built-in special variable gl_-
PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed since the last time Begin was
called (directly or indirectly via vertex array functions). The first primitive gener-
ated after a Begin is numbered zero, and the primitive ID counter is incremented
after every individual point, line, or triangle primitive is processed. For triangles
drawn in point or line mode, the primitive ID counter is incremented only once,
even though multiple points or lines may eventually be drawn. Restarting a prim-
itive topology using the primitive restart index has no effect on the primitive ID
counter.

Similarly to the built-in varying variables, each user-defined input varying vari-
able has a value for each vertex and thus needs to be declared as arrays or inside
input blocks declared as arrays. Declaring an array size is optional. If no size is
specified, it will be inferred by the linker from the input primitive type. If a size
is specified, it must match the number of vertices for the input primitive type; oth-
erwise, a link error will occur. The OpenGL Shading Language doesn’t support
multi-dimensional arrays; therefore, user-defined geometry shader inputs corre-
sponding to vertex shader outputs declared as arrays must be declared as array

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 174

members of an input block that is itself declared as an array. See sections 4.3.6
and 7.6 of the OpenGL Shading Language Specification for more information.

Similarly to the limit on vertex shader output components (see section 2.14.10),
there is a limit on the number of components of built-in and user-defined input
varying variables that can be read by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any varying and special variable
read by a geometry shader will count against this limit. A program whose geometry
shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.10).

Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is spec-
ified in the geometry shader source and may be queried after linking by calling
GetProgramiv with the symbolic constant GEOMETRY_VERTICES_OUT. If a sin-
gle invocation of a geometry shader emits more vertices than this value, the emitted
vertices may have no effect.

There are two implementation-dependent limits on the value of GEOMETRY_ -
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-—
VERTICES, and the product of the total number of vertices and the sum of all
components of all active varying variables may not exceed the value of MAX -
GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined varying vari-
ables. These values are expected to be interpolated across the primitive it outputs,
unless they are specified to be flat shaded. To enable seamlessly inserting or re-
moving a geometry shader from a program object, the rules, names and types of the
output built-in varying variables and user-defined varying variables are the same as
for the vertex shader. Refer to section 2.14.10, and sections 4.3.6, 7.1, and 7.6 of
the OpenGL Shading Language Specification for more detail.

After a geometry shader emits a vertex, all built-in and user-defined output vari-
ables are undefined, as described in section 8.10 of the OpenGL Shading Language
Specification.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 175

3.11
The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

2.23

The built-in special variable g1_ClipDistance holds the clip distance used
in the clipping stage, as described in section 2.23.

The built-in special variable g1_PointsSize, if written, holds the size of the
point to be rasterized, measured in pixels.

The built-in special variable g1_PrimitiveID holds the primitive ID counter
read by the fragment shader, replacing the value of g1_PrimitiveID generated
by drawing commands when no geometry shader is active. The geometry shader
must write to gl_PrimitiveID for the provoking vertex (see section 2.22) of a
primitive being generated, or the primitive ID counter read by the fragment shader
for that primitive is undefined.

The built-in special variable g1_Layer is used in layered rendering, and dis-
cussed further in the next section.

The built-in special variable g1_ViewportIndex is used to direct rendering
to one of several viewports and is discussed further in the next section.

Similarly to the limit on vertex shader output components (see section 2.14.10),
there is a limit on the number of components of built-in and user-defined output
varying variables that can be written by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any varying and special vari-
able written by a geometry shader will count against this limit. A program whose
geometry shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.10).

Layer and Viewport Selection

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one-or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.16. GEOMETRY SHADERS 176

of a cubemap texture in one pass. The layer to render to is specified by writing
to the built-in output variable g1_Layer. Layered rendering requires the use of
framebuffer objects (see section 4.4.7).

Geometry shaders may also select the destination viewport for each output
primitive. The destination viewport for a primitive may be selected in the geom-
etry shader by writing to the built-in output variable g1_vViewportIndex. This
functionality allows a geometry shader to direct its output to a different viewport
for each primitive, or to draw multiple versions of a primitive into several different
viewports.

The specific vertex of a primitive that is used to select the rendering layer or
viewport index is implementation-dependent and thus portable applications will
assign the same layer and viewport index for all vertices in a primitive. The vertex
conventions followed for g1_Layer and g1_Viewport Index may be determined
by calling GetIntegerv with the symbolic constants LAYER_PROVOKING_VERTEX
and VIEWPORT_INDEX_PROVOKING_VERTEX, respectively. For either query, if
the value returned is PROVOKING_VERTEX, then vertex selection follows the con-
vention specified by ProvokingVertex (see section 2.22). If the value returned
is FIRST_VERTEX_CONVENTION, selection is always taken from the first vertex
of a primitive. If the value returned is LAST_VERTEX_CONVENTION, the selec-
tion is always taken from the last vertex of a primitive. If the value returned is
UNDEF INED_VERTEX, the selection is not guaranteed to be taken from any specific
vertex in the primitive. The vertex considered the provoking vertex for particular
primitive types is given in table 2.18.

Primitive Type Mismatches and Drawing Commands

A geometry shader will fail to execute if a mismatch exists between the type of
primitive being drawn and the input primitive type of the shader. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.
This error is generated by
a geometry shader is active and:

o the input primitive type of the current geometry shader is POINTS and mode
1s not POINTS;

e the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

e the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.17. COORDINATE TRANSFORMATIONS 177

e the input primitive type of the current geometry shader is LINES_-
ADJACENCY and mode 1s not LINES_ADJACENCY or LINE_STRIP_ -
ADJACENCY; or,

e the input primitive type of the current geometry shader is TRIANGLES_—
ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_ -
STRIP_ADJACENCY.

2.17 Coordinate Transformations

Clip coordinates for a vertex result

from vertex or, if active, geometry shader execution, which yields
a vertex coordinate g1_Position. Perspective division on clip coordinates yields
normalized device coordinates, followed by a viewport transformation to convert
these coordinates into window coordinates.

If a vertex in clip coordinates is given by

then the vertex’s normalized device coordinates are

Zc

Td We
_ | ¥

Ya | = | w.
Zc

Zd W

2.17.1 Controlling the Viewport

The viewport transformation is determined by the selected viewport’s width and
height in pixels, p, and p,, respectively, and its center (o, 0,) (also in pixels). The

xw
vertex’s window coordinates, | v, | , are given by
Z’U}
L %xd + 0z
P
Yw | = 2Yd + oy
Zw f—Tn za+ L-QH”

Multiple viewports are available and are numbered zero through the value of
MAX_VIEWPORTS minus one. If a geometry shader is active and writes to g1_—
ViewportIndex, the viewport transformation uses the viewport corresponding

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.17. COORDINATE TRANSFORMATIONS 178

to the value assigned to gl_viewportIndex taken from an implementation-
dependent primitive vertex. If the value of the viewport index is outside the range
zero to the value of MAX_VIEWPORTS minus one, the results of the viewport trans-
formation are undefined. If no geometry shader is active, or if the active geometry
shader does not write to g1_Viewport Index, the viewport numbered zero is used
by the viewport transformation.

A single vertex may be used in more than one individual primitive, in primitives
such as TRIANGLE_STRIP. In this case, the viewport transformation is applied
separately for each primitive.

The factor and offset applied to zg for each viewport encoded by n and f are
set using

void DepthRangeArrayv(uint first, sizei count, const
clampd *v);

void DepthRangelndexed(uint index, clampdn,
clampdf);

void DepthRange(clampdn, clampdf);

void DepthRangef(clampf n, clampf f);

DepthRangeArrayyv is used to specify the depth range for multiple viewports
simultaneously. first specifies the index of the first viewport to modify and count
specifies the number of viewports. If (first + count) is greater than the value of
MAX_VIEWPORTS then an INVALID_VALUE error will be generated. Viewports
whose indices lie outside the range [first, first + count) are not modified. The v
parameter contains the address of an array of clampd types specifying near (n) and
far (f) for each viewport in that order.

DepthRangelndexed specifies the depth range for a single viewport and is
equivalent (assuming no errors are generated) to:

clampd v[] = { n, f };
DepthRangeArrayv (index, 1, v);

DepthRange sets the depth range for all viewports to the same values and is
equivalent (assuming no errors are generated) to:

for (uint i1 = 0; i < MAX_VIEWPORTS; i++)
DepthRangelndexed (i, n, f);

Zyw 18 represented as either fixed- or floating-point depending on whether the frame-

buffer’s depth buffer uses a fixed- or floating-point representation. If the depth
buffer uses fixed-point, we assume that it represents each value k/(2™ — 1), where

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.17. COORDINATE TRANSFORMATIONS 179

ke {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). The parameters n and f are clamped to the range [0, 1], as are all arguments
of type clampd or clampf.

Viewport transformation parameters are specified using

void ViewportArrayv(uint first, sizei count, const
float *v);

void ViewportIndexedf(uint index, float x, floaty,
float w, float h);

void ViewportIndexedfv(uint index, const float *v);

void Viewport(int x, inty, sizeiw, sizeih);

ViewportArrayv specifies parameters for multiple viewports simultaneously.
first specifies the index of the first viewport to modify and count specifies the num-
ber of viewports. If first+ count is greater than the value of MAX_VIEWPORTS then
an INVALID_VALUE error will be generated. Viewports whose indices lie outside
the range [first, first + count) are not modified. v contains the address of an array
of floating point values specifying the left (x), bottom (y), width (w) and height (k)
of each viewport, in that order. x and y give the location of the viewport’s lower
left corner and w and & give the viewport’s width and height, respectively.

ViewportIndexedf and ViewportIndexedfv specify parameters for a single
viewport and are equivalent (assuming no errors are generated) to:

float v[4] = { =, y, w, h };
ViewportArrayv (index, 1, v);

and
ViewportArrayv (index, 1, v);

respectively.
Viewport sets the parameters for all viewports to the same values and is equiv-
alent (assuming no errors are generated) to:

for (uint i = 0; i < MAX VIEWPORTS; i++)
ViewportIndexedf (i, 1, (float)z, (float)y, (float)w,

The viewport parameters shown in the above equations are found from these
values as
Oz =T+ %5
Oy =Y+ %
Pz =W
py = h.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

(float)h);

2.18. ASYNCHRONOUS QUERIES 180

The location of the viewport’s bottom-left corner, given by (x, y), are clamped
to be within the implementation-dependent viewport bounds range. The viewport
bounds range [min, max] tuple may be determined by calling GetFloatv with the
symbolic constant VIEWPORT_BOUNDS_RANGE (see section 6.1).

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by call-
ing GetFloatv with the symbolic constant MAX_VIEWPORT_DIMS. The maximum
viewport dimensions must be greater than or equal to the larger of the visible di-
mensions of the display being rendered to (if a display exists), and the largest ren-
derbuffer image which can be successfully created and attached to a framebuffer
object (see chapter 4). INVALID_VALUE is generated if either w or 4 is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values for each viewport. In the initial state, w and
h for each viewport. are set to the width and height, respectively, of the window
into which the GL is to do its rendering. If the default framebuffer is bound but no
default framebuffer is associated with the GL context (see chapter 4), then w and h
are initially set to zero. o, oy, 1, and f are set to %, %, 0.0, and 1.0, respectively.

The precision with which the GL interprets the floating point viewport
bounds is implementation-dependent and may be determined by querying the
implementation-defined constant VIEWPORT _SUBPIXEL_BITS.

2.18 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are four query types supported
by the GL. Primitive queries with a target of PRIMITIVES_GENERATED (see
section 2.21) return information on the number of primitives processed by the
GL. Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 2.21) return information on the number of primitives written
to one more buffer objects. Occlusion queries (see section 4.1.7) count the number
of fragments or samples that pass the depth test, or set a boolean to true when any
fragments or samples pass the depth test. Timer queries (see section 5.4) record
the amount of time needed to fully process these commands or the current time of
the GL.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.13 provide mechanisms to determine when query results are available and

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.18. ASYNCHRONOUS QUERIES 181

return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed; valid values of farget are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

BeginQuery sets the active query object name for the query type given by far-
get to id. If BeginQuery is called with an id of zero, if the active query object name
for target is non-zero (for the targets SAMPLES_PASSED and ANY_SAMPLES_-
PASSED, if the active query for either target is non-zero), if id is the name of an
existing query object whose type does not match rarget, if id is the active query
object name for any query type, or if id is the active query object for condtional
rendering (see section 2.19), the error INVALID_OPERATION is generated.

Query targets also support multiple indexed queries. A query object may be
created and made active on an indexed query target by calling:

void BeginQueryIndexed(enum target, uint index,
uint id);

target indicates the type of query to be performed as in BeginQuery. index is the
index of the query and must be between 0 and a farget-specific maximum. If index
is outside of this range, the error INVALID_VALUE is generated. The number of
indexed queries supported by specific targets is one, unless indicated otherwise in
following sections. Calling BeginQuery is equivalent to calling BeginQuerylIn-
dexed with index set to zero.

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results
are not available, and the active query object name for farget is reset to zero. When

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.18. ASYNCHRONOUS QUERIES

the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for farget is zero when
EndQuery is called, the error INVALID_OPERATION is generated.

The command

void EndQueryIndexed(enum target, uint index);

may be used to mark the end of the query currently active at index index of target,
and must be between zero and the farget-specific maximum. If index is outside of
this range, the error INVALID_VALUE is generated. Calling EndQuery is equiva-
lent to calling EndQueryIndexed with index set to zero.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored. If an active
query object is deleted its name immediately becomes unused, but the underlying
object is not deleted until it is no longer active (see section D.1).

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits used to represent the query result is implementation-dependent. In
the initial state of a query object, the result is available and its value is zero.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress. Only a single type
of occlusion query can be active at one time, so the required state for occlusion
queries is shared.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

182

2.19. CONDITIONAL RENDERING 183

2.19 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED)
of the query is zero, or if the result (ANY_SAMPLES_PASSED) is false, all rendering
commands between BeginConditionalRender and the corresponding EndCondi-
tionalRender are discarded. In this case,

2.8
3.7.5 3.8 4.2.4
5.1 4.3.3), as well as Clear
and ClearBuffer* (see section 4.2.3), have no effect. The effect of commands set-
ting current vertex state, such as VertexAttrib, are undefined. If the result

(saMPLES_PASSED) of the query is non-zero, or if the result (ANY_SAMPLES_ -
PASSED) is true, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY_WAIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY_NO_WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY_BY REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.
Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed
to the occlusion query sample count. If mode is QUERY_BY_REGION_NO_WAIT,
the GL operates as in QUERY_BY_REGION_WAIT, but may choose to uncondition-
ally execute the subsequent rendering commands without waiting for the query to
complete.

If BeginConditionalRender is called while conditional rendering is in
progress, the error INVALID_OPERATION is generated. If id is not the name of

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 184

an existing query object, the error INVALID_VALUE is generated. If id is the name
of a query object with a target other than SAMPLES_PASSED or ANY_SAMPLES_ -
PASSED, or if id is the name of a query currently in progress, the error INVALID_-
OPERATION is generated. If EndConditionalRender is called while conditional
rendering is not in progress, the error INVALID_OPERATION is generated.

2.20 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
passed to the transform feedback stage are written out to one or more buffer objects.
The vertices are fed back after vertex color clamping, but before flatshading and
clipping. The transformed vertices may be optionally discarded after being stored
into one or more buffer objects, or they can be passed on down to the clipping stage
for further processing. The set of attributes captured is determined when a program
is linked.

The data captured in transform feedback mode depends on the active programs
on each of the shader stages. If a program is active for the geometry shader stage,
transform feedback captures the vertices of each primitive emitted by the geometry
shader. Otherwise, if a program is active for the tessellation evaluation shader
stage, transform feedback captures each primitive produced by the tessellation
primitive generator, whose vertices are processed by the tessellation evaluation
shader. Otherwise, transform feedback captures each primitive processed by the
vertex shader.

If separable program objects are in use, the set of attributes captured is taken
from the program object active on the last shader stage processing the primitives
captured by transform feedback. The set of attributes to capture in transform feed-
back mode for any other program active on a previous shader stage is ignored.

2.20.1 Transform Feedback Objects

The set of buffer objects used to capture vertex attributes and related state are
stored in a transform feedback object. If a vertex or geometry shader is active,
the set of attributes captured in transform feedback mode is determined using the
state of the active program object; otherwise, it is taken from the state of the cur-
rently bound transform feedback object, as described below. The name space for
transform feedback objects is the unsigned integers. The name zero designates the
default transform feedback object.
The command

void GenTransformFeedbacks(sizei n, uint *ids);

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 185

returns n previously unused transform feedback object names in ids. These names
are marked as used, for the purposes of GenTransformFeedbacks only, but they
acquire transform feedback state only when they are first bound.

Transform feedback objects are deleted by calling

void DeleteTransformFeedbacks(sizei n, const
uint *ids);

ids contains n names of transform feedback objects to be deleted. After a trans-
form feedback object is deleted it has no contents, and its name is again unused.
Unused names in ids are silently ignored, as is the value zero. The default trans-
form feedback object cannot be deleted. If an active transform feedback object
is deleted its name immediately becomes unused, but the underlying object is not
deleted until it is no longer active (see section D.1).

A transform feedback object is created by binding a name returned by Gen-
TransformFeedbacks with the command

void BindTransformFeedback(enum farget, uint id);

target must be TRANSFORM_FEEDBACK and id is the transform feedback object
name. The resulting transform feedback object is a new state vector, initialized
to the default state values described in table 6.54. Additionally, the new object
is bound to the GL state vector and is used for subsequent transform feedback
operations.

BindTransformFeedback can also be used to bind an existing transform feed-
back object to the GL state for subsequent use. If the bind is successful, no change
is made to the state of the newly bound transform feedback object and any previous
binding to farget is broken.

While a transform feedback buffer object is bound, GL operations on the target
to which it is bound affect the bound transform feedback object, and queries of the
target to which a transform feedback object is bound return state from the bound
object. When buffer objects are bound for transform feedback, they are attached to
the currently bound transform feedback object. Buffer objects are used for trans-
form feedback only if they are attached to the currently bound transform feedback
object.

In the initial state, a default transform feedback object is bound and treated as
a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

The error INVALID_OPERATION is generated by BindTransformFeedback if
the transform feedback operation is active on the currently bound transform feed-
back object, and that operation is not paused (as described below).

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 186

BindTransformFeedback fails and an INVALID_OPERATION error is gener-
ated if id is not zero or a name returned from a previous call to GenTransform-
Feedbacks, or if such a name has since been deleted with DeleteTransformFeed-
backs.

2.20.2 Transform Feedback Primitive Capture

Transform feedback for the currently bound transform feedback object is started
and finished by calling

void BeginTransformFeedback(enum primitiveMode);
and
void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. primitive-
Mode is one of TRIANGLES, LINES, or POINTS, and specifies the output type of
primitives that will be recorded into the buffer objects bound for transform feed-
back (see below). primitiveMode restricts the primitive types that may be rendered
while transform feedback is active, as shown in table 2.17.

Transform feedback commands must be paired; the error INVALID_-
OPERATION is generated by BeginTransformFeedback if transform feedback is
active, and by EndTransformFeedback if transform feedback is inactive. Trans-
form feedback is initially inactive.

Transform feedback operations for the currently bound transform feedback ob-
ject may be paused and resumed by calling

void PauseTransformFeedback(void);
and
void ResumeTransformFeedback(void);

respectively. When transform feedback operations are paused, transform feedback
is still considered active and changing most transform feedback state related to the
object results in an error. However, a new transform feedback object may be bound
while transform feedback is paused. The error INVALID_OPERATION is gener-
ated by PauseTransformFeedback if the currently bound transform feedback is

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 187

Transform Feedback | Allowed render primitive

primitiveMode (Begin) modes

POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP

TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 2.17: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

not active or is paused. The error INVALID_OPERATION is generated by Resume-
TransformFeedback if the currently bound transform feedback is not active or is
not paused.

When transform feedback is active and not paused, all geometric primitives
generated must be compatible with the value of primitiveMode passed to Begin-
TransformFeedback. The error INVALID_OPERATION is generated by Begin or
any operation that implicitly calls Begin (such as DrawElements) if mode is not
one of the allowed modes in table 2.17. If a tessellation evaluation or geometry
shader is active, the type of primitive emitted by that shader is used instead of of
the mode parameter passed to drawing commands for the purposes of this error
check. If tessellation evaluation and geometry shaders are both active, the output
primitive type of the geometry shader will be used for the purposes of this error.
Any primitive type may be used while transform feedback is paused.

Transform feedback mode captures the values of varying variables written by
an active vertex or geometry shader. The error INVALID_OPERATION is generated
by BeginTransformFeedback if no vertex or geometry shader is active.

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the commands BindBufferRange or BindBufferBase (see sec-
tion 2.9.1) with target set to TRANSFORM_FEEDBACK_BUFFER. In addition to
the general errors described in section 2.9.1, BindBufferRange will generate an
INVALID_VALUE error if index is greater than or equal to the value of MAX_ -
TRANSFORM_FEEDBACK_BUFFERS, or if either offset or size is not a multiple of
4.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active and not paused, the values of the
specified varying variables of the vertex are appended to the buffer objects bound
to the transform feedback binding points. The attributes of the first vertex received
after BeginTransformFeedback are written at the starting offsets of the bound

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 188

buffer objects set by BindBufferRange, and subsequent vertex attributes are ap-
pended to the buffer object. When capturing line and triangle primitives, all at-
tributes of the first vertex are written first, followed by attributes of the subsequent
vertices. When writing varying variables that are arrays, individual array elements
are written in order. For multi-component varying variables, elements of varying
arrays, or transformed vertex attributes, the individual components are written in
order. The value for any attribute specified to be streamed to a buffer object but
not actually written by a vertex or geometry shader is undefined. The results of
appending a varying variable to a transform feedback buffer are undefined if any
component of that variable would be written at an offset not aligned to the size of
the component.

When transform feedback is paused, no vertices are recorded. When trans-
form feedback is resumed, subsequent vertices are appended to the buffer objects
bound immediately following the last vertex written while transform feedback was
paused.

Individual lines or triangles of a strip
or fan primitive will be extracted and recorded separately. Incomplete primitives
are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS oOr
SEPARATE_ATTRIBS mode.

In INTERLEAVED_ATTRIBS mode, the values of one or more varying variables
written by a vertex or geometry shader are written, interleaved, into the buffer ob-
jects bound to one or more transform feedback binding points. The list of varyings
provided for capture in interleaved mode may include special separator values,
which can be used to direct subsequent varyings to the next binding point. Each
non-separator varying is written to the binding point numbered n, where n is the
number of separator values preceding it in the list. If more than one varying vari-
able is written to a buffer object, they will be recorded in the order specified by
TransformFeedbackVaryings (see section 2.14.10).

In SEPARATE_ATTRIBS mode, the first varying variable or transformed vertex
attribute specified by TransformFeedbackVaryings is written to the first trans-
form feedback binding point; subsequent varying variables are written to the sub-
sequent transform feedback binding points. The total number of variables that
may be captured in separate mode is given by MAX_TRANSFORM_FEEDBACK_—
SEPARATE_ATTRIBS.

When using a geometry shader or program that writes vertices to multiple ver-
tex streams, each vertex emitted may trigger a new primitive in the vertex stream
to which it was emitted. If transform feedback is active, the varyings of the prim-

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 189

itive are written to a transform feedback binding point if and only if the varyings
directed at that binding point belong to the vertex stream in question. All varyings
assigned to a given binding point are required to come from a single vertex stream.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size — 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_ -
FEEDBACK_PRIMITIVES_WRITTEN (see section 2.21) is not incremented.

Transform feedback binding points zero through count minus one must have
buffer objects bound when BeginTransformFeedback is called, where count is the
parameter passed to TransformFeedbackVaryings in separate mode, or one more
than the number of g1_NextBuf fer elements in the varyings parameter to Trans-
formFeedbackVaryings in interleaved mode. The error INVALID_OPERAITON is
generated by BeginTransformFeedback if any of these binding points does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-
ing point is ever written to. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
varying variables to record.

When BeginTransformFeedback is called with an active program object con-
taining a vertex or geometry shader, the set of varying variables captured during
transform feedback is taken from the active program object and may not be changed
while transform feedback is active. That program object must be active until the
EndTransformFeedback is called, except while the transform feedback object is
paused. The error INVALID_OPERATION is generated:

e by UseProgram if the current transform feedback object is active and not
paused;

e by UseProgramStages if the program pipeline object it refers to is current
and the current transform feedback object is active and not paused;

¢ by BindProgramPipeline if the current transform feedback object is active
and not paused;

e by LinkProgram if program is the name of a program being used by one or
more transform feedback objects, even if the objects are not currently bound
or are paused;

e by ResumeTransformFeedback if the program object being used by the
current transform feedback object is not active;

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.20. TRANSFORM FEEDBACK 190

e by ResumeTransformFeedback if the program pipeline object being used
by the current transform feedback object is not bound, if any of its shader
stage bindings has changed, or if a single program object is active and over-
riding it; and

¢ by BindBufferRange, BindBufferOffset, or BindBufferBase if rarger is
TRANSFORM_FEEDBACK_BUFFER and transform feedback is currently ac-
tive.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and
client access to a buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

2.20.3 Transform Feedback Draw Operations

When transform feedback is active, the values of varyings or transformed vertex at-
tributes are captured into the buffer objects attached to the current transform feed-
back object. After transform feedback is complete, subsequent rendering opera-
tions may use the contents of these buffer objects (see section 2.9). The number of
vertices captured from each vertex stream during transform feedback is stored in
the corresponding transform feedback object and may be used in conjunction with
the command

void DrawTransformFeedback(enum mode, uint id);
void DrawTransformFeedbackStream(enum mode, uint id,
uint stream);

to replay the captured vertices.

DrawTransformFeedbackStream is equivalent to calling DrawArrays with
mode as specified, first set to zero, and count set to the number of vertices captured
from the vertex stream numbered stream the last time transform feedback was ac-
tive on the transform feedback object named by id. The error INVALID_VALUE

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.21. PRIMITIVE QUERIES 191

is generated if stream is greater than or equal to the value of MAX_VERTEX_—
STREAMS. DrawTransformFeedback is equivalent to calling DrawTransform-
FeedbackStream with a stream of zero.

The error INVALID_VALUE is generated if id is not the name of a transform
feedback object. The error INVALID_OPERATION is generated if EndTransform-
Feedback has never been called while the object named by id was bound. No error
is generated if the transform feedback object named by id is active; the vertex count
used for the rendering operation is set by the previous EndTransformFeedback
command.

Note that the vertex count is from the number of vertices recorded to the se-
lected vertex stream during the transform feedback operation. If no varyings be-
longing to the selected vertex stream are recorded, the corresponding vertex count
will be zero even if complete primitives were emitted to the selected stream.

2.21 Primitive Queries

Primitive queries use query objects to track the number of primitives in each vertex
stream that are generated by the GL and the number of primitives in each vertex
stream that are written to buffer objects in transform feedback mode.

When BeginQueryIndexed is called with a farget of PRIMITIVES_-—
GENERATED, the primitives generated count maintained by the GL for the vertex
stream index is set to zero. There is a separate query and counter for each vertex
stream. The number of vertex streams is given by the value of the implementation-
dependent constant MAX_VERTEX_STREAMS. If index is not an integer in the range
zero to the value of MAX_VERTEX_STREAMS minus one, the error INVALID_ -
VALUE is generated. When a generated primitive query for a vertex stream is ac-
tive, the primitives-generated count is incremented every time a primitive emitted
to that stream reaches the transform feedback stage (see section 2.20), whether or
not transform feedback is active. This counter counts the number of primitives
emitted by a geometry shader, if active, possibly further tessellated into separate
primitives during the transform feedback stage, if active.

When BeginQueryIndexed is called with a target of TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN, the transform feedback primitives written
count maintained by the GL for vertex stream index is set to zero. There is a sepa-
rate query and counter for each vertex stream. If index is not an integer in the range
zero to the value of MAX VERTEX_STREAMS minus one, the error INVALID_ -
VALUE is generated. When a transform feedback primitives written query for a
vertex stream is active, the counter for that vertex stream is incremented every time
the vertices of a primitive written to that stream are recorded into one or more

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.22. FLATSHADING 192

buffer objects. If transform feedback is not active or if a primitive to be recorded
does not fit in a buffer object, the counter is not incremented.

These two types of queries can be used together to determine if all primitives
in a given vertex stream have been written to the bound feedback buffers; if both
queries are run simultaneously and the query results are equal, all primitives have
been written to the buffer(s). If the number of primitives written is less than the
number of primitives generated, one or more buffers overflowed.

2.22 Flatshading

For fixed-function vertex processing, flatshading a primitive means to assign all
vertices of the primitive the same primary and secondary colors (in RGBA mode) or
the same color index (in color index mode). If a vertex shader is active, flatshading
a varying output means to assign all vertices of the primitive the same value for
that output.

The color and/or varying output values assigned are those of the provoking
vertex of the primitive. The provoking vertex is controlled with the command

void ProvokingVertex(enum provokeMode);

provokeMode must be either FIRST_VERTEX_CONVENTION or LAST_VERTEX_—
CONVENTION, and controls selection of the vertex whose values are assigned to
flatshaded colors and varying outputs, as shown in table 2.18

The provoking vertex behavior of quad primitives is implementation depen-
dent, and may be determined by calling GetBooleanv with the symbolic constant
QUADS_FOLLOW_PROVOKING_VERTEX. A return value of TRUE indicates that the
provoking vertex mode is respected for quad primitives, while a return value of
FALSE indicates that the implementation always behave as though the provoking
vertex mode were LAST_VERTEX_CONVENTION.

Flatshading of colors in fixed-function vertex processing, and of the built-in
varying variables gl_FrontColor,
gl_BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor
when a vertex shader is active, is controlled with the command

void ShadeModel(enum mode);

mode must be SMOOTH or FLAT. If mode is SMOOTH, vertex colors are treated in-
dividually. If mode is F1AT, flatshading is enabled and colors are taken from the
provoking vertex of the primitive. The colors selected are those derived from cur-
rent values, generated by lighting, or generated by vertex shading, if lighting is
disabled, enabled, or a vertex shader is in use, respectively.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.22. FLATSHADING

193

Primitive type of polygon 7

First vertex convention

Last vertex convention

point 1 l

independent line 2 —1 21

line loop 1 1+ 1,ifi <n
1,ifi=n

line strip 1 1+1

independent triangle 31— 2 37

triangle strip i 1+ 2

triangle fan 141 142

line adjacency 49— 2 4i —1
line strip adjacency i+1 1+ 2

triangle adjacency 67 — 5 61 —1
triangle strip adjacency 2 —1 2i+3

Table 2.18: Provoking vertex selection. The vertex colors and/or varying values
used for flatshading the ith primitive generated by the indicated Begin / End type
are derived from the corresponding values of the vertex whose index is shown in
the table. Vertices are numbered 1 through n, where n is the number of vertices

between the Begin / End pair.

L If the value of QUADS_FOLLOW_PROVOKING_VERTEX iS TRUE.
2 1f the value of QUADS_FOLLOW_PROVOKING_VERTEX iS FALSE.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.23. PRIMITIVE CLIPPING 194

If a vertex or geometry shader is active, user-defined varying outputs may be
flatshaded by using the £1at qualifier when declaring the ouput, as described in
section 4.3.6 of the OpenGL Shading Language Specification

The state required for flatshading is one bit for the shade mode, one bit for the
provoking vertex mode, and one implementation-dependent bit for the provoking
vertex behavior of quad primitives. The initial value of the shade mode is SMOOTH
and the initial value of the provoking vertex mode is LAST_VERTEX_CONVENTION.

2.23 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

—Wc S Tc S We

—We < Ye < We

—Wc S Ze S We-
This view volume may be further restricted by as many as n client-defined clip
planes to generate the clip volume. Each client-defined plane specifies a half-
space. (n is an implementation-dependent maximum that must be at least 8.)
The clip volume is the intersection of all such half-spaces with the view volume (if
no client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enump, const double eqn[4]);

The value of the first argument, p, is a symbolic constant, CLIP_PLANE{, where ¢ is
an integer between 0 and n — 1, indicating one of n client-defined clip planes. egn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates: pi, p2, p3, and py (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

Py vy Py Py)=(pm p2 p3 pa) M

(where M is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate if M is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates
(:136 Ye Ze U,‘Q)T that satisfy

W, vy vy P[] =0

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.23. PRIMITIVE CLIPPING 195

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

When a vertex shader is active, the vector (.1‘(Ye Ze W,)l is no longer
computed. Instead, the value of the g1_ClipVertex built-in variable is used in
its place. If g1_ClipVertex is not written by the vertex shader, its value is un-
defined, which implies that the results of clipping to any client-defined clip planes
are also undefined. The user must ensure that the clip vertex and client-defined clip
planes are defined in the same coordinate space.

A vertex shader may, instead of writing to g1_ClipVertex write a single clip
distance for each supported clip plane to elements of the g1_ClipDistance]l]
array. The half-space corresponding to clip plane n is then given by the set of
points satisfying the inequality

CH(P) Z 07

where ¢, (P) is the value of clip distance n at point P. For point primitives,
cn(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined clip planes are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either command
is CLIP_DISTANCE, where ¢ is an integer between 0 and n — 1; specifying a
value of ¢ enables or disables the plane equation with index 7. The constants obey
CLIP_DISTANCE; = CLIP_DISTANCEOQ + i.

Depth clamping is enabled with the generic Enable command and disabled
with the Disable command. The value of the argument to either command is
DEPTH_CLAMP. If depth clamping is enabled, the

—We S Zc ch

plane equation is ignored by view volume clipping (effectively, there is no near or
far plane clipping).

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both
vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.23. PRIMITIVE CLIPPING 196

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and P», then ¢ is given by

P=tP, +(1—t)P,.

The value of ¢ is used to clip color, secondary color, texture coordinate, fog coor-
dinate, and vertex shader varying variables as described in section 2.23.1.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flag TRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

Primitives rendered with user-defined clip planes must satisfy a complementar-
ity criterion. Suppose a single clip plane with coefficients (p| p5 ph p}) (ora
number of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(=p} —py —ps —p)) (and correspondingly for any other clip planes) and the
primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 8 bits indicating which of the client-
defined plane equations are enabled, and at least 8 corresponding sets of plane
equations (each consisting of four double-precision floating-point coefficients) In
the initial state, all plane equations are disabled and all client-defined plane equa-
tion coefficients are zero.

2.23.1 Color and Associated Data Clipping

After lighting, clamping or masking and possible flatshading, colors are
clipped. Those colors associated with a vertex that lies within the clip volume

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.24. FINAL COLOR PROCESSING 197

are unaffected by clipping. If a primitive is clipped, however, the colors assigned
to vertices produced by clipping are clipped.

Let the colors assigned to the two vertices P and Ps of an unclipped edge be
c1 and co. The value of ¢ (section 2.23) for a clipped point P is used to obtain the
color associated with P as

c=tecy+ (1 —t)co.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B,
and A by the scalar. Both primary and secondary colors are treated in the same
fashion.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates, vertex shader varying variables (section 2.14.10),
and point sizes computed on a per vertex basis must also be clipped when a prim-
itive is clipped. The method is exactly analogous to that used for color clipping.

For vertex shader varying variables specified to be interpolated without per-
spective correction (using the noperspective qualifier), the value of ¢ used to
obtain the varying value associated with P will be adjusted to produce results that
vary linearly in screen space.

Varying outputs of integer or unsigned integer type must always be declared
with the £1at qualifier. Since such varyings are constant over the primitive being
rasterized (see sections 3.5.1 and 3.6.1), no interpolation is performed.

2.24 Final Color Processing

In RGBA mode with vertex color clamping disabled, the floating- point RGBA
components are not modified.

In RGBA mode with vertex color clamping enabled, each color component
may be converted to a signed or unsigned normalized fixed-point value as described
in equations 2.4 and 2.6 (depending on the framebuffer format).

GL implementations are not required to convert clamped color components to
fixed-point.

Because a number of the form £ /(2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.25. CURRENT RASTER POSITION 198

fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one of Colorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: if m is less than the number of bits b with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significant b bits of the converted
value must equal the specified value.

A color index is converted (by rounding to nearest) to a fixed-point value with
at least as many bits as there are in the color index portion of the framebuffer.

2.25 Current Raster Position

The current raster position is used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(const T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or Raster-
Pos2) is analogous, but sets only x, ¥, and z with w implicitly set to 1 (or only =
and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT_RASTER_TEXTURE_COORDS are affected by the setting of
the state ACTIVE_TEXTURE.

The coordinates are treated as if they were specified in a Vertex command. If
a vertex shader is active, this vertex shader is executed using the x, vy, 2z, and w
coordinates as the object coordinates of the vertex. Otherwise, the z, y, 2z, and
w coordinates are transformed by the current model-view and projection matri-
ces. These coordinates, along with current values, are used to generate primary
and secondary colors and texture coordinates just as is done for a vertex. The col-
ors and texture coordinates so produced replace the colors and texture coordinates
stored in the current raster position’s associated data. If a vertex shader is active
then the current raster distance is set to the value of the shader built-in varying
gl_FogFragCoord. Otherwise, if the value of the fog source (see section 3.11)
is FOG_COORD, then the current raster distance is set to the value of the current
fog coordinate. Otherwise, the current raster distance is set to the distance from
the origin of the eye coordinate system to the vertex as transformed by only the

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.25. CURRENT RASTER POSITION 199

current model-view matrix. This distance may be approximated as discussed in
section 3.11.

If depth clamping (see section 2.23) is enabled, then raster position z,, is first
clamped to the range [min(n, f), max(n, f)|, where n and f are the current near
and far depth range values (see section 2.17.1).

Since vertex shaders may be executed when the raster position is set, any at-
tributes not written by the shader will result in undefined state in the current raster
position. Vertex shaders should output all varying variables that would be used
when rasterizing pixel primitives using the current raster position.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section 2.17) and saved as the current raster position, and the valid bit
is set. If the “point” is culled, the current raster position and its associated data
become indeterminate and the valid bit is cleared. Figure 2.17 summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of the WindowPos
commands:

void WindowPos{23}{sifd}(T coords);
void WindowPos{23}{sifd}v(const T coords);

WindowPos3 takes three values indicating x, y and z, while WindowPos2
takes two values indicating x and y with z implicitly set to 0. The current raster
position, (Zy, Yuw, 2w, We), is defined by:

Ty =T
Yw =Y
n, z2<0
zZw =1 [, z>1
n+z(f —n), otherwise
we =1

where n and f are the values passed to DepthRange (see section 2.17.1).
Lighting, texture coordinate generation and transformation, and clipping are
not performed by the WindowPos functions. Instead, in RGBA mode, the current
raster color and secondary color are obtained from the current color and secondary
color, respectively. If vertex color clamping is enabled, the current raster color and
secondary color are clamped to [0, 1]. In color index mode, the current raster color

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

2.25. CURRENT RASTER POSITION 200

[
Rasterpos In — |_> Clip M| Project

Raster
Position

Vertex/Normal

Current Transformation

Normal

i

|

|

|

|

Raster :
Distance >|
|

|

|

|

> :

|
I»

|

|

|

|

|

|

|

|

Current Lighting '

Color & T > S~ :
Materials ? _|_L

| Associated

|

|

|

|

|

q —a Texture Data
Current '_:\ Texgen Matrix O :
Texture T Ad Current |
Coord Set 0 Raster |
|
Position |
| —a__| Texture rr—"""- -
Current ° Texgen Matrix 1
Texture T
Coord Set 1
| —a__| Texture
Current ° Texgen Matrix 2
Texture T
Coord Set 2
—k | Texture
Current Lo Texgen Matrix 3
Texture T
Coord Set 3
Figure 2.17.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

2.25. CURRENT RASTER POSITION 201

index is set to the current color index. The current raster texture coordinates are set
to the current texture coordinates, and the valid bit is set.

If the value of the fog source is FOG_COORD_SRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to 0.

The current raster position requires six single-precision floating-point values
for its z,, Yw, and 2z, window coordinates, its w, clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all (0, 0,0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA coloris (1,1, 1, 1), the associated RGBA secondary color is (0, 0,0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive. The
second is assigning a depth value and one or more color values to each such square.
The results of this process are passed on to the next stage of the GL (per-fragment
operations), which uses the information to update the appropriate locations in the
framebuffer. Figure 3.1 diagrams the rasterization process. The color values as-
signed to a fragment are
3.4 3.8
3.9,3.10 3.11 a fragment
shader as defined in section 3.12. The final depth value is initially determined by
the rasterization operations and may be modified or replaced by a fragment shader.
The results from rasterizing a point, line,
routed through a fragment shader.
A grid square along with its z (depth) and

varying shader output parameters is called a fragment; the
parameters are collectively dubbed the fragment’s associated data. A fragment is
located by its lower left corner, which lies on integer grid coordinates. Rasteriza-
tion operations also refer to a fragment’s center, which is offset by (1/2,1/2) from
its lower left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

202

203

Figure 3.1.

Fixed function or fragment

shader selection

b

Point
Rasterization o\~
From Line
Prlmltlb\lle Rasterization [| Fragment
Assembly Texturing Program
Polygon
Rasterization [~ Y
Color Sum
Pixel
DrawPixels ——j] ! -
Rasterization
Y
\/
Bitmap Bitmap — Fo! [- F
= Rasterization 9 ragments

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 204

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Lines and polygons may be stippled. Points may be given differing
diameters and line segments differing widths. A point, line segment, or polygon
may be antialiased.

3.1 Discarding Primitives Before Rasterization

Primitives sent to vertex stream zero (see section 2.20) are processed further; prim-
itives emitted to any other stream are discarded. When geometry shaders are dis-
abled, all vertices are considered to be emitted to stream zero.

Primitives can be optionally discarded before rasterization by calling Enable
and Disable with RASTERTZER_DISCARD. When enabled, primitives are discarded
immediately before the rasterization stage, but after the optional transform feed-
back stage (see section 2.20). When disabled, primitives are passed through to
the rasterization stage to be processed normally. When enabled, RASTERIZER -
DISCARD also causes the Accum, Bitmap, CopyPixels, DrawPixels, Clear, and
ClearBuffer* commands to be ignored.

3.2 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p/ is identical to
a corresponding fragment f from p except that the center of f’ is offset by (z,y)
from the center of f.

3.3 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significant b bits (to the left of the binary point)
of the color index are used for antialiasing; b = min{4, m}, where m is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

3.3. ANTIALIASING 205

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x,y) and upper right corner (x+ 1, y+ 1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f; and f5 are two fragments, and the portion of f; covered by some prim-
itive is a subset of the corresponding portion of fs covered by the primitive,
then the coverage computed for f; must be less than or equal to that com-
puted for fo.

2. The coverage computation for a fragment f must be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.8), allowing a user to make an image quality
versus speed tradeoff.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

3.3. ANTIALIASING 206

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines,

The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only
lines are being rendered, the “smooth™ antialiasing mechanism provided by the
base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_ -
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

The location of a given sample is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The sample location is returned as two
floating point values in val[0] and val[1], each between 0 and 1, corresponding to
the and y locations respectively in GL pixel space of that sample. (0.5, 0.5) thus
corresponds to the pixel center. The error INVALID_VALUE is generated if index
is greater than or equal to the value of SAMPLES. If the multisample mode does not

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

3.3. ANTIALIASING 207

have fixed sample locations, the returned values may only reflect the locations of
samples within some pixels.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If MULTISAMPLE is enabled and the current program object includes a frag-
ment shader with one or more input variables qualified with sample in, the data
associated with those variables will be assigned independently. The values for each
sample must be evaluated at the location of the sample. The data associated with
any other variables not qualified with sample in need not be evaluated indepen-
dently for each sample.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

3.4. POINTS 208

Sample Shading

Sample shading can be used to specify a minimum number of unique samples to
process for each fragment. Sample shading is controlled by calling Enable or
Disable with the symbolic constant SAMPLE_SHADING.

If MULTISAMPLE or SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide a minimum of

max([mss x samples], 1)

unique color values and sets of texture coordinates for each fragment, where mss
is the value of MIN_SAMPLE_SHADING_VALUE and samples is the number of
samples (the value of saMPLES). These are associated with the samples in an
implementation-dependent manner. The value of MIN_SAMPLE_SHADING_VALUE
is specified by calling

void MinSampleShading(clampf value);

with value set to the desired minimum sample shading fraction. value is clamped
to [0, 1] when specified. The sample shading fraction may be queried by calling
GetFloatv with the symbolic constant MIN_SAMPLE_SHADING_VALUE.

When the sample shading fraction is 1.0, a separate set of colors and other
associated data are evaluated for each sample, and each set of values is evaluated
at the sample location.

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle
centered around the vertex of the point. Each vertex has an associated point size
that controls the size of that square or circle.

If no vertex or geometry shader is active, then the rasterization of points is
controlled with

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

OpenGL 4.1 (Compatibility Profile) - July 25, 2010

3.4. POINTS 209

1
derived_size = clamp (5’/2(3 X \/(u Thedics (]2>>

where d is the eye-coordinate distance from the eye, (0,0, 0, 1) in eye coordinates,
to the vertex, and a, b, and ¢ are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If a vertex or geometry shader is active and point size mode is enabled, then
the derived point size is taken from the (potentially clipped) shader built-in g1_-
PointSize written by the geometry shader, or written by the vertex shader if no
geometry shader is active, and clamped to the implementation-dependent point size
range. If the value written to g1_PointSize is less than or equal to zero, results
are undefined. If a vertex and/or geometry shader is active and point size mode is
disabled, then the derived point size is taken from the point size state as specified
by the PointSize command. In this case no distance attenuation is performed.
Program point size mode is enabled and disabled by calling Enable or Disable
with the symbolic value PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.14) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise 3.1
and the fade factor is computed as follows:
fad 1 derived_size > threshold (32)
ade = . . .
(“hstaise)” otherwise

The distance attenuation function coefficients a, b, and ¢, the bounds of the first
point size range clamp, and the point fade threshold are specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

If pname is POINT_SIZE_MIN or POINT_SIZE_MAX, then param specifies,
or params points to the lower or upper bound respectively to which the derived
point size is clamped. If the lower bound is greater than the upper bound, the point
size after clamping is undefined. If pname is POINT_DISTANCE_ATTENUATION,
then params points to the coefficients a, b, and c. If pname is POINT_-
FADE_THRESHOLD_SIZE, then param specifies, or params points to the point fade

OpenGL 4.1 (Compeatibility Profile) - July 25, 2010

3.4. POINTS 210

threshold. Values of POINT SIZE MIN, POINT SIZE MAX,or POINT_FADE_-
THRESHOLD_SIZE less than zero result in the error INVALID_VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SMOOTH. The default state is for point antialiasing to be
disabled.

Point sprites are enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SPRITE. The default state is for point sprites to be dis-
abled. When point sprites are enabled, the state of the point antialiasing enable is
ignored. In a deprecated context, point sprites are always enabled.

The point sprite texture coordinate replacement mode is set with one of the
TexEnv* commands described in section 3.9.16, where target is POINT_SPRITE
and pname is COORD_REPLACE. The possible values for param are FALSE and
TRUE. The default value for each texture coordinate set is for point sprite texture
coordinate replacement to be disabled.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

3.4.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating its x,, and y,, coordi