The OpenGL® Graphics System:

A Specification
(Version 3.3 (Core Profile) - March 11, 2010)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-3.3): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2010 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 1
1.4 Implementor’s View of OpenGL 2
1.5 OurView e 2
1.6 The DeprecationModel 3
1.7 Companion Documents 3

1.7.1 OpenGL Shading Language 3
1.7.2 Window System Bindings 3
2 OpenGL Operation 5
2.1 OpenGL Fundamentals 5
2.1.1 Floating-Point Computation 7
2.1.2 16-Bit Floating-Point Numbers 8
2.1.3 Unsigned 11-Bit Floating-Point Numbers 8
2.1.4 Unsigned 10-Bit Floating-Point Numbers 9
2.1.5 Fixed-Point Data Conversions 10
22 GLState 12
2.2.1 Shared ObjectState 13
2.3 GLCommand Syntax, 13
24 BasicGLOperation 15
25 GLErors 18
2.6 Primitives and Vertices 19
2.6.1 Primitive Types 21
2.7 Vertex Specification 26
2.8 Vertex Arrays e 28
2.8.1 Transferring Array Elements 31
2.8.2 Packed Vertex Data Formats 32

CONTENTS

29

2.10
2.11

2.12

2.13

2.14
2.15
2.16
2.17
2.18
2.19

3.1
32
33

2.8.3 Drawing Commands
BufferObjects
2.9.1 Creating and Binding Buffer Objects
2.9.2 Creating Buffer Object Data Stores
2.9.3 Mapping and Unmapping BufferData
2.9.4 Effects of Accessing Outside Buffer Bounds
2.9.5 Copying Between Buffers
2.9.6 Vertex Arrays in Buffer Objects
2.9.7 Array Indices in Buffer Objects
2.9.8 Buffer ObjectState
Vertex Array Objects
Vertex Shaders oL o
2.11.1 ShaderObjects
2.11.2 Program Objects
2.11.3 Vertex Attributes Lo
2.11.4 Uniform Variables
2115 Samplerso
2.11.6 Varying Variables
2.11.7 Shader Execution
2.11.8 Required State
Geometry Shaders
2.12.1 Geometry Shader Input Primitives
2.12.2 Geometry Shader Output Primitives
2.12.3 Geometry Shader Variables
2.12.4 Geometry Shader Execution Environment
Coordinate Transformations
2.13.1 Controlling the Viewport
Asynchronous Queries Lo
Conditional Rendering
Transform Feedback
Primitive Querieso
Flatshading
Primitive Clipping
2.19.1 Clipping Shader Varying Outputs

Rasterization

Discarding Primitives Before Rasterization
Invariance
Antialiasing oL oL
3.3.1 Multisampling L.

OpenGL 3.3 (Core Profile) - March 11, 2010

ii

CONTENTS

3.4

3.5

3.6

3.7

3.8

39

Points
3.4.1 Basic Point Rasterization
3.4.2 Point Rasterization State
3.4.3 Point Multisample Rasterization
Line Segments
3.5.1 Basic Line Segment Rasterization
3.5.2 Other Line Segment Features
3.5.3 Line Rasterization State
3.5.4 Line Multisample Rasterization
Polygons
3.6.1 Basic Polygon Rasterization
3,62 Antialiasing
3.6.3 Options Controlling Polygon Rasterization
3,64 DepthOffset
3.6.5 Polygon Multisample Rasterization
3.6.6 Polygon Rasterization State
Pixel Rectangles
3.7.1 Pixel Storage Modes and Pixel Buffer Objects
3.7.2 Transfer of Pixel Rectangles
Texturing
3.8.1 TextureObjects
3.8.2 Sampler Objects
3.8.3 Texture Image Specification
3.8.4 Alternate Texture Image Specification Commands

3.8.5 Compressed Texture Images
3.8.6 Multisample Textures
3.8.7 BufferTextures
3.8.8 Texture Parameters
3.8.9 Depth Component Textures
3.8.10 Cube Map Texture Selection
3.8.11 Texture Minification
3.8.12 Texture Magnification
3.8.13 Combined Depth/Stencil Textures
3.8.14 Texture Completeness
3.8.15 Texture State and Proxy State
3.8.16 Texture Comparison Modes
3.8.17 sRGB Texture Color Conversion
3.8.18 Shared Exponent Texture Color Conversion
Fragment Shaders
39.1 Shader Variables

OpenGL 3.3 (Core Profile) - March 11, 2010

iii

CONTENTS v

39.2 Shader Execution 186
3.10 Antialiasing Application 192
3.11 Multisample PointFade 192
4 Per-Fragment Operations and the Framebuffer 193
4.1 Per-Fragment Operations 194
4.1.1 Pixel OwnershipTest 195
412 ScissorTest 195
4.1.3 Multisample Fragment Operations 196
414 Stencil Test 198
415 DepthBufferTest. 199
4.1.6 Occlusion Queries 200
417 Blending 201
418 sRGBConversion 207
419 Dithering oL 207
4.1.10 Logical Operation 208
4.1.11 Additional Multisample Fragment Operations 209
4.2 Whole Framebuffer Operations 210
4.2.1 Selecting a Buffer for Writing 210
4.2.2 Fine Control of Buffer Updates 214
423 Clearingthe Buffers 216
4.3 Reading and Copying Pixels 218
431 ReadingPixels 218
432 CopyingPixels L. 225
433 Pixel Draw/Read State 228
4.4 Framebuffer Objects 228
4.4.1 Binding and Managing Framebuffer Objects 228
4.4.2 Attaching Images to Framebuffer Objects 231
4.4.3 Feedback Loops Between Textures and the Framebuffer . 239
4.44 Framebuffer Completeness 242

445 Effects of Framebuffer State on Framebuffer Dependent
Values 247
4.4.6 Mapping between Pixel and Element in Attached Image . 247
447 Layered Framebuffers 248
5 Special Functions 250
5.1 TimerQuerieso 250
52 FlushandFinish. o oL 251
5.3 SyncObjectsandFences 251
5.3.1 Waiting for Sync Objects 253

OpenGL 3.3 (Core Profile) - March 11, 2010

CONTENTS

5.3.2
5.4 Hints

Signalling

6 State and State Requests
6.1 QueryingGL State

6.1.1
6.1.2
6.1.3
6.14
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.1.11
6.1.12
6.1.13

Simple Queries L.
Data Conversions
Enumerated Queries
Texture Queries
Sampler Queries
String Queries
Asynchronous Queries
Sync Object Queries
Buffer Object Queries
Vertex Array Object Queries
Shader and Program Queries
Framebuffer Object Queries
Renderbuffer Object Queries

6.2 StateTables

A Invariance

A.l1 Repeatability
A.2 Multi-pass Algorithms,
A3 InvarianceRules.
A4 WhatAllThisMeans

B Corollaries

C Compressed Texture Image Formats
C.1 RGTC Compressed Texture Image Formats

C.1.1
Cl1.2
C.13
Cl4

Format COMPRESSED_RED_RGTC1
Format COMPRESSED_SIGNED_RED_RGTC1

Format COMPRESSED_RG_RGTC2
Format COMPRESSED_SIGNED_RG_RGTC2 .

D Shared Objects and Multiple Contexts
D.1 Object Deletion Behavior

D.1.1
D.1.2

Automatic Unbinding of Deleted Objects . .
Deleted Object and Object Name Lifetimes .

D.2 Sync Objects and Multiple Contexts

OpenGL 3.3 (Core Profile) - March 11, 2010

255
256

257
257
257
258
259
261
263
264
266
267
268
270
270
275
277
278

326
326
327
327
328

330

CONTENTS vi

D.3 Propagating Changes to Objects 338
D.3.1 Determining Completion of Changes to an object 338

D.3.2 Definitions 339

D33 Rules 339

E Profiles and the Deprecation Model 341
E.1 Core and Compatibility Profiles 342
E.2 Deprecated and Removed Features 342
E.2.1 Deprecated But Still Supported Features 342

E.2.2 Removed Features 343

F Version 3.0 and Before 348
F1 NewPFeatures 348

F2 Deprecation Model 349

F3 ChangedTokens 350

F4 Changelog 350

E5 Credits and Acknowledgements 352

G Version 3.1 355
G.1 NewPFeatures 355
G.2 DeprecationModel 356
G3 Changelog 356
G.4 Credits and Acknowledgements 357

H Version 3.2 360
H.1 NewPFeatures 360
H.2 Deprecation Model 361
H.3 ChangedTokens 361
H4 Changelog, 362
H.5 Credits and Acknowledgements 364

I Version 3.3 366
I1 NewPFeatures 366

1.2 Deprecation Model 367

I3 Changelog 368

1.4 Credits and Acknowledgements 368

J Extension Registry, Header Files, and ARB Extensions 370
J.1 Extension Registry oo oL 370

J2 HeaderFiles L. 370

J3 ARBExtensions. 371

OpenGL 3.3 (Core Profile) - March 11, 2010

CONTENTS

J.3.1

J.3.2

J.3.3

J.3.4

J.3.5

J.3.6

1.3.7

J.3.8

J.3.9

J.3.10
J.3.11
J.3.12
J.3.13
J.3.14
J.3.15
J.3.16
1.3.17
J.3.18
J.3.19
J.3.20
J.3.21
J.3.22
J.3.23
J.3.24
J.3.25
J.3.26
1.3.27
J.3.28
J.3.29
J.3.30
J.3.31
J.3.32
J.3.33
J.3.34
J.3.35
J.3.36
J.3.37
J.3.38
J.3.39
J.3.40

vii
Naming Conventions 371
Promoting Extensions to Core Features 372
Multitextureo 372
Transpose Matrix 372
Multisample 372
Texture Add Environment Mode 373
Cube Map Textures 373
Compressed Textures 373
Texture Border Clamp 373
Point Parameters 373
VertexBlend 373
Matrix Palette oL 373
Texture Combine Environment Mode 374
Texture Crossbar Environment Mode 374
Texture Dot3 Environment Mode 374
Texture Mirrored Repeat 374
Depth Texture 374
Shadow 374
Shadow Ambient 374
Window Raster Position 374
Low-Level Vertex Programming 375
Low-Level Fragment Programming 375
Buffer Objects 375
Occlusion Queries 375
Shader Objects 375
High-Level Vertex Programming 375
High-Level Fragment Programming 375
OpenGL Shading Language 376
Non-Power-Of-Two Textures 376
Point Spriteso Lo 376
Fragment Program Shadow 376
Multiple Render Targets 376
Rectangular Textures 376
Floating-Point Color Buffers 377
Half-Precision Floating Point 377
Floating-Point Textures 377
Pixel Buffer Objects 377
Floating-Point Depth Buffers 378
Instanced Rendering 378
Framebuffer Objects 378

OpenGL 3.3 (Core Profile) - March 11, 2010

CONTENTS

J.3.41
1.3.42
J.3.43
J.3.44
J.3.45
J.3.46
1.3.47
J.3.48
1.3.49
J.3.50
J.3.51
J.3.52
J.3.53
J.3.54
J.3.55
J.3.56
J.3.57
J.3.58
J.3.59
J.3.60
J.3.61
J.3.62
J.3.63
J.3.64
J.3.65
J.3.66
1.3.67
J.3.68
J.3.69
J.3.70
J.3.71
J.3.72
J.3.73
1.3.74
J.3.75
J.3.76
1.3.77
J.3.78
J.3.79

sRGB Framebuffers
Geometry Shaders
Half-Precision Vertex Data
Instanced Rendering,
Flexible Buffer Mapping
Texture Buffer Objects
RGTC Texture Compression Formats
One- and Two-Component Texture Formats
Vertex Array Objects,
Versioned Context Creation
Uniform Buffer Objects
Restoration of features removed from OpenGL 3.0
Fast Buffer-to-Buffer Copies
Shader Texture Level of Detail Control
Depth Clamp Control
Base Vertex Offset Drawing Commands
Fragment Coordinate Convention Control
Provoking Vertex Control
SeamlessCubeMaps
Fence Sync Objects
Multisample Textures
BGRA Attribute Component Ordering
Per-Buffer Blend Control
Sample Shading Control
Cube Map Array Textures
Texture Gather
Texture Level-Of-Detail Queries
Profiled Context Creation
Shading Language Include
BPTC texture compression
Extended Blend Functions
Explicit Attribute Location
Boolean Occlusion Queries
Sampler Objects
Shader Bit Encoding
RGB10A2 Integer Textures
Texture Swizzle
Timer Queries
Packed 2.10.10.10 Vertex Formats

OpenGL 3.3 (Core Profile) - March 11, 2010

List of Figures

2.1
2.2
23
24
25
2.6

3.1
32
33
34
35
3.6

4.1
4.2

Block diagramofthe GL.
Vertex processing and primitive assembly.
Triangle strips, fans, and independent triangles.
Lines with adjacency.
Triangles with adjacency.
Triangle strips with adjacency.

Rasterization. L
Visualization of Bresenham’s algorithm.
The region used in rasterizing an antialiased line segment.

Transfer of pixel rectangles.
Selecting a subimage from animage
A texture image and the coordinates used to accessit.

Per-fragment operations. L.
Operation of ReadPixels.

ix

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
3.2
33
34
3.5
3.6

3.7
3.8
39
3.10
3.11

3.12

GL command suffixes 14
GL datatypes e 16
Summary of GL errors 19
Triangles generated by triangle strips with adjacency. 26
Vertex array sizes (values per vertex) and data types 30
Packed component layout for non-BGRA formats. 32
Packed component layout for BGRA format. 32
Buffer object binding targets. 39
Buffer object parameters and their values. 39
Buffer object initial state. oL 42
Buffer object state set by MapBufferRange. 44
OpenGL Shading Language type tokens 66
Transform feedback modes 97
Provoking vertex selection. 101
PixelStore parameters. 122
Pixeldatatypes. 124
Pixel data formats. 125
Swap Bytes bitordering. L Lo 126
Packed pixel formats. L. 128
UNSIGNED_BYTE formats. Bit numbers are indicated for each

COMPONENL. . .« . v v v v vttt e e et e e e e e 129
UNSIGNED_SHORT formats 130
UNSIGNED_INT formats 131
FLOAT_UNSIGNED_INT formats 132
Packed pixel field assignments. 133
Conversion from RGBA, depth, and stencil pixel components to

internal texture components. 141
Sized internal color formats. 146

LIST OF TABLES

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Internal formats for buffer textures
Texture parameters and their values.
Selection of cube map images.
Texel location wrap mode application.
Depth texture comparison functions.
Correspondence of filtered texture components to texture base
COMPONENES. v v v v e e e e e e e e e e

RGB and Alpha blend equations.
Blending functions.
Arguments to LogicOp and their corresponding operations.
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer
PixelStore parameters.
ReadPixels index masks.
ReadPixels GL data types and reversed component conversion for-

Correspondence of renderbuffer sized to base internal formats. . .
Framebuffer attachment points.
Layer numbers for cube map texture faces.

Initial properties of a sync object created with FenceSync.
Hint targets and descriptions

Texture, table, and filter return values.
Contextprofilebits
State Variable Types oL
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)
Vertex Array Data (not in Vertex Array objects)
Buffer Object State
Transformationstate
Coloring e
Rasterization,
Rasterization (cont.)
Multisampling
Textures (state per texture unit and binding point)

OpenGL 3.3 (Core Profile) - March 11, 2010

X1

LIST OF TABLES xii

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45

6.46
6.47
6.48
6.49

Textures (state per texture unit and binding point)(cont.) 290
Textures (state per texture object) 291
Textures (state per texture image) 292
Textures (state per sampler object) 293
Texture Environment and Generation 294
Pixel Operations 295
Pixel Operations (cont.) 296
Framebuffer Control 297
Framebuffer (state per target binding point) 298
Framebuffer (state per framebuffer object) 299
Framebuffer (state per attachment point) 300
Renderbuffer (state per target and binding point) 301
Renderbuffer (state per renderbuffer object) 302
Pixels 303
Shader Object State 304
Program Object State 305
Program Object State (cont.) 306
Program Object State (cont.) 307
Program Object State (cont.) 308
Vertex and Geometry Shader State 309
Query Object State 310
Transform Feedback State 311
Sync (state per syncobject) 312
Hints. o 313
Implementation Dependent Values 314
Implementation Dependent Values (cont.) 315
Implementation Dependent Values (cont.) 316
Implementation Dependent Version and Extension Support 317
Implementation Dependent Vertex Shader Limits 318
Implementation Dependent Geometry Shader Limits 319
Implementation Dependent Fragment Processing Limits 320
Implementation Dependent Aggregate Shader Limits

T The minimum value for each stage is
MAX_stage UNIFORM_BLOCKS X MAX_UNIFORM_BLOCK_SIZE

/ 4 +MAX_stage_UNIFORM_COMPONENTS 321
Implementation Dependent Values (cont.) 322
Implementation Dependent Transform Feedback Limits 323
Framebuffer Dependent Values 324
Miscellaneous 325

OpenGL 3.3 (Core Profile) - March 11, 2010

LIST OF TABLES

F.1 New token names

H.1 New token names

OpenGL 3.3 (Core Profile) - March 11, 2010

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of the OpenGL Specification
1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, and polygons,
but the way that some of this drawing occurs (such as when antialiasing is enabled)
relies on the existence of a framebuffer. Further, some of OpenGL is specifically
concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

1.4. IMPLEMENTOR’S VIEW OF OPENGL 2

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

OpenGL 3.3 (Core Profile) - March 11, 2010

1.6. THE DEPRECATION MODEL 3

1.6 The Deprecation Model

GL features marked as deprecated in one version of the specification are expected
to be removed in a future version, allowing applications time to transition away
from use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.11
and 3.9). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 3.3 implementations are guaranteed to support version 3.30 of the
OpenGL Shading Language. All references to sections of that specification refer
to version 3.30. The supported version of the shading language may be queried as
described in section 6.1.5.

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix J).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

OpenGL 3.3 (Core Profile) - March 11, 2010

1.7. COMPANION DOCUMENTS 4

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 3.3 (Core Profile) - March 11, 2010

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader
programs. Each primitive is a point, line segment, or polygon. Each mode may
be changed independently; the setting of one does not affect the settings of oth-
ers (although many modes may interact to determine what eventually ends up in
the framebuffer). Modes are set, primitives specified, and other GL operations
described by sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In

2.1. OPENGL FUNDAMENTALS 6

general, the effects of a GL. command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.7.2.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 7

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. In some cases, the representation and/or precision of such opera-
tions is defined or limited; by the OpenGL Shading Language Specification for
operations in shaders, and in some cases implicitly limited by the specified format
of vertex, texture, or renderbuffer data consumed by the GL. Otherwise, the rep-
resentation of such floating-point numbers, and the details of how operations on
them are performed, is not specified. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
10°. The maximum representable magnitude of a floating-point number used to
represent positional, normal, or texture coordinates must be at least 232 the max-
imum representable magnitude for colors must be at least 2'°. The maximum
representable magnitude for all other floating-point values must be at least 232.
z-0 = 0.2 = 0 for any non-infinite and non-NaN z. 1 -2 = = -1 = =z.
z+0=0+x =z 0° = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as %. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 8

Any representable floating-point value is legal as input to a GL. command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V' of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x JL E=0,M#0
V=S (-1)9x2E 5 x (1+4f), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

g {N mod 65536J
32768
B {N mod 32768J
1024
M =N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

2.1.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is

OpenGL 3.3 (Core Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 9

determined by the following:

0.0, E=0,M=0
—14 M —
271 % &, E=0,M+#0
V=928 x (1+4), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer NV, then

| N
64
M=N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

(0.0, E=0,M=0

— M

271 % 2, E=0,M+#0
V=928 (1+4]), 0<E<31

Inf, E=31,M=0

NaN, E=31,M#0

OpenGL 3.3 (Core Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 10

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

pe | N
32
M =N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.8.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer. For framebuffer
and renderbuffer A components, b must be at least 2 if the buffer does not contain
an A component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively. The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 11

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

&
= —. 2.1
f=5— 2.1)
Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding

floating-point value f may be performed in two ways:

_20+1

f=%— 2.2)

In this case the full range of the representation is used, so that —2°~! corre-
sponds to -1.0 and 2°~! — 1 corresponds to 1.0. For example, if b = 8, then the
integer value -128 corresponds to -1.0 and the value 127 corresponds to 1.0. Note
that it is not possible to exactly express O in this representation. In general, this rep-
resentation is used for signed normalized fixed-point parameters in GL commands,
such as vertex attribute values.

Alternatively, conversion may be performed using

¢
f = mazx {Qb—l - 1,—1.0}) (2.3)

In this case only the range [—2°~! + 1,2°~! — 1] is used to represent signed
fixed-point values in the range [—1,1]. For example, if b = 8, then the integer
value -127 corresponds to -1.0 and the value 127 corresponds to 1.0. Note that
while zero can be exactly expressed in this representation, one value (-128 in the
example) is outside the representable range, and must be clamped before use. In
general, this representation is used for signed normalized fixed-point texture or
framebuffer values.

Everywhere that signed normalized fixed-point values are converted, the equa-
tion used is specified.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.2. GL STATE 12

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

fl=fx(2b-1). (2.4)

1 is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ may be performed in two ways, both beginning by
clamping f to the range [—1, 1]:

fl=fx@-1-1
2
In general, this conversion is used when querying floating-point state (see sec-
tion 6) and returning integers.
Alternatively, conversion may be performed using

(2.5)

fl=fx@"t—1). (2.6)

In general, this conversion is used when specifying signed normalized fixed-
point texture or framebuffer values.

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

Everywhere that floating-point values are converted to signed normalized fixed-
point, the equation used is specified.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one

OpenGL 3.3 (Core Profile) - March 11, 2010

2.3. GL COMMAND SYNTAX 13

complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, £loat v0, £loat vl,
float v2, float v3);

and

void GetFloatv(enum value, float *data);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.3. GL COMMAND SYNTAX

Type Descriptor | Corresponding GL Type

b byte
S short
i int
i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

rtype Name{e1234}{c b s ii64 f d ub us ui vi64}{cv}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments arg/ through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then [V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);

'The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 3.3 (Core Profile) - March 11, 2010

14

2.4. BASIC GL OPERATION 15

void Uniformlf(int location, f£loat value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, float v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, f£loat vl, float v2,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these

types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Commands are effectively sent
through a processing pipeline.

The first stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices may be transformed and lit,
followed by assembly into geometric primitives, which may optionally be used by
the next stage, geometry shading, to generate new primitives. The final resulting
primitives are clipped to a viewing volume in preparation for the next stage, ras-
terization. The rasterizer produces a series of framebuffer addresses and values
using a two-dimensional description of a point, line segment, or polygon. Each
Jfragment so produced is fed to the next stage that performs operations on individ-
ual fragments before they finally alter the framebuffer. These operations include
conditional updates into the framebuffer based on incoming and previously stored
depth values (to effect depth buffering), blending of incoming fragment colors with
stored colors, as well as masking and other logical operations on fragment values.

Finally, values may also be read back from the framebuffer or copied from one
portion of the framebuffer to another. These transfers may include some type of
decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.4. BASIC GL OPERATION

16

GL Type Minimum | Description
Bit Width

boolean 1 Boolean

byte 8 Signed twos complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed twos complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed twos complement binary inte-
ger

uint 32 Unsigned binary integer

inte64 64 Signed twos complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 5.3)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.4. BASIC GL OPERATION

17

Texture
Memory

A

Pixel
> Pack/Unpack

*

Transform
Feedback
\[/)t;:;ex Sha\:iei;te);nd Primitive Fragment
—1 Per—Vgrtex - Assembly - Shading and =1 Framebuffer
Operations and Per-Fragment
P Rasterization Operations
Pixel
Data * A
-

Figure 2.1. Block diagram of the GL.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.5. GL ERRORS 18

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES

19

Error

Description

Offending com-
mand ignored?

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes

INVALID_FRAMEBUFFER_OPERATION || Framebuffer object is not com- | Yes
plete

cute command

OUT_OF_MEMORY Not enough memory left to exe- | Unknown

Table 2.3: Summary of GL errors

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Primitives and Vertices

In the GL, most geometric objects are drawn by specifying a series of generic
attribute sets using DrawArrays or one of the other drawing commands defined in
section 2.8.3. Points, lines, polygons, and a variety of related geometric objects
(see section 2.6.1) can be drawn in this way.

Each vertex is specified with one or more generic vertex attributes. Each at-
tribute is specified with one, two, three, or four scalar values. Generic vertex
attributes can be accessed from within vertex shaders (section 2.11) and used to
compute values for consumption by later processing stages.

The methods by which generic attributes are sent to the GL, as well as how
attributes are used by vertex shaders to generate vertices mapped to the two-
dimensional screen, are discussed later.

Before vertex shader execution, the state required by a vertex is its generic
vertex attributes. Vertex shader execution processes vertices producing a homo-
geneous vertex position and any varying outputs explicitly written by the vertex
shader.

Figure 2.2 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES

20

Coordinates
Point, . .
Vertex Shaded Line Segment, or Eﬁ]‘:g:umgg;
Shader f Triangle €9
< Vertices &L or Triangle
Execution (Primitive) clippin
Assembly pping
Varying o o
Outputs
Generic Primitive type
Vertex (from DrawArrays or
Attributes

DrawElements mode)

Figure 2.2. Vertex processing and primitive assembly.

Rasterization

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES 21

coordinates and varying vertex shader outputs. In the case of line and polygon
primitives, clipping may insert new vertices into the primitive. The vertices defin-
ing a primitive to be rasterized have varying outputs associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 2.8.3. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. The types, and the corresponding mode parameters, are:

Points
A series of individual points may be specified with mode POINTS. Each vertex
defines a separate point.

Line Strips

A series of one or more connected line segments may be specified with mode
LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the 7th vertex (for ¢ > 1) specifies the beginning of
the ¢th segment and the end of the ¢ — 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops

Line loops may be specified with mode LINE_LOOP. Loops are the same as
line strips except that a final segment is added from the final specified vertex to the
first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines

Individual line segments, each specified by a pair of vertices, may be speci-
fied with mode LINES. The first two vertices passed define the first segment, with
subsequent pairs of vertices each defining one more segment. If the number of
specified vertices is odd, then the last one is ignored. The state required is the same
as for line strips but it is used differently: a processed vertex holding the first vertex
of the current segment, and a boolean flag indicating whether the current vertex is
odd or even (a segment start or end).

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES 22

NN

1 3

(@) (b) ()

Figure 2.3. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and may
be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant). Each subsequent vertex
defines a new triangle using that point along with two vertices from the previous
triangle. If fewer than three vertices are specified, no primitive is produced. See
figure 2.3.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
The pointer is initialized to point to vertex A. Each successive vertex toggles the
pointer. Therefore, the first vertex is stored as vertex A, the second stored as vertex
B, the third stored as vertex A, and so on. Any vertex after the second one sent
forms a triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle Fans

A triangle fan is the same as a triangle strip with one exception: each vertex
after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

Separate Triangles
Separate triangles are specified with mode TRIANGLES. In this case, The 3i +

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES 23

@ ---O—0O @

@ ---O—D - ®

O ---O—O—O—O O

Figure 2.4. Lines with adjacency (a) and line strips with adjacency (b). The vertices
connected with solid lines belong to the main primitives; the vertices connected by
dashed lines are the adjacent vertices that may be used in a geometry shader.

1st, 37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each
t=0,1,...,n— 1, where there are 3n + k vertices drawn. k is either O, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
31 and vertex B is vertex 37 + 1. Otherwise, separate triangles are the same as a
triangle strip.

Lines with Adjacency

Lines with adjacency are independent line segments where each endpoint has
a corresponding adjacent vertex that can be accessed by a geometry shader (sec-
tion 2.12). If a geometry shader is not active, the adjacent vertices are ignored.
They are generated with mode LINES_ADJACENCY.

A line segment is drawn from the 47+ 2nd vertex to the 47 4 3rd vertex for each
i =20,1,...,n — 1, where there are 4n + k vertices passed. k is either 0, 1, 2, or
3; if k is not zero, the final k vertices are ignored. For line segment 7, the 47 4 1st
and 4¢ + 4th vertices are considered adjacent to the 47 4 2nd and 4¢ + 3rd vertices,
respectively (see figure 2.4).

Line Strips with Adjacency

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES 24

Figure 2.5. Triangles with adjacency. The vertices connected with solid lines be-
long to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

Line strips with adjacency are similar to line strips, except that each line seg-
ment has a pair of adjacent vertices that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode LINE_STRIP_ADJACENCY.

A line segment is drawn from the ¢ 4+ 2nd vertex to the 7 + 3rd vertex for each
t=20,1,...,n — 1, where there are n + 3 vertices passed. If there are fewer than
four vertices, all vertices are ignored. For line segment ¢, the ¢ + 1st and ¢ + 4th
vertex are considered adjacent to the 7 4 2nd and 7 4 3rd vertices, respectively (see
figure 2.4).

Triangles with Adjacency

Triangles with adjacency are similar to separate triangles, except that each tri-
angle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLES_ADJACENCY.

The 67 + 1st, 6¢ + 3rd, and 67 + 5th vertices (in that order) determine a triangle
for each ¢ = 0,1,...,n — 1, where there are 6n + k vertices passed. k is either
0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i,
the 7 + 2nd, 7 + 4th, and ¢ 4 6th vertices are considered adjacent to edges from the
1 + 1st to the 7 + 3rd, from the ¢ + 3rd to the ¢ + 5th, and from the ¢ + 5th to the

OpenGL 3.3 (Core Profile) - March 11, 2010

2.6. PRIMITIVES AND VERTICES 25

Figure 2.6. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

1 + 1st vertices, respectively (see figure 2.5).

Triangle Strips with Adjacency

Triangle strips with adjacency are similar to triangle strips, except that each line
triangle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLE_STRIP_ADJACENCY.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices passed. k is either O or 1; if & is 1, the final vertex is ignored. If
there are fewer than 6 vertices, the entire primitive is ignored. Table 2.4 describes
the vertices and order used to draw each triangle, and which vertices are considered
adjacent to each edge of the triangle (see figure 2.6).

OpenGL 3.3 (Core Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION

Primitive Vertices Adjacent Vertices
Primitive Ist [2nd | 3rd | 122 | 23 | 3/1
only 4 =0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (¢ even) 2041 | 2¢04+3 | 26+5 | 2¢0—1 | 20+7 | 2044
last(t=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last(t=mn—1,9even) | 20+1 | 20+3 | 20+5 | 20—1 | 20+6 | 20 +4

Table 2.4: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (i = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex passed is numbered 1 and the first triangle is numbered 0.

Depending on the current state of the GL, a polygon primitive generated from a
drawing command with mode TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES,
TRIANGLES_ADJACENCY, or TRIANGLE_STRIP_ADJACENCY may be rendered in
one of several ways, such as outlining its border or filling its interior. The order
of vertices in such a primitive is significant in polygon rasterization and fragment
shading (see sections 3.6.1 and 3.9.2).

2.7 Vertex Specification

Vertex shaders (see section 2.11) access an array of 4-component generic vertex
attributes . The first slot of this array is numbered O, and the size of the array is
specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex when a
vertex array defining that data is not enabled, as described in section 2.8. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);

OpenGL 3.3 (Core Profile) - March 11, 2010

26

2.7. VERTEX SPECIFICATION 27

void VertexAttrib{123}{sfd}v(uint index, const
T values);

void VertexAttrib4{bsifd ub us ui}v(uint index, const
T values);

void VertexAttribdNub(uint index, T values);

void VertexAttrib4N{bsi ub us ui}v(uint index, const
T values);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-
spectively, while the other commands specify values that are converted directly to
the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is not floating-point (e.g. is signed or unsigned integer). To
load current values of a generic shader attribute declared as a signed or unsigned
scalar or vector, use the commands

void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const

T values);
void VertexAttribl4{bs ubus}v(uint index, const

T values);

These commands specify values that are extended to full signed or unsigned
integers, then loaded into the generic attribute at slot index in the same fashion as
described above.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is floating-point; if the base type is integer and unsigned in-
teger values are supplied (the VertexAttribI*ui, VertexAttribI*us, and Vertex-
AttribI*ub commands); or if the base type is unsigned integer and signed integer

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 28

values are supplied (the VertexAttribI*i, VertexAttribI*s, and VertexAttribI*b
commands)

Vertex data may be stored as packed components within a larger natural type.
Such data may be specified using

void VertexAttribP{1234}ui (uint index, enum
type, boolean normalized, uint value)

void VertexAttribP{1234}uiv (uint index, enum
type, boolean normalized, const uint *value)

These commands specify up to four attribute component values, packed into
a single natural type as described in section 2.8.2, and load it into the generic
attribute at slot index. The fype parameter must be INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV, specifying signed or unsigned data respec-
tively. The first one (z), two (z, y), three (x, y, 2), or four (z, y, z, w) components
of the packed data are consumed by VertexAttribP1ui, VertexAttribP2ui, Ver-
texAttribP3ui, and VertexAttribP4ui, respectively. Data specified by VertexAt-
tribP* will be converted to floating point by normalizing if normalized is TRUE,
and converted directly to floating point otherwise. For VertexAttribP*uiv, value
contains the address of a single uint containing the packed attribute components.

The error INVALID_VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX_VERTEX_ATTRIBS.

The state required to support vertex specification consists of the value of
MAX_VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.

The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

2.8 Vertex Arrays

Vertex data is placed into arrays that are stored in the server’s address space (de-
scribed in section 2.9). Blocks of data in these arrays may then be used to specify
multiple geometric primitives through the execution of a single GL command. The
client may specify up to the value of MAX_VERTEX_ATTRIBS arrays to store one
or more generic vertex attributes. The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 29

describe the locations and organizations of these arrays. For each command, fype
specifies the data type of the values stored in the array. size indicates the number
of values per vertex that are stored in the array as well as their component order-
ing. Table 2.5 indicates the allowable values for size and type (when present).
For type the values BYTE, SHORT, INT, FLOAT, HALF_FLOAT, and DOUBLE indi-
cate types byte, short, int, float, half, and double, respectively; the
values UNSIGNED_BYTE, UNSIGNED_SHORT, and UNSIGNED_INT indicate types
ubyte, ushort, and uint, respectively; and the values INT_2_10_10_10_-
REV and UNSIGNED_INT_2_10_10_10_REV, indicating respectively four signed
or unsigned elements packed into a single uint, both correspond to the term
packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.5 for the corresponding command.

An INVALID_OPERATION error is generated under any of the following con-
ditions:

e size is BGRA and fype is not UNSIGNED_BYTE, INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV;

® fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV,
and size is neither 4 or BGRA;

o for VertexAttribPointer only, size is BGRA and normalized is FALSE;

e any of the *Pointer commands specifying the location and organization of
vertex array data are called while zero is bound to the ARRAY_BUFFER
buffer object binding point (see section 2.9.6), and the pointer argument is
not NULL.

The index parameter in the VertexAttribPointer and VertexAttribIPointer
commands identifies the generic vertex attribute array being described. The er-
ror INVALID_VALUE is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS. Generic attribute arrays with integer type arguments can
be handled in one of three ways: converted to float by normalizing to [0, 1] or
[—1,1] as described in equations 2.1 and 2.2, respectively; converted directly to
float, or left as integers. Data for an array specified by VertexAttribPointer will
be converted to floating-point by normalizing if normalized is TRUE, and converted
directly to floating-point otherwise. Data for an array specified by VertexAttribl-
Pointer will always be left as integer values; such data are referred to as pure
integers.

The one, two, three, or four values in an array that correspond to a single ver-
tex comprise an array element. When size is BGRA, it indicates four values. The

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 30

Sizes and
Component Integer
Command Ordering Handling | Types
VertexAttribPointer | 1,2, 3,4, BGRA | flag byte, ubyte,

short, ushort,
int, uint, float,
half, double, packed

VertexAttribIPointer 1,2,3,4 integer byte, ubyte, short,
ushort, int, uint

Table 2.5: Vertex array sizes (values per vertex) and data types. The “Integer Han-
dling” column indicates how fixed-point data types are handled: “integer” means
that they remain as integer values, and “flag” means that they are either converted
to floating-point directly, or converted by normalizing to [0, 1] (for unsigned types)
or [—1,1] (for signed types), depending on the setting of the normalized flag in
VertexAttribPointer. If size is BGRA, vertex array values are always normalized,
irrespective of the “normalize” table entry. packed is not a GL type, but indicates
commands accepting multiple components packed into a single uint.

values within each array element are stored sequentially in memory. However, if
size is BGRA, the first, second, third, and fourth values of each array element are
taken from the third, second, first, and fourth values in memory respectively. If
stride is specified as zero, then array elements are stored sequentially as well. The
error INVALID_VALUE is generated if stride is negative. Otherwise pointers to the
ith and (7 + 1)st elements of an array differ by stride basic machine units (typi-
cally unsigned bytes), the pointer to the (i 4+ 1)st element being greater. For each
command, pointer specifies the offset within a buffer of the first value of the first
element of the array being specified.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-
VERTEX_ATTRIBS.

The command

void VertexAttribDivisor(uint index, uint divisor);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 31

modifies the rate at which generic vertex attributes advance when rendering multi-
ple instances of primitives in a single draw call. If divisor is zero, the attribute at
slot index advances once per vertex. If divisor is non-zero, the attribute advances
once per divisor instances of the set(s) of vertices being rendered. An attribute is
referred to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

2.8.1 Transferring Array Elements

When an array element ¢ is transferred to the GL by DrawArrays, DrawElements,
or the other Draw* commands described below, each generic attribute is expanded
to four components. If size is one then the z component of the attribute is specified
by the array; the y, z, and w components are implicitly set to 0, 0, and 1, respec-
tively. If size is two then the x and y components of the attribute are specified by
the array; the z and w components are implicitly set to 0 and 1, respectively. If size
is three then z, y, and z are specified, and w is implicitly set to 1. If size is four
then all components are specified.
Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum rarget);

and
void Disable(enum target);

with target PRIMITIVE_RESTART. The command
void PrimitiveRestartIndex(uint index);

specifies a vertex array element that is treated specially when primitive restarting
is enabled. This value is called the primitive restart index. ~ When one of the
Draw* commands transfers a set of generic attribute array elements to the GL, if
the index within the vertex arrays corresponding to that set is equal to the primitive
restart index, then the GL does not process those elements as a vertex. Instead,
it is as if the drawing command ended with the immediately preceding transfer,
and another drawing command is immediately started with the same parameters,
but only transferring the immediately following element through the end of the
originally specified elements.

When one of the *BaseVertex drawing commands specified in section 2.8.3 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 32

2.8.2 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REvVand INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (2) components are represented as 10-bit unsigned integer
values and the fourth (w) omponent is represented as a 2-bit unsigned integer value.

For the INT_2_10_10_10_REV vertex data format, the =, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 2.6 and 2.7 describe how these components are laid out in a 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

o] : : :

Table 2.6: Packed component layout for non-BGRA formats. Bit numbers are indi-
cated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

o] : y :

Table 2.7: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

2.8.3 Drawing Commands

The command

void DrawArraysOnelnstance(enum mode, int first,
sizeil count, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by transferring
elements first through first + count — 1 of each enabled array to the GL. mode

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 33

specifies what kind of primitives are constructed, as defined in section 2.6.1. If
mode is not a valid primitive type, an INVALID_ENUM error is generated. If count
is negative, an INVALID_VALUE error is generated.

If an array corresponding to a generic attribute required by a vertex shader
is not enabled, then the corresponding element is taken from the current generic
attribute state (see section 2.7).

If an array corresponding to a generic attribute required by a vertex shader is
enabled, the corresponding current generic attribute value is undefined after the
execution of DrawArraysOnelnstance.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawArrays(enum mode, int first, sizei count);
is equivalent to the command sequence
DrawArraysOnelnstance (mode, first, count, 0);

The internal counter instancelD is a 32-bit integer value which may be read by
a vertex shader as gl_InstancelID, as described in section 2.11.4. The value of
this counter is always zero, except as noted below.

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

behaves identically to DrawArrays except that primcount instances of the range
of elements are executed, the value of instancelID advances for each iteration, and
the instanced elements advance per instance depending on the value of the divisor
for that vertex attribute set with VertexAttribDivisor. It has the same effect as:

if (mode or count is invalid)
generate appropriate error
else {
for (1 = 0; i < primcount; i++) {
instancelID = 1i;
DrawArraysOnelnstance (mode, first, count, 1);

}

instanceID = 0;

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 34

The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei primcount);

behaves identically to DrawArraysInstanced except that primcount separate
ranges of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instancelD stays at 0. It has the same effect as:

if (mode is invalid)
generate appropriate error
else {
for (i = 0; i < primcount; i++) {
if (count[i] > 0)
DrawArraysOnelnstance (mode, first[i], count[i],

}

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum fype, const void *indices);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives by suc-
cessively transferring the count elements whose indices are stored in the currently
bound element array buffer (see section 2.9.7) at the offset defined by indices to
the GL. The th element transferred by DrawElementsOnelnstance will be taken
from element ¢ndices[¢] of each enabled array. type must be one of UNSIGNED_ -
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the index values are
of GL type ubyte, ushort, or uint respectively. mode specifies what kind of
primitives are constructed, as defined in section 2.6.1.

If an array corresponding to a generic attribute required by a vertex shader
is not enabled, then the corresponding element is taken from the current generic
attribute state (see section 2.7).

If an array corresponding to a generic attribute required by a vertex shader is
enabled, the corresponding current generic attribute value is undefined after the
execution of DrawElementsOnelnstance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

OpenGL 3.3 (Core Profile) - March 11, 2010

0);

2.8. VERTEX ARRAYS 35

behaves identically to DrawElementsOnelInstance with the instance parameter set
to zero; the effect of calling

DrawElements (mode, count, type, indices) ;
is equivalent to the command sequence:

if (mode, count or type is invalid)
generate appropriate error
else
DrawElementsOnelnstance (mode, count, type, indices, 0);

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei primcount);

behaves identically to DrawElements except that primcount instances of the set of
elements are executed, the value of instancelD advances between each set, and the
instance advances between each set. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
instancelD = 1i;
DrawElementsOnelnstance (mode, count, type, indices, 1i);

}

instancelID = 0;

}

The command

void MultiDrawElements(enum mode, const
sizei *count, enumtype, const void **indices,
sizei primcount);

behaves identically to DrawElementsInstanced except that primcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instancelD stays at 0. It has the same effect as:

OpenGL 3.3 (Core Profile) - March 11, 2010

2.8. VERTEX ARRAYS 36

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
DrawElementsOnelnstance (mode, count[i], type, indices[i], 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values other than the primitive restart
index to lie outside the range [start, end], but implementations are not required to
check for this. Such indices will cause implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *indices, int basevertex);
void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);
void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizei primcount, int basevertex);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 37

are equivalent to the commands with the same base name (without the Base Vertex
suffix), except that the ith element transferred by the corresponding draw call will
be taken from element indices|i] + basevertex of each enabled array. If the result-
ing value is larger than the maximum value representable by fype, it should behave
as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative
and should be handled as described in section 2.9.4. For DrawRangeElementsBa-
seVertex, the index values must lie between start and end inclusive, prior to adding
the basevertex offset. Index values lying outside the range [start, end] are treated
in the same way as DrawRangeElements.
The command

void MultiDrawElementsBaseVertex(enum mode, const
sizei *count, enumtype, const void **indices,
sizei primcount, const int *basevertex);

behaves identically to DrawElementsBase Vertex, except that primcount separate
lists of elements are specified instead. It has the same effect as:

for (int i = 0; 1 < primcount; i++)
if (count[i] > 0)
DrawElementsBaseVertex (mode, count[i], type,
indices[1], basevertex[1i]) ;

If the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the state required to implement vertex arrays con-
sists of n boolean values, n memory pointers, n integer stride values, n symbolic
constants representing array types, n integers representing values per element, n
boolean values indicating normalization, n boolean values indicating whether the
attribute values are pure integers, n integers representing vertex attribute divisors,
and an unsigned integer representing the restart index.

In the initial state, the boolean values are each false, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each false, the divisors are each zero, and the restart index is zero.

2.9 Buffer Objects

Vertex array data are stored in high-performance server memory. GL buffer ob-
jects provide a mechanism that clients can use to allocate, initialize, and render

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 38

from such memory.
The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding a name returned by GenBuffers to a buffer
target. The binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 2.8. If the buffer object named buffer
has not been previously bound, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising the state values listed in table 2.9.

Buffer objects created by binding a name returned by GenBuffers to any of
the valid rargets are formally equivalent, but the GL may make different choices
about storage location and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to farget is broken.

BindBuffer fails and an INVALID_OPERATION error is generated if buffer is
not zero or a name returned from a previous call to GenBuffers, or if such a name
has since been deleted with DeleteBuffers.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS

39

Target name Purpose Described in section(s) ‘

ARRAY_BUFFER Vertex attributes 2.9.6

COPY_READ_BUFFER Buffer copy source 2.9.5

COPY_WRITE_BUFFER Buffer copy destination 2.9.5

ELEMENT_ARRAY_BUFFER Vertex array indices 2.9.7

PIXEL_PACK_BUFFER Pixel read target 4.3.1, 6.1

PIXEL_UNPACK_BUFFER Texture data source 3.7

TEXTURE_BUFFER Texture data buffer 3.8.7

TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer | 2.16

UNIFORM_BUFFER Uniform block storage 2114

Table 2.8: Buffer object binding targets.

Name Type Initial Value | Legal Values

BUFFER_SIZE int64 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS | int 0 See section 2.9.3

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET int64 0 any non-negative integer

BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 2.9: Buffer object parameters and their values.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 40

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts and other threads are not affected, but
attempting to use a deleted buffer in another thread produces undefined results,
including but not limited to possible GL errors and rendering corruption. Using
a deleted buffer in another context or thread may not, however, result in program
termination.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

Binding Buffer Objects to Indexed Targets

Buffer objects may be bound to indexed targets by calling one of the commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Addi-
tional language specific to each target is included in sections referred to for each
target in table 2.8.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions (e.g. BindBuffer, MapBuffer). Both commands bind the buffer
object named by buffer to both the general binding point, and to the binding point
in the array given by index. The error INVALID_VALUE is generated if index is
greater than or equal to the number of target-specific indexed binding points.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from the buffer object
while used as an indexed target. Both offset and size are in basic machine units.
The error INVALID_VALUE is generated if size is less than or equal to zero or if
offset + size is greater than the value of BUFFER_SIZE. Additional errors may be
generated if offser violates target-specific alignment requirements.

BindBufferBase is equivalent to calling BindBufferRange with offser zero
and size equal to the size of buffer.

2.9.2 Creating Buffer Object Data Stores

The data store of a buffer object is created and initialized by calling

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 41

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with farget set to one of the targets listed in table 2.8, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coprY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 42

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_ACCESS_FLAGS | 0
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.10: Buffer object initial state.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.10.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /N basic machine units be a multiple of V.

If the GL is unable to create a data store of the requested size, the error OUT_-
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.8. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE
error is generated if offset or size is less than zero or if offset + size is greater than
the value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any
part of the specified buffer range is mapped with MapBufferRange or MapBuffer
(see section 2.9.3).

2.9.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 43

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with farget set to one of the targets listed in table 2.8. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 44

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.11: Buffer object state set by MapBufferRange.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, Or MAP_READ_BIT|MAP_WRITE_BIT.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.11.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 45

Errors

If an error occurs, MapBufferRange returns a NULL pointer.

An INVALID_VALUE error is generated if offset or length is negative, if offset+
length is greater than the value of BUFFER_STIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

The buffer is already in a mapped state.

Neither MAP_ READ_BIT nor MAP_ WRITE_BIT is set.

MAP_READ_BIT is set and any of MAP_ INVALIDATE_RANGE_BIT, MAP_-—
INVALIDATE_BUFFER_BIT, or MAP_ UNSYNCHRONIZED_BIT is set.

MAP_FLUSH_EXPLICIT BIT is setand MAP_WRITE_BIT is not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum target, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same target, offset
of zero, length equal to the value of BUFFER_SIZE, and the access bitfield
value passed to MapBufferRange equal to

e MAP_READ_BIT, if mbaccess is READ_ONLY
e MAP_WRITE_BIT, if mbaccess is WRITE_ONLY

e MAP_READ_BIT|MAP_WRITE_BIT, if mbaccess is READ_WRITE

and mbaccess is the value of the access enum parameter passed to MapBuffer.
INVALID_ENUM is generated if access is not one of the values described above.
Other errors are generated as described above for MapBufferRange.
If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 46

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.8. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_OPERATION error is generated if the buffer bound to rarget is
not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum rarget);

with target set to one of the targets listed in table 2.8. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_—
MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_ -
OFFSET, and BUFFER_MAP_ LENGTH state variables to the initial values shown in
table 2.10.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 47

Effects of Mapping Buffers on Other GL. Commands

Most, but not all G commands will detect attempts to read data from a mapped
buffer object. When such an attempt is detected, an INVALID_OPERATION error
will be generated. Any command which does not detect these attempts, and per-
forms such an invalid read, has undefined results and may result in GL interruption
or termination.

2.9.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error will be generated. Any command which does not detect these attempts,
and performs such an invalid read or write, has undefined results, and may result
in GL interruption or termination.

2.9.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void *CopyBufferSubData(enum readtarget,
enum writetarget, intptr readoffset, intptr writeoffset,
sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 2.8.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_—
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use. writeoffset
and size specify the range of data in the buffer object bound to writetarget that is
to be replaced, in terms of basic machine units. readoffset and size specify the
range of data in the buffer object bound to readtarget that is to be copied to the
corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset, readoffset + size) and
[writeoffset, writeoffset + size) overlap.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.9. BUFFER OBJECTS 48

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.6 Vertex Arrays in Buffer Objects

Blocks of vertex array data are stored in buffer objects with the same format and
layout options described in section 2.8. A buffer object binding point is added to
the client state associated with each vertex array type. The commands that specify
the locations and organizations of vertex arrays copy the buffer object name that is
bound to ARRAY_BUFFER to the binding point corresponding to the vertex array of
the type being specified. For example, the VertexAttribPointer command copies
the value of ARRAY_BUFFER_BINDING (the queriable name of the buffer binding
corresponding to the target ARRAY_ BUFFER) to the client state variable VERTEX_—
ATTRIB_ARRAY_BUFFER_BINDING for the specified index.

Rendering commands DrawArrays, and the other drawing commands defined
in section 2.8.3 operate as previously defined, where data for enabled generic at-
tribute arrays are sourced from buffer objects. When an array is sourced from a
buffer object, the pointer value of that array is used to compute an offset, in basic
machine units, into the data store of the buffer object. This offset is computed by
subtracting a null pointer from the pointer value, where both pointers are treated as
pointers to basic machine units.

If any enabled array’s buffer binding is zero when DrawArrays or one of the
other drawing commands defined in section 2.8.3 is called, the result is undefined.

2.9.7 Array Indices in Buffer Objects

Blocks of array indices are stored in buffer objects in the formats described by the
type parameter of DrawElements (see section 2.8.3).

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from the buffer object whose name is bound to ELEMENT_-—
ARRAY_BUFFER, using their indices parameters as offsets into the buffer ob-
ject in the same fashion as described in section 2.9.6. DrawElementsBaseV-
ertex, DrawRangeElementsBase Vertex, and DrawElementsInstancedBase Ver-
tex also source their indices from that buffer object, adding the basevertex offset to

OpenGL 3.3 (Core Profile) - March 11, 2010

2.10. VERTEX ARRAY OBJECTS 49

the appropriate vertex index as a final step before indexing into the vertex buffer;
this does not affect the calculation of the base pointer for the index array. Finally,
MultiDrawElements and MultiDrawElementsBaseVertex also source their in-
dices from that buffer object, using its indices parameter as a pointer to an ar-
ray of pointers that represent offsets into the buffer object. If zero is bound to
ELEMENT_ARRAY_ BUFFER, the result of these drawing commands is undefined.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.8 Buffer Object State

The state required to support buffer objects consists of binding names for each
of the buffer targets in table 2.8, and for each of the indexed buffer targets in sec-
tion 2.9.1. Additionally, each vertex array has an associated binding so there is a
buffer object binding for each of the vertex attribute arrays. The initial values for
all buffer object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizein, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 50

object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays are silently
ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state values listed in tables 6.4 and 6.5.

Bind VertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

Bind VertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with Delete VertexArrays.

2.11 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their asso-
ciated data.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader ob-
ject and then compiled. One or more vertex shader objects are then attached to
a program object. A program object is then linked, which generates executable
code from all the compiled shader objects attached to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders, geometry shaders and fragment shaders can be
created, compiled, and linked into program objects. Geometry shaders affect the
processing of primitives assembled from vertices (see section 2.12). Fragment
shaders affect the processing of fragments during rasterization (see section 3.9). A
single program object can contain all of vertex, geometry, and fragment shaders.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 51

When the program object currently in use includes a vertex shader, its vertex
shader is considered active and is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use, the results of vertex
shader execution are undefined.

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a
special form of uniform used for texturing (section 3.8). Varying variables hold
the results of vertex shader execution that are used later in the pipeline. Each of
these variable types is described in more detail below.

2.11.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_—
VALUE if the provided name is not the name of either a shader or program object
and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS

the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.
The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.
Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.11). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 6.1.11).

An INVALID_OPERATION error is generated if shader is not the name of a
valid shader object generated by CreateShader.

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.11). DeleteShader will silently ignore
the value zero.

2.11.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for

OpenGL 3.3 (Core Profile) - March 11, 2010

52

2.11. VERTEX SHADERS 53

defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.11). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not
compiled successfully, or if more active uniform or active sampler variables are
used in program than allowed (see sections 2.11.4,2.11.5, and 2.12.3).

Linking will also fail if the program object contains objects to form a geometry
shader (see section 2.12), and

e the program contains no objects to form a vertex shader;

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 54

e the input primitive type, output primitive type, or maximum output vertex
count is not specified in any compiled geometry shader object; or

e the input primitive type, output primitive type, or maximum output vertex
count is specified differently in multiple geometry shader objects.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.11).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram(uint program);

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to 0, then the current
rendering state refers to an invalid program object, and the results of vertex and
fragment shader execution are undefined. However, this is not an error. If program
has not been successfully linked, the error INVALID_OPERATION is generated and
the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram(uint program);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 55

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
Zero.

2.11.3 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, or automatically assigned by the GL
when the program is linked.

When an attribute variable declared as a f1loat, vec2, vec3 or vec4 is bound
to a generic attribute index 4, its value(s) are taken from the z, (z,y), (z,y, z), or
(x,y, z, w) components, respectively, of the generic attribute <. When an attribute
variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes ¢ and i 4 1 (mat2), from attributes
¢ through 7 + 2 (mat3x2), or from attributes ¢ through 7 + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (x,y, z) components of generic attributes 7 and i + 1 (mat2x3),
from attributes ¢ through ¢ 4+ 2 (mat 3), or from attributes ¢ through ¢ + 3 (mat 4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (x, y, z, w) components of generic attributes ¢ and i + 1
(mat2x4), from attributes ¢ through ¢ + 2 (mat3x4), or from attributes 7 through
1+ 3 (mat4).

A generic attribute variable is considered active if it is determined by the com-
piler and linker that the attribute may be accessed when the shader is executed. At-
tribute variables that are declared in a vertex shader but never used will not count
against the limit. In cases where the compiler and linker cannot make a conclusive
determination, an attribute will be considered active. A program object will fail to
link if the number of active vertex attributes exceeds MAX_VERTEX_ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);
This command provides information about the attribute selected by index. An in-

dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES — 1

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 56

selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.11). If index is greater than or equal to
ACTIVE_ATTRIBUTES, the error INVALID_VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize. The returned attribute name must be the name of a
generic attribute. The length of the longest attribute name in program is given by
ACTIVE_ATTRIBUTE_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.11).

For the selected attribute, the type of the attribute is returned into fype.
The size of the attribute is returned into size. The value in size is in units of
the type returned in type. The type returned can be any of FLOAT, FLOAT_ -
VEC2, FLOAT_VEC3, FLOAT_VEC4, FLOAT_MAT2, FLOAT_MAT3, FLOAT_MAT4,
FLOAT MAT2x3, FLOAT MAT2x4, FLOAT_MAT3x2, FLOAT MAT3x4, FLOAT -
MAT4x2, FLOAT_MAT4x3, INT, INT_VEC2, INT_VEC3, INT_VEC4, UNSIGNED_-
INT, UNSIGNED_INT_VEC2, UNSIGNED_INT_VEC3, or UNSIGNED_INT_VECA4.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, or if an error occurs, -1 will be returned.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 57

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

When a program is linked, any active attributes without a binding specified ei-
ther through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings can be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_ —
ATTRIBS). LinkProgram will fail if the attribute bindings assigned by BindAttri-
bLocation do not leave not enough space to assign a location for an active matrix
attribute or an active attribute array, both of which require multiple contiguous
generic attributes. If an active attribute has a binding explicitly set within the shader
text and a different binding assigned by BindAttribLocation, the assignment in
the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name to an index,
including a name that is never used as an attribute in any vertex shader object. As-
signed bindings for attribute variables that do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index ¢ are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index .

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 58

no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

2.11.4 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms can be grouped into uniform blocks. The values of each uni-
form in such a set are extracted from the data store of a buffer object corresponding
to the uniform block. OpenGL Shading Language syntax serves to delimit named
blocks of uniforms that can be backed by a buffer object. These are referred to
as named uniform blocks, and are assigned a uniform block index. Uniforms that
are declared outside of a named uniform block are said to be part of the default
uniform block. Default uniform blocks have no name or uniform block index. Like
uniforms, uniform blocks can be active or inactive. Active uniform blocks are those
that contain active uniforms after a program has been compiled and linked.

The amount of storage available for uniform variables in the default uniform
block accessed by a vertex shader is specified by the value of the implementation-
dependent constant MAX_VERTEX_UNIFORM_COMPONENTS. The total amount of
combined storage available for uniform variables in all uniform blocks accessed
by a vertex shader (including the default uniform block) is specified by the value
of the implementation-dependent constant MAX_ COMBINED_VERTEX_UNIFORM_-—
COMPONENTS. These values represent the numbers of individual floating-point, in-
teger, or boolean values that can be held in uniform variable storage for a vertex
shader. A link error is generated if an attempt is made to utilize more than the space
available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object’s default uniform block are initialized as defined by the version of
the OpenGL Shading Language used to compile the program. A successful link
will also generate a location for each active uniform in the default uniform block.
The values of active uniforms in the default uniform block can be changed using
this location and the appropriate Uniform* command (see below). These locations
are invalidated and new ones assigned after each successful re-link.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 59

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Uniforms in a named
uniform block are not assigned a location and may not be modified using the
Uniform* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name if it is associ-
ated with the default uniform block. name must be a null-terminated string, without
white space. The value -1 will be returned if if name does not correspond to an
active uniform variable name in program, or if name is associated with a named
uniform block.

If program has not been successfully linked, the error INVALID_OPERATION
is generated. After a program is linked, the location of a uniform variable will not
change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of

a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0] ". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

Named uniform blocks, like uniforms, are identified by name strings. Uniform
block indices corresponding to uniform block names can be queried by calling

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 60

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockName must contain a null-terminated string specifying the name
of a uniform block.

GetUniformBlockIndex returns the uniform block index for the uniform block
named uniformBlockName of program. If uniformBlockName does not identify an
active uniform block of program, or an error occurred, then INVALID_INDEX iS
returned. The indices of the active uniform blocks of a program are assigned in
consecutive order, beginning with zero.

An active uniform block’s name string can be queried from its uniform block
index by calling

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei *length,
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex must be an active uniform block index of program, in the
range zero to the value of ACTIVE_UNIFORM_BLOCKS - 1. The value of ACTIVE_-
UNIFORM_BLOCKS can be queried with GetProgramiv (see section 6.1.11). If
uniformBlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.

Information about an active uniform block can be queried by calling

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 61

successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex is an active uniform block index of program. If uniform-
BlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_BLOCKS, or
is not the index of an active uniform block in program, the error INVALID_VALUE
is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNIFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point last selected by the uniform block specified by uniformBlockIndex
for program is returned. If no uniform block has been previously specified, zero is
returned.

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to
hold all active uniforms in the uniform block identified by uniformBlockIndex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this
is the std140 uniform block layout, which guarantees specific packing behavior
and does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.11.4).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetIntegerv with
the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNTFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM BLOCK_REFERENCED_BY -
VERTEX_SHADER, UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER, Or
UNIFORM_BLOCK_REFERENCED_BY FRAGMENT_SHADER, then a boolean value
indicating whether the uniform block identified by uniformBlockIndex is refer-

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 62

enced by the vertex, geometry, or fragment programming stages of program, re-
spectively, is returned.

Each active uniform, whether in a named uniform block or in the default block,
is assigned an index when a program is linked. Indices are assigned in consecutive
order, beginning with zero. The indices assigned to a set of uniforms in a program
may be queried by calling

void GetUniformIndices(uint program,
sizei uniformCount, const char **uniformNames,
uint *uniformlndices);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformCount indicates both the number of elements in the array of names
uniformNames and the number of indices that may be written to uniformindices.

uniformNames contains a list of uniformCount name strings identifying the uni-
form names to be queried for indices. For each name string in uniformNames, the
index assigned to the active uniform of that name will be written to the correspond-
ing element of uniformindices. If a string in uniformNames is not the name of an
active uniform, the value INVALID_INDEX will be written to the corresponding
element of uniformindices.

If an error occurs, nothing is written to uniformindices.

The name of an active uniform may be queried from the corresponding uniform
index by calling

void GetActiveUniformName(uint program,
uint uniformilndex, sizei bufSize, sizei *length,
char *uniformName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformlndex must be an active uniform index of the program program, in
the range zero to the value of ACTIVE_UNIFORMS - 1. The value of ACTIVE_-
UNIFORMS can be queried with GetProgramiv. If uniformindex is greater than or
equal to the value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

The name of the uniform identified by uniformindex is returned as a null-
terminated string in uniformName. The actual number of characters written into

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 63

uniformName, excluding the null terminator, is returned in length. If length is
NULL, no length is returned. The maximum number of characters that may be writ-
ten into uniformName, including the null terminator, is specified by bufSize. The
returned uniform name can be the name of built-in uniform state as well. The com-
plete list of built-in uniform state is described in section 7.5 of the OpenGL Shad-
ing Language Specification. The length of the longest uniform name in program
is given by the value of ACTIVE_UNIFORM_MAX_LENGTH, which can be queried
with GetProgramiv.

If GetActiveUniformName is not successful, nothing is written to length or

uniformName.
Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is

legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.
Information about active uniforms can be obtained by calling either

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

or

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

These commands provide information about the uniform or uniforms selected
by index or uniformiIndices, respectively. In GetActiveUniform, an index of 0
selects the first active uniform, and an index of the value of ACTIVE_UNIFORMS
- 1 selects the last active uniform. In GetActiveUniformsiv, uniformindices is an
array of such active uniform indices. If any index is greater than or equal to the
value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 64

including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in
uniform state is described in section 7.5 of the OpenGL Shading Language Speci-
fication. The length of the longest uniform name in program is given by ACTIVE_ -
UNIFORM_MAX_LENGTH.

Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is
legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform is into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.12, correspond-
ing to OpenGL Shading Language type keywords also shown in that table.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

If an error occurs, nothing is written to length, size, type, or name.

Type Name Token Keyword
FLOAT float
FLOAT_VEC2 vec2
FLOAT_VEC3 vec3
FLOAT_VEC4 vecd
INT int
INT_VEC2 ivec2
INT_VEC3 ivec3
INT_VEC4 ivecd
UNSIGNED_INT unsigned int
UNSIGNED_INT_VEC2 uvec?2
UNSIGNED_INT_VEC3 uvec3
UNSIGNED_INT_VEC4 uvec4d
(Continued on next page)

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11.

VERTEX SHADERS

OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword

BOOL bool

BOOL_VEC2 bvec2
BOOL_VEC3 bvec3
BOOL_VEC4 bvec4d
FLOAT_MAT2 mat?2
FLOAT_MATS3 mat3
FLOAT_MATA4 mat4
FLOAT_MAT2x3 mat2x3
FLOAT_MAT2x4 mat2x4
FLOAT_MAT3x2 mat3x2
FLOAT_MAT3x4 mat3x4
FLOAT_MAT4x2 matédx2
FLOAT_MAT4x3 mat4x3
SAMPLER_1D samplerlD
SAMPLER_2D sampler2D
SAMPLER_ 3D sampler3D
SAMPLER_CUBE samplerCube
SAMPLER_1D_SHADOW samplerlDShadow
SAMPLER_2D_SHADOW sampler2DShadow
SAMPLER_1D_ARRAY samplerlDArray
SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_1D_ARRAY_SHADOW

samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW

sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE

sampler2DMS

SAMPLER_2D_MULTISAMPLE_-—
ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW

samplerCubeShadow

SAMPLER_BUFFER samplerBuffer
SAMPLER_2D_RECT sampler2DRect
SAMPLER_2D_RECT_SHADOW sampler2DRectShadow
INT_SAMPLER_1D isamplerlD
INT_SAMPLER_2D isampler2D
INT_SAMPLER_3D isampler3D
INT_SAMPLER_CUBE isamplerCube
INT_SAMPLER_1D_ARRAY isamplerlDArray

(Continued on next page)

OpenGL 3.3 (Core Profile) - March 11, 2010

65

2.11.

VERTEX SHADERS

OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword
INT_SAMPLER_2D_ARRAY isampler2DArray
INT_SAMPLER_2D_- isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_-— isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
INT_SAMPLER_2D_RECT isampler2DRect
UNSIGNED_INT_SAMPLER_1D usamplerlD
UNSIGNED_INT_SAMPLER_2D usampler2D
UNSIGNED_INT_SAMPLER_3D usampler3D
UNSIGNED_INT_SAMPLER_ - usamplerCube
CUBE

UNSIGNED_INT_SAMPLER_ - usamplerlDArray
1D_ARRAY

UNSIGNED_INT_SAMPLER_ - usampler2DArray
2D_ARRAY

UNSIGNED_INT_SAMPLER_-— usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_ - usampler2DMSArray
2D_MULTISAMPLE_ARRAY

UNSIGNED_INT_ SAMPLER_ - usamplerBuffer
BUFFER

UNSIGNED_INT_SAMPLER_- usampler2DRect

2D_RECT

Table 2.12: OpenGL Shading Language type tokens returned by
GetActiveUniform and GetActiveUniformsiv, and correspond-
ing shading language keywords declaring each such type.

66

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformindices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformlndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformlndices is returned. The returned

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS

types can be any of the values in table 2.12.

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformindices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the terminating null character, of the uniform name strings specified by
the corresponding array of uniformlIndices is returned.

If pname is UNTFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mindices is returned. The index of a uniform associated with the default uniform
block is -1.

If pname is UNIFORM_OFFSET, then an array of uniform buffer offsets is re-
turned. For uniforms in a named uniform block, the returned value will be its offset,
in basic machine units, relative to the beginning of the uniform block in the buffer
object data store. For uniforms in the default uniform block, -1 will be returned.

If pname is UNIFORM_ARRAY_STRIDE, then an array identifying the stride
between elements, in basic machine units, of each of the uniforms specified by
the corresponding array of uniformindices is returned. The stride of a uniform
associated with the default uniform block is -1. Note that this information only
makes sense for uniforms that are arrays. For uniforms that are not arrays, but are
declared in a named uniform block, an array stride of zero is returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformlndices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named
uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each
of the uniforms specified by the corresponding array of uniformindices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables of the default uniform block of the pro-
gram object that is currently in use, use the commands

OpenGL 3.3 (Core Profile) - March 11, 2010

67

2.11. VERTEX SHADERS 68

void Uniform{1234}{if}(int location, T value);

void Uniform{1234}{if}v(int location, sizei count, const
T value);

void Uniform{1234}ui(int location, T value);

void Uniform{1234}uiv(int location, sizei count, const
T value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv(
int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the default uniform block uniform variable loca-
tion identified by location.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv commands will load count
2x3,3%x2,2x4,4x%x2,3x4, or 4x 3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 69

values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1liv
would generate an error.

For all other uniform types the Uniform* command used must match the
size and type of the uniform, as declared in the shader. No type conversions are
done. For example, to load a uniform declared as a vec4, Uniform4f{v} must be
used. To load a 3 x 3 matrix, UniformMatrix3fv must be used. An INVALID_ -
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniformd4i{v} would generate an
error.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

e if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and /ocation is not -1, or

o if there is no program object currently in use.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 70

and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of
active uniform blocks used by each shader (vertex, geometry, and fragment).
If the number of uniform blocks used by any shader in the program exceeds
its corresponding limit, the program will fail to link. The limits for vertex,
geometry, and fragment shaders can be obtained by calling GetIntegerv with
pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_GEOMETRY_UNIFORM_-
BLOCKS, and MAX_FRAGMENT_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform
block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program
contains multiple shaders with different declarations for the same named uniform
block differs between shader, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type boo1l are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

e Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

e Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

e Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, or
float are extracted as /N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 71

e Column-major matrices with C' columns and R rows (using the type
matCxR, or simply matC if C' = R) are treated as an array of C' floating-
point column vectors, each consisting of R components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-
ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNIFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

e Row-major matrices with C' columns and R rows (using the type matCxR,
or simply matC if C' = R) are treated as an array of R floating-point row
vectors, each consisting of C' components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_ STRIDE, iS
an implementation-dependent value and may be queried after a program is
linked.

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 72

offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N.

2. If the member is a two- or four-component vector with components consum-
ing N basic machine units, the base alignment is 2N or 4N, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4V.

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C' columns and R rows, the
matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of S column-major matrices with C' columns and
R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C' columns and R rows, the matrix
is stored identically to an array of R row vectors with C' components each,
according to rule (4).

8. If the member is an array of .S row-major matrices with C' columns and R
rows, the matrix is stored identically to a row of S x R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is /N, where
N is the largest base alignment value of any of its members, and rounded

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 73

up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with farget set to UNIFORM_BUFFER. In addition to the general errors described in
section 2.9.1, BindBufferRange will generate an INVALID_VALUE error if index
is greater than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS, or if
offset is not a multiple of the implementation-dependent alignment requirement
(the value of UNIFORM_BUFFER_OFFSET_ALIGNMENT).

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

An INVALID_VALUE error is generated if uniformBlockIndex is not an active
uniform block index of program, or if uniformBlockBinding is greater than or equal
to the value of MAX_UNIFORM_BUFFER_BINDINGS.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 74

of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified by vertex array
commands (see section 2.8).

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

2.11.5 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to ¢ selects texture
image unit number ¢. The values of 7 range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform™* entry points is not allowed and
will result in an INVALID_OPERATION eITOL.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS

2.11.6 Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language Specification). Varying variables are outputs of a vertex shader. The
OpenGL Shading Language Specification also defines a set of built-in varying and
special variables that vertex shaders can write to (see sections 7.1 and 7.6 of the
OpenGL Shading Language Specification). These varying variables are either used
as the mechanism to communicate values to a geometry shader, if one is active, or
to communicate values to the fragment shader and to the fixed-function processing
that occurs after vertex shading.

If a geometry shader is not active, the values of all varying and special vari-
ables are expected to be interpolated across the primitive being rendered, unless
flatshaded. Otherwise the values of all varying and special variables are collected
by the primitive assembly stage and passed on to the geometry shader once enough
data for one primitive has been collected (see section 2.12).

The number of components (individual scalar numeric values) of varying and
special variables that can be written by the vertex shader, whether or not a geometry
shader is active, is given by the value of the implementation-dependent constant
MAX_VERTEX_OUTPUT_COMPONENTS. Outputs declared as vectors, matrices, and
arrays will all consume multiple components.

When a program is linked, all components of any varying and special vari-
able written by a vertex shader will count against this limit. A program whose
vertex shader writes more than the value of MAX_VERTEX_OUTPUT_COMPONENTS
components worth of varying variables may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as vertex
shader outputs or fragment shader inputs. This limit is given by the value of the
implementation-dependent constant MAX_VARYING_COMPONENTS. Each varying
or special variable component used as either a vertex shader output or fragment
shader input count against this limit, except for the components of g1_Position.
A program containing only a vertex and fragment shader that accesses more than
this limit’s worth of components of varying and special variables may fail to link,
unless device-dependent optimizations are able to make the program fit within
available hardware resources.

Each program object can specify a set of one or more vertex or geometry shader
output variables to be recorded in transform feedback mode (see section 2.16).
When a geometry shader is active (see section 2.12), transform feedback records
the values of the selected geometry shader output variables from the emitted ver-
tices. Otherwise, the values of the selected vertex shader output variables are

OpenGL 3.3 (Core Profile) - March 11, 2010

75

2.11. VERTEX SHADERS 76

recorded. The values to record are specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char **varyings, enum bufferMode);

program specifies the program object. count specifies the number of vary-
ing variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the varying variables to use for trans-
form feedback. Varying variables are written out in the order they appear in the
array varyings. bufferMode is either INTERLEAVED_ATTRIBS or SEPARATE_ -
ATTRIBS, and identifies the mode used to capture the varying variables when trans-
form feedback is active. The error INVALID_VALUE is generated if bufferMode is
SEPARATE_ATTRIBS and count is greater than the value of the implementation-
dependent limit MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram is
called, the program is linked so that the values of the specified varying variables
for the vertices of each primitive generated by the GL are written to a single buffer
object (if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects
(if the buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

e the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex or geometry shader;

e any variable name specified in the varyings array is not declared as an output
in the vertex shader (or the geometry shader, if active).

e any two entries in the varyings array specify the same varying variable;

o the total number of components to capture in any varying variable in varyings
is greater than the constant MAX_TRANSFORM_FEEDBACK_SEPARATE_-—
COMPONENTS and the buffer mode is SEPARATE_ATTRIBS; or

e the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_ COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS.

To determine the set of varying variables in a linked program object that will
be captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 77

provides information about the varying variable selected by index. An index of 0
selects the first varying variable specified in the varyings array of TransformFeed-
backVaryings, and an index of TRANSFORM_FEEDBACK_VARYINGS-1 selects the
last such varying variable. The value of TRANSFORM_FEEDBACK_VARYINGS can
be queried with GetProgramiv (see section 6.1.11). If index is greater than or
equal to TRANSFORM_FEEDBACK_VARYINGS, the error INVALID_VALUE is gen-
erated. The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. If program has not been linked,
the error INVALID_OPERATION is generated. If a new set of varying variables is
specified by TransformFeedback Varyings after a program object has been linked,
the information returned by GetTransformFeedbackVarying will not reflect those
variables until the program is re-linked.

The name of the selected varying is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The length of the longest varying name in program is
given by TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, which can be queried
with GetProgramiv (see section 6.1.11).

For the selected varying variable, its type is returned into type. The size of
the varying is returned into size. The value in size is in units of the type returned
in type. The type returned can be any of the scalar, vector, or matrix attribute
types returned by GetActiveAttrib. If an error occurred, the return parameters
length, size, type and name will be unmodified. This command will return as much
information about the varying variables as possible. If no information is available,
length will be set to zero and name will be an empty string. This situation could
arise if GetTransformFeedbackVarying is called after a failed link.

2.11.7 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values.

If a geometry shader (see section 2.12) is active, vertices processed by the
vertex shader are passed to the geometry shader for further processing. Otherwise,
the following operations are applied to vertices processed by the vertex shader:

e Perspective division on clip coordinates (section 2.13).

e Viewport mapping, including depth range scaling (section 2.13.1).

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 78

Flatshading (section 2.18).

Clipping, including client-defined half-spaces (section 2.19).

Front face determination (section 3.6.1).

Generic attribute clipping (section 2.19.1).

There are several special considerations for vertex shader execution described
in the following sections.

Shader Only Texturing

This section describes texture functionality that is accessible through vertex, ge-
ometry, or fragment shaders. Also refer to section 3.8 and to section 8.7 of the
OpenGL Shading Language Specification,

Texel Fetches

The OpenGL Shading Language texel fetch functions provide the ability to extract
a single texel from a specified texture image. The integer coordinates passed to
the texel fetch functions are used directly as the texel coordinates (3, j, k) into the
texture image. This in turn means the texture image is point-sampled (no filtering
is performed).

The OpenGL Shading Language texel fetch functions provide the ability to ex-
tract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used direetly as the texel coordinates (i, 7, k) into
the texture image. This in turn means the texture image is point-sampled (no filter-
ing is performed), but the remaining steps of texture access (described below) are
still applied.

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levely,se.-

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

o the computed level of detail is less than the texture’s base level (levelp,se) or
greater than the maximum level (level,,qz)

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 79

e the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

o the layer specified for array textures is negative or greater than the number
of layers in the array texture,

e the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the specified level of detail, where any of

1 <0 1> Wy
J<0 J = hs
k<0 k> ds

and the size parameters ws, hg, and dg refer to the width, height, and depth
of the image, as in equation 3.16

o the texture being accessed is not complete, as defined in section 3.8.14.

Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures support only NEAREST filtering.

Additionally, this fetch may only be performed on a multisample texture sam-
pler. No other sample or fetch commands may be performed on a multisample
texture sampler.

Texture Size Query

The OpenGL Shading Language texture size functions provide the ability to query
the size of a texture image. The LOD value lod passed in as an argument to the
texture size functions is added to the levelp,s. of the texture to determine a tex-
ture image level. The dimensions of that image level, excluding a possible bor-
der, are then returned. If the computed texture image level is outside the range
[levelpgse, levelmqz], the results are undefined. When querying the size of an array
texture, both the dimensions and the layer index are returned.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 80

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum num-
ber of texture image units available to vertex, geometry, or fragment shaders
are respectively the values of the implementation-dependent constants MAX_ -
VERTEX_ TEXTURE_IMAGE_UNITS, MAX_GEOMETRY_TEXTURE_IMAGE_UNITS,
and MAX_TEXTURE_IMAGE_UNITS. The vertex shader, geometry shader, and frag-
ment shader combined cannot use more than the value of MAX_COMBINED_-
TEXTURE_IMAGE_UNITS texture image units. If more than one of the vertex
shader, geometry shader, and fragment processing stage access the same texture
image unit, each such access counts separately against the MAX_COMBINED_—
TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a vertex or geometry shader, the filtered
texture value 7 is computed in the manner described in sections 3.8.11 and 3.8.12,
and converted to a texture base color (' as shown in table 3.20, followed by ap-
plication of the texture swizzle as described in section 3.9.2 to compute the texture
source color C and Ag.

The resulting four-component vector (Rs, G, Bs, As) is returned to the
shader. Texture lookup functions (see section 8.7 of the OpenGL Shading Lan-
guage Specification) may return floating-point, signed, or unsigned integer values
depending on the function and the internal format of the texture.

In a vertex or geometry shader, it is not possible to perform automatic level-of-
detail calculations using partial derivatives of the texture coordinates with respect
to window coordinates as described in section 3.8.11. Hence, there is no automatic
selection of an image array level. Minification or magnification of a texture map
is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value [, then the pre-bias level-of-detail value Apyse(,y) = [(replacing
equation 3.17). If the texture lookup function does not supply an explicit level-of-
detail value, then A\pyse(z,y) = 0. The scale factor p(x,y) and its approximation
function f(x,y) (see equation 3.21) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with a reference
depth value specified in the coordinates passed to the texture lookup function, as
described in section 3.8.16. The comparison operation is requested in the shader by
using any of the shadow sampler types (samplerlDShadow, sampler2DShadow,
or sampler2DRectShadow), and in the texture using the TEXTURE_COMPARE_ —
MODE parameter. These requests must be consistent; the results of a texture lookup
are undefined if any of the following conditions are true:

e The sampler used in a texture lookup function is not one of the shadow

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 81

sampler types, the texture object’s internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT oOr
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

e The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

Using a sampler in a vertex or geometry shader will return (R, G, B, A) =
(0,0,0,1) if the sampler’s associated texture is not complete, as defined in sec-
tion 3.8.14.

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_vertexID and gl_InstancelID.

gl_VertexID holds the integer index ¢ implicitly passed by DrawArrays or
one of the other drawing commands defined in section 2.8.3.

gl_InstanceID holds the integer index of the current primitive in an in-
stanced draw call (see section 2.8.3).

Section 7.1 of the OpenGL Shading Language Specification also describes
these variables.

Shader Outputs

A vertex shader can write to user-defined varying variables. These values are
expected to be interpolated across the primitive it outputs, unless they are specified
to be flat shaded. Refer to sections 4.3.6, 7.1, and 7.6 of the OpenGL Shading
Language Specification for more detail.

The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

The built-in special variable g1_ClipDistance holds the clip distance(s)
used in the clipping stage, as described in section 2.19. If clipping is enabled,
gl_ClipDistance should be written.

The built in special variable g1_PointSize, if written, holds the size of the
point to be rasterized, measured in pixels.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 82

Validation

It is not always possible to determine at link time if a program object actually will
execute. Therefore validation is done when the first rendering command is issued,
to determine if the currently active program object can be executed. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by any command that transfers vertices to the GL if:

e any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

e the number of active samplers in the program exceeds the maximum number
of texture image units allowed.

Undefined behavior results if the program object in use has no fragment shader
unless transform feedback is enabled, in which case only a vertex shader is re-
quired.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.11).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.11. VERTEX SHADERS 83

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

2.11.8 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.

The state required per program object consists of:

e An unsigned integer indicating the program object name.
e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 84

e A boolean holding the status of the last validation attempt, initally FALSE.
e An integer holding the number of attached shader objects.

o A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.
e An integer holding the number of active uniforms.

e For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

e An array holding the values of each active uniform.
e An integer holding the number of active attributes.

e For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additional state required to support vertex shaders consists of:

e A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

e A bit indicating whether or not program point size mode (section 3.4.1) is
enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

2.12 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 2.6.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders are
defined by source code in the OpenGL Shading Language, in the same manner as
vertex shaders. They operate on a single primitive at a time and emit one or more
output primitives, all of the same type, which are then processed like an equivalent
OpenGL primitive specified by the application. The original primitive is discarded

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 85

after geometry shader execution. The inputs available to a geometry shader are the
transformed attributes of all the vertices that belong to the primitive. Additional
adjacency primitives are available which also make the transformed attributes of
neighboring vertices available to the shader. The results of the shader are a new set
of transformed vertices, arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 2.16).

Geometry shaders are created as described in section 2.11.1 using a fype of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 2.11.2. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.
If the program object has no geometry shader, this stage is bypassed.

A program object that includes a geometry shader must also include a vertex
shader; otherwise a link error will occur.

2.12.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided by
the GL. If a geometry shader is active, any command that transfers vertices to the
GL will generate an INVALID_OPERATION error if the primitive mode parameter
is incompatible with the input primitive type of the currently active program object,
as discussed below.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Specifi-
cation. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried by
calling GetProgramiv with the symbolic constant GEOMETRY_INPUT_TYPE. The
supported types and the corresponding OpenGL Shading Language input layout
qualifier keywords are:

Points (points)
Geometry shaders that operate on points are valid only for the POINTS primi-

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 86

tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (1ines)

Geometry shaders that operate on line segments are valid only for the LINES,
LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 2.12.4.

Lines with Adjacency (1ines_adjacency)

Geometry shaders that operate on line segments with adjacent vertices are valid
only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)

Geometry shaders that operate on triangles are valid for the TRIANGLES,
TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)

Geometry shaders that operate on triangles with adjacent vertices are valid
for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

2.12.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the man-
ner described in section 2.6.1. The resulting primitives are then further processed

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 87

as described in section 2.12.4. If the number of vertices emitted by the geometry
shader is not sufficient to produce a single primitive, nothing is drawn. The number
of vertices output by the geometry shader is limited to a maximum count specified
in the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described in
section 4.3.8.1 of the OpenGL Shading Language Specification. A program will
fail to link if either the output primitive type or maximum output vertex count are
not specified by any geometry shader object attached to the program, or if they
are specified differently by multiple geometry shader objects. The output primi-
tive type and maximum output vertex count of a linked program may be queried
by calling GetProgramiv with the symbolic constants GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

2.12.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program ob-
ject. The amount of storage available for geometry shader uniform variables is
specified by the implementation dependent constant MAX_GEOMETRY_UNIFORM_ -
COMPONENTS. This value represents the number of individual floating-point, inte-
ger, or boolean values that can be held in uniform variable storage for a geometry
shader. A link error will be generated if an attempt is made to utilize more than the
space available for geometry shader uniform variables. Uniforms are manipulated
as described in section 2.11.4. Geometry shaders also have access to samplers to
perform texturing operations, as described in sections 2.11.5 and 3.8.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input varying variables. A vertex shader writing to out-
put varying variables generates the values of these input varying variables, includ-
ing values for built-in as well as user-defined varying variables. Values for any
varying variables that are not written by a vertex shader are undefined. Addition-
ally, a geometry shader has access to a built-in variable that holds the ID of the
current primitive. This ID is generated by the primitive assembly stage that sits in
between the vertex and geometry shader.

Additionally, geometry shaders can write to one or more varying variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language varying qualifier £1at) and clipped, then the clipped values
interpolated across the primitive (if not flatshaded). The results of these interpola-
tions are available to the fragment shader.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 88

2.12.4 Geometry Shader Execution Environment

If a successfully linked program object that contains a geometry shader is made
current by calling UseProgram, the executable version of the geometry shader is
used to process primitives resulting from the primitive assembly stage.

The following operations are applied to the primitives that are the result of
executing a geometry shader:

e Perspective division on clip coordinates (section 2.13).

e Viewport mapping, including depth range scaling (section 2.13.1).

Flatshading (section 2.18).

Clipping, including client-defined half-spaces (section 2.19).

Front face determination (section 3.6.1).

Generic attribute clipping (section 2.19.1).

There are several special considerations for geometry shader execution de-
scribed in the following sections.

Texture Access

The Shader Only Texturing subsection of section 2.11.7 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to geometry shaders.

Geometry Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array g1_in [] available as input to a geometry shader. g1_in[] receives
values from equivalent built-in output variables written by the vertex shader, and
each array element of g1_in[] is a structure holding values for a specific vertex of
the input primitive. The length of g1_in[] is determined by the geometry shader
input type (see section 2.12.1). The members of each element of the g1_in[]
array are:

e Structure member gl_ClipDistance[] holds the per-vertex array of clip
distances, as written by the vertex shader to its built-in output variable g1_ -
ClipDistancel[].

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS &9

e Structure member gl_PointSize holds the per-vertex point size written
by the vertex shader to its built-in output varying variable g1_PointSize.
If the vertex shader does not write gl_PointSize, the value of gl_-
PointSize is undefined, regardless of the value of the enable PROGRAM_-
POINT_SIZE.

e Structure member gl_Position holds the per-vertex position, as written
by the vertex shader to its built-in output variable g1_Position. Note that
writing to g1_Position from either the vertex or geometry shader is op-
tional (also see section 7.1 of the OpenGL Shading Language Specification)

Geometry shaders also have available the built-in special variable gl_-
PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed by the drawing command which
generated the input vertices. The first primitive generated by a drawing command
is numbered zero, and the primitive ID counter is incremented after every individ-
ual point, line, or triangle primitive is processed. For triangles drawn in point or
line mode, the primitive ID counter is incremented only once, even though multiple
points or lines may eventually be drawn. Restarting a primitive topology using the
primitive restart index has no effect on the primitive ID counter.

Similarly to the built-in varying variables, each user-defined input varying vari-
able has a value for each vertex and thus needs to be declared as arrays or inside
input blocks declared as arrays. Declaring an array size is optional. If no size is
specified, it will be inferred by the linker from the input primitive type. If a size
is specified, it must match the number of vertices for the input primitive type; oth-
erwise, a link error will occur. The OpenGL Shading Language doesn’t support
multi-dimensional arrays; therefore, user-defined geometry shader inputs corre-
sponding to vertex shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array. See sections 4.3.6
and 7.6 of the OpenGL Shading Language Specification for more information.

Similarly to the limit on vertex shader output components (see section 2.11.6),
there is a limit on the number of components of built-in and user-defined input
varying variables that can be read by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any varying and special variable
read by a geometry shader will count against this limit. A program whose geometry
shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.6).

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 90

Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is spec-
ified in the geometry shader source and may be queried after linking by calling
GetProgramiv with the symbolic constant GEOMETRY_VERTICES_OUT. If a sin-
gle invocation of a geometry shader emits more vertices than this value, the emitted
vertices may have no effect.

There are two implementation-dependent limits on the value of GEOMETRY_ -
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-—
VERTICES, and the product of the total number of vertices and the sum of all
components of all active varying variables may not exceed the value of MAX_ -
GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined varying vari-
ables. These values are expected to be interpolated across the primitive it outputs,
unless they are specified to be flat shaded. To enable seamlessly inserting or re-
moving a geometry shader from a program object, the rules, names and types of the
output built-in varying variables and user-defined varying variables are the same as
for the vertex shader. Refer to section 2.11.6, and sections 4.3.6, 7.1, and 7.6 of the
OpenGL Shading Language Specification for more detail.

After a geometry shader emits a vertex, all built-in and user-defined output vari-
ables are undefined, as described in section 8.10 of the OpenGL Shading Language
Specification.

The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

The built-in special variable g1_ClipDistance holds the clip distance used
in the clipping stage, as described in section 2.19.

The built-in special variable g1_PointsSize, if written, holds the size of the
point to be rasterized, measured in pixels.

The built-in special variable g1_PrimitiveID holds the primitive ID counter
read by the fragment shader, replacing the value of g1_PrimitiveID generated
by drawing commands when no geometry shader is active. The geometry shader
must write to g1_PrimitiveID for the provoking vertex (see section 2.18) of a
primitive being generated, or the primitive ID counter read by the fragment shader
for that primitive is undefined.

The built-in special variable g1_Layer is used in layered rendering, and dis-
cussed further in the next section.

Similarly to the limit on vertex shader output components (see section 2.11.6),
there is a limit on the number of components of built-in and user-defined output

OpenGL 3.3 (Core Profile) - March 11, 2010

2.12. GEOMETRY SHADERS 91

varying variables that can be written by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.
When a program is linked, all components of any varying and special vari-
able written by a geometry shader will count against this limit. A program whose
geometry shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.
Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.6).

Layered Rendering

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one-or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces
of a cubemap texture in one pass. The layer to render to is specified by writing
to the built-in output variable g1_Layer. Layered rendering requires the use of
framebuffer objects (see section 4.4.7).

Primitive Type Mismatches and Drawing Commands

A geometry shader will fail to execute if a mismatch exists between the type of
primitive being drawn and the input primitive type of the shader. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by any command that transfers vertices to the GL if a
geometry shader is active and:

e the input primitive type of the current geometry shader is POINTS and mode
iS not POINTS;

e the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

o the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

e the input primitive type of the current geometry shader is LINES_-
ADJACENCY and mode 1s not LINES_ADJACENCY or LINE_STRIP_-
ADJACENCY; or,

OpenGL 3.3 (Core Profile) - March 11, 2010

2.13. COORDINATE TRANSFORMATIONS 92

e the input primitive type of the current geometry shader is TRIANGLES_ -
ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_ -
STRIP_ADJACENCY.

2.13 Coordinate Transformations

Clip coordinates for a vertex result from vertex or, if active, geometry shader
execution, which yields a vertex coordinate g1_Position. Perspective division
on clip coordinates yields normalized device coordinates, followed by a viewport
transformation to convert these coordinates into window coordinates.
L
Ye

(&
We
then the vertex’s normalized device coordinates are

If a vertex in clip coordinates is given by

Lc

We

_ Ye

Ya | = | w.
Zc

Zd W

2.13.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, p, and p,, respectively, and its center (o,, 0y) (also in pixels). The vertex’s

Tw
window coordinates, | v, | , are given by
Rw
Loy %xd + 0z
P
Yw | = ?yyd + 0y
2w L% g+ L

The factor and offset applied to z4 encoded by n and f are set using

void DepthRange(clampdn, clampdf);
zyw 18 represented as either fixed- or floating-point depending on whether the frame-
buffer’s depth buffer uses a fixed- or floating-point representation. If the depth

buffer uses fixed-point, we assume that it represents each value k /(2" — 1), where
k € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of all

OpenGL 3.3 (Core Profile) - March 11, 2010

2.14. ASYNCHRONOUS QUERIES 93

ones). The parameters n and f are clamped to the range [0, 1], as are all arguments
of type clampd or clampf.
Viewport transformation parameters are specified using

void Viewport(int x, inty, sizeiw, sizeih);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and & give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as

0y =T+ 73
Oy—er%
Pz =W

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the larger of the visible dimensions of the display
being rendered to (if a display exists), and the largest renderbuffer image which
can be successfully created and attached to a framebuffer object (see chapter 4).
INVALID_VALUE is generated if either w or & is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 4), then w and # are initially set to zero. oz, 0y,
n, and f are setto ¥, %, 0.0, and 1.0, respectively.

2.14 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are four query types supported
by the GL. Primitive queries with a target of PRIMITIVES_GENERATED (see
section 2.17) return information on the number of primitives processed by the
GL. Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 2.17) return information on the number of primitives written
to one more buffer objects. Occlusion queries (see section 4.1.6) count the number
of fragments or samples that pass the depth test, or set a boolean to true when any
fragments or samples pass the depth test. Timer queries (see section 5.1) record

OpenGL 3.3 (Core Profile) - March 11, 2010

2.14. ASYNCHRONOUS QUERIES 94

the amount of time needed to fully process these commands or the current time of
the GL.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.7 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed; valid values of farget are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

BeginQuery fails and an INVALID_OPERATION error is generated if id is not
a name returned from a previous call to GenQueries, or if such a name has since
been deleted with DeleteQueries.

BeginQuery sets the active query object name for the query type given by tar-
getto id. If BeginQuery is called with an id of zero, if the active query object name
for target is non-zero (for the targets SAMPLES_PASSED and ANY_SAMPLES_-
PASSED, if the active query for either target is non-zero), if id is the name of an
existing query object whose type does not match rarget, if id is the active query
object name for any query type, or if id is the active query object for condtional
rendering (see section 2.15), the error INVALID_OPERATION is generated.

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results
are not available, and the active query object name for farget is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result

OpenGL 3.3 (Core Profile) - March 11, 2010

2.15. CONDITIONAL RENDERING 95

is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for farget is zero when
EndQuery is called, the error INVALID_OPERATION is generated.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery.

Query objects are deleted by calling

void DeleteQueries(sizein, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored. If an active
query object is deleted its name immediately becomes unused, but the underlying
object is not deleted until it is no longer active (see section D.1).

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits used to represent the query result is implementation-dependent. In
the initial state of a query object, the result is available and its value is zero.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress. Only a single type
of occlusion query can be active at one time, so the required state for occlusion
queries is shared.

2.15 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED) of

OpenGL 3.3 (Core Profile) - March 11, 2010

2.16. TRANSFORM FEEDBACK 96

the query is zero, or if the result (ANY_SAMPLES_PASSED) is false, all rendering
commands between BeginConditionalRender and the corresponding EndCondi-
tionalRender are discarded. In this case, all vertex array commands (see sec-
tion 2.8), as well as Clear and ClearBuffer* (see section 4.2.3), have no effect.
The effect of commands setting current vertex state, such as VertexAttrib, are un-
defined. If the result (SAMPLES_PASSED) of the query is non-zero, or if the result
(ANY_SAMPLES_PASSED) is true, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY_WATIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY_NO_WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY_BY_REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.
Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed
to the occlusion query sample count. If mode is QUERY_BY_REGION_NO_WATIT,
the GL operates as in QUERY_BY_REGION_WAIT, but may choose to uncondition-
ally execute the subsequent rendering commands without waiting for the query to
complete.

If BeginConditionalRender is called while conditional rendering is in
progress, the error INVALID_OPERATION is generated. If id is not the name of
an existing query object, the error INVALID_VALUE is generated. If id is the name
of a query object with a target other than SAMPLES_PASSED or ANY_SAMPLES_—
PASSED, or if id is the name of a query currently in progress, the error INVALID_-
OPERATION is generated.

If EndConditionalRender is called while conditional rendering is not in
progress, the error INVALID_OPERATION is generated.

2.16 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
processed by a vertex shader, or primitives generated by a geometry shader if one
is active, are written out to one or more buffer objects. The vertices are fed back
after vertex color clamping, but before flatshading and clipping. If a geometry

OpenGL 3.3 (Core Profile) - March 11, 2010

2.16. TRANSFORM FEEDBACK 97

Transform Feedback | Allowed render primitive

primitiveMode modes

POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP

TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 2.13: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

shader is active, the vertices recorded are those emitted from the geometry shader.
The transformed vertices may be optionally discarded after being stored into one
or more buffer objects, or they can be passed on down to the clipping stage for
further processing. The set of attributes captured is determined when a program is
linked.

Transform feedback is started and finished by calling

void BeginTransformFeedback(enum primitiveMode);
and
void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. primitive-
Mode is one of TRIANGLES, LINES, or POINTS, and specifies the output type of
primitives that will be recorded into the buffer objects bound for transform feed-
back (see below). primitiveMode restricts the primitive types that may be rendered
while transform feedback is active, as shown in table 2.13.

Transform feedback commands must be paired; the error INVALID_ -
OPERATION is generated by BeginTransformFeedback if transform feedback is
active, and by EndTransformFeedback if transform feedback is inactive.

Transform feedback mode captures the values of varying variables written by
the vertex shader (or, if active, geometry shader).

When transform feedback is active, all geometric primitives generated must
be compatible with the value of primitiveMode passed to BeginTransformFeed-
back. The error INVALID_OPERATION is generated by DrawArrays and the
other drawing commands defined in section 2.8.3 if mode is not one of the allowed
modes in table 2.13. If a geometry shader is active, its output primitive type is used
instead of of the mode parameter passed to drawing commands.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.16. TRANSFORM FEEDBACK 98

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the commands BindBufferRange or BindBufferBase (see sec-
tion 2.9.1) with farget set to TRANSFORM_FEEDBACK_BUFFER. In addition to
the general errors described in section 2.9.1, BindBufferRange will generate an
INVALID_VALUE error if index is greater than or equal to the value of MAX_ -
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS, or if offset is not a multiple of 4.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active, the values of the specified varying
variables of the vertex are appended to the buffer objects bound to the transform
feedback binding points. The attributes of the first vertex received after Begin-
TransformFeedback are written at the starting offsets of the bound buffer objects
set by BindBufferRange, and subsequent vertex attributes are appended to the
buffer object. When capturing line and triangle primitives, all attributes of the first
vertex are written first, followed by attributes of the subsequent vertices. When
writing varying variables that are arrays, individual array elements are written in
order. For multi-component varying variables or varying array elements, the indi-
vidual components are written in order. The value for any attribute specified to be
streamed to a buffer object but not actually written by a vertex or geometry shader
is undefined.

Individual lines or triangles of a strip or fan primitive will be extracted and
recorded separately. Incomplete primitives are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS or
SEPARATE_ATTRIBS mode. In INTERLEAVED_ATTRIBS mode, the values of one
or more varyings are written, interleaved, into the buffer object bound to the first
transform feedback binding point (¢ndex = 0). If more than one varying variable is
written, they will be recorded in the order specified by TransformFeedback Vary-
ings (see section 2.11.6). In SEPARATE_ATTRIBS mode, the first varying variable
specified by TransformFeedbackVaryings is written to the first transform feed-
back binding point; subsequent varying variables are written to the subsequent
transform feedback binding points. The total number of variables that may be cap-
tured in separate mode is given by MAX_TRANSFORM_FEEDBACK_SEPARATE_-—
ATTRIBS.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size — 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_—
FEEDBACK_PRIMITIVES_WRITTEN (see section 2.17) is not incremented.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransformFeed-

OpenGL 3.3 (Core Profile) - March 11, 2010

2.17. PRIMITIVE QUERIES 99

back is called. The error INVALID_OPERATION is generated by BeginTrans-
formFeedback if any binding point used in transform feedback mode does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-
ing point is ever written to. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
varying variables to record.

While transform feedback is active, the set of attached buffer objects and the set
of varying variables captured may not be changed. If transform feedback is active,
the error INVALID_OPERATION is generated by UseProgram, by LinkProgram
if program is the currently active program object, and by BindBufferRange or
BindBufferBase if farget is TRANSFORM_FEEDBACK_BUFFER.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and client access to a
buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

2.17 Primitive Queries

Primitive queries use query objects to track the number of primitives generated by
the GL and to track the number of primitives written to transform feedback buffers.

When BeginQuery is called with a farget of PRIMITIVES_GENERATED, the
primitives-generated count maintained by the GL is set to zero. When the generated
primitive query is active, the primitives-generated count is incremented every time
a primitive reaches the transform feedback stage (see section 2.16), whether or
not transform feedback is active. This counter counts the number of primitives
emitted by a geometry shader, if active, possibly further tessellated into separate
primitives during the transform-feedback stage, if enabled.

When BeginQuery is called with a target of TRANSFORM_FEEDBACK_-
PRIMITIVES_WRITTEN, the transform-feedback-primitives-written count main-
tained by the GL is set to zero. When the transform feedback primitive written
query is active, the transform-feedback-primitives-written count is incremented ev-

OpenGL 3.3 (Core Profile) - March 11, 2010

2.18. FLATSHADING 100

ery time a primitive is recorded into a buffer object. If transform feedback is not
active, this counter is not incremented. If the primitive does not fit in the buffer
object, the counter is not incremented.

These two queries can be used together to determine if all primitives have been
written to the bound feedback buffers; if both queries are run simultaneously and
the query results are equal, all primitives have been written to the buffer(s). If the
number of primitives written is less than the number of primitives generated, the
buffer is full.

2.18 Flatshading

Flatshading a vertex shader varying output means to assign all vertices of the
primitive the same value for that output.

The varying output values assigned are those of the provoking vertex of the
primitive. The provoking vertex is controlled with the command

void ProvokingVertex(enum provokeMode);

provokeMode must be either FIRST_VERTEX_CONVENTION or LAST_VERTEX_—
CONVENTION, and controls selection of the vertex whose values are assigned to
flatshaded colors and varying outputs, as shown in table 2.14

If a vertex or geometry shader is active, user-defined varying outputs may be
flatshaded by using the f1at qualifier when declaring the ouput, as described in
section 4.3.6 of the OpenGL Shading Language Specification

The state required for flatshading is one bit for the provoking vertex mode,
and one implementation-dependent bit for the provoking vertex behavior of quad
primitives. The initial value of the provoking vertex mode is LAST_VERTEX_—
CONVENTION.

2.19 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

—we < xe < We

—We < Ye < We

—we < ze < We.

This view volume may be further restricted by as many as n client-defined half-
spaces. (n is an implementation-dependent maximum that must be at least 8.) The

OpenGL 3.3 (Core Profile) - March 11, 2010

2.19. PRIMITIVE CLIPPING 101

Primitive type of polygon ¢ First vertex convention | Last vertex convention

point 7 ?

independent line 2 —1 24

line loop 1 1+ 1,ifi <n
Lift=mn

line strip 1 1+1

independent triangle 3i—2 31

triangle strip 7 1+ 2

triangle fan 1+ 1 142

line adjacency 49— 2 45— 1

line strip adjacency 1+ 1 1+ 2

triangle adjacency 67 — 5 67 — 1

triangle strip adjacency 21 —1 2i+3

Table 2.14: Provoking vertex selection. The varying values used for flatshading
the ¢th primitive generated by drawing commands with the indicated primitive type
are derived from the corresponding values of the vertex whose index is shown in
the table. Vertices are numbered 1 through n, where n is the number of vertices
drawn.

clip volume is the intersection of all such half-spaces with the view volume (if no
client-defined half-spaces are enabled, the clip volume is the view volume).

A vertex shader may write a single clip distance for each supported half-space
to elements of the g1_ClipDistance[] array. Half-space n is then given by the
set of points satisfying the inequality

Cn(P) >0,

where ¢, (P) is the value of clip distance n at point P. For point primitives,
cn(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined half-spaces are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either command
is CLIP_DISTANCE{, where ¢ is an integer between 0 and n — 1; specifying a
value of ¢ enables or disables the plane equation with index i. The constants obey
CLIP_DISTANCE{ = CLIP_DISTANCEOQ + i.

Depth clamping is enabled with the generic Enable command and disabled
with the Disable command. The value of the argument to either command is

OpenGL 3.3 (Core Profile) - March 11, 2010

2.19. PRIMITIVE CLIPPING 102

DEPTH_CLAMP. If depth clamping is enabled, the
—We S Zc S We

plane equation is ignored by view volume clipping (effectively, there is no near or
far plane clipping).

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both
vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and Ps, then ¢ is given by

P=iP + (1 — t)PQ.

The value of ¢ is used to clip vertex shader varying variables as described in sec-
tion 2.19.1.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complemen-
tarity criterion. Suppose a series of primitives is drawn where each vertex ¢ has a
single specified clip distance d; (or a number of similarly specified clip distances,
if multiple half-spaces are enabled). Next, suppose that the same series of primi-
tives are drawn again with each such clip distance replaced by —d; (and the GL
is otherwise in the same state). In this case, primitives must not be missing any
pixels, nor may any pixels be drawn twice in regions where those primitives are
cut by the clip planes.

The state required for clipping is at least 8 bits indicating which of the client-
defined half-spaces are enabled. In the initial state, all half-spaces are disabled.

OpenGL 3.3 (Core Profile) - March 11, 2010

2.19. PRIMITIVE CLIPPING 103

2.19.1 Clipping Shader Varying Outputs

Next, vertex shader varying variables are clipped. The varying values associ-
ated with a vertex that lies within the clip volume are unaffected by clipping. If a
primitive is clipped, however, the varying values assigned to vertices produced by
clipping are clipped.

Let the varying values assigned to the two vertices P; and P4 of an unclipped
edge be c; and co. The value of ¢ (section 2.19) for a clipped point P is used to
obtain the varying value associated with P as ?

c=tcy + (1 —t)cy.

(Multiplying a varying value by a scalar means multiplying each of x, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one half-space at a time. Varying value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

For vertex shader varying variables specified to be interpolated without per-
spective correction (using the noperspective qualifier), the value of ¢ used to
obtain the varying value associated with P will be adjusted to produce results that
vary linearly in screen space.

Varying outputs of integer or unsigned integer type must always be declared
with the f1at qualifier. Since such varyings are constant over the primitive being
rasterized (see sections 3.5.1 and 3.6.1), no interpolation is performed.

2 Since this computation is performed in clip space before division by w., clipped varying values
are perspective-correct.

OpenGL 3.3 (Core Profile) - March 11, 2010

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a depth value and one or more color values to each such
square. The results of this process are passed on to the next stage of the GL (per-
fragment operations), which uses the information to update the appropriate loca-
tions in the framebuffer. Figure 3.1 diagrams the rasterization process. The color
values assigned to a fragment are determined by a fragment shader as defined in
section 3.9. The final depth value is initially determined by the rasterization op-
erations and may be modified or replaced by a fragment shader. The results from
rasterizing a point, line, or polygon are routed through a fragment shader.

A grid square along with its z (depth) and varying shader output parameters is
called a fragment; the parameters are collectively dubbed the fragment’s associated
data. A fragment is located by its lower left corner, which lies on integer grid coor-
dinates. Rasterization operations also refer to a fragment’s center, which is offset
by (1/2,1/2) from its lower left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Points may be given differing diameters and line segments differing
widths. A point, line segment, or polygon may be antialiased.

104

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 105

Point

/ Rasterization
From

Line Fragment

Primitive sl P > I
Assembly Rasterization Program Fragments
Triangle

Rasterization

Figure 3.1. Rasterization.

3.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 2.16). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. When enabled, RASTERIZER_DISCARD
also causes the Clear and ClearBuffer* commands to be ignored.

3.2 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (z, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p’ is identical to
a corresponding fragment f from p except that the center of f is offset by (z,y)
from the center of f.

OpenGL 3.3 (Core Profile) - March 11, 2010

3.3. ANTIALIASING 106

3.3 Antialiasing

The R, G, and B values of the rasterized fragment are left unaffected, but the A
value is multiplied by a floating-point value in the range [0, 1] that describes a
fragment’s screen pixel coverage. The per-fragment stage of the GL can be set up
to use the A value to blend the incoming fragment with the corresponding pixel
already present in the framebuffer.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x,y) and upper right corner (x4 1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f; and f5 are two fragments, and the portion of f; covered by some prim-
itive is a subset of the corresponding portion of fs covered by the primitive,
then the coverage computed for f; must be less than or equal to that com-
puted for fo.

2. The coverage computation for a fragment f must be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

OpenGL 3.3 (Core Profile) - March 11, 2010

3.3. ANTIALIASING 107

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.4), allowing a user to make an image quality
versus speed tradeoff.

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and
polygons. The technique is to sample all primitives multiple times at each pixel.
The color sample values are resolved to a single, displayable color each time a
pixel is updated, so the antialiasing appears to be automatic at the application level.
Because each sample includes color, depth, and stencil information, the color (in-
cluding texture operation), depth, and stencil functions perform equivalently to the
single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adja-
cent polygons, object silhouettes, and even intersecting polygons. If only lines
are being rendered, the “smooth” antialiasing mechanism provided by the base GL
may result in a higher quality image. This mechanism is designed to allow multi-
sample and smooth antialiasing techniques to be alternated during the rendering of
a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_—
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

The location of a given sample is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The sample location is returned as two

OpenGL 3.3 (Core Profile) - March 11, 2010

3.3. ANTIALIASING 108

floating point values in val[0] and val[1], each between 0 and 1, corresponding to
the = and y locations respectively in GL pixel space of that sample. (0.5, 0.5) thus
corresponds to the pixel center. The error INVALID_VALUE is generated if index
is greater than or equal to the value of SAMPLES. If the multisample mode does not
have fixed sample locations, the returned values may only reflect the locations of
samples within some pixels.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

OpenGL 3.3 (Core Profile) - March 11, 2010

3.4. POINTS 109

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle
centered around the vertex of the point. Each vertex has an associated point size
that controls the size of that square or circle.

If point size mode is enabled, then the derived point size is taken from the (po-
tentially clipped) shader built-in g1_PointSize written by the geometry shader,
or written by the vertex shader if no geometry shader is active, and clamped to the
implementation-dependent point size range. If the value writtento g1_PointSize
is less than or equal to zero, results are undefined. If point size mode is disabled,
then the derived point size is specified with the command

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE. Program point size
mode is enabled and disabled by calling Enable or Disable with the symbolic
value PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.11) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise 3.1)
and the fade factor is computed as follows:
fad 1 derived_size > threshold (32)
ade = . . .
(“hstaie)” otherwise

The point fade threshold is specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

If pname is POINT_FADE_THRESHOLD_SIZE, then param specifies, or params
points to the point fade threshold. Values of POINT_FADE_THRESHOLD_SIZE
less than zero result in the error INVALID_VALUE.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

OpenGL 3.3 (Core Profile) - March 11, 2010

3.4. POINTS 110

3.4.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel whose center
lies inside a square centered at the point’s (z,, ¥,), with side length equal to the
current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. However,
the fragment shader builtin g1_PointCoord contains point sprite texture coordi-
nates. The s point sprite texture coordinate varies from O to 1 across the point hor-
izontally left-to-right. If POINT_SPRITE_COORD_ORIGIN iS LOWER_LEFT, the ¢
coordinate varies from O to 1 vertically bottom-to-top. Otherwise if the point sprite
texture coordinate origin is UPPER_LEFT, the ¢ coordinate varies from O to 1 verti-
cally top-to-bottom. The r and g coordinates are replaced with the constants 0 and
1, respectively.

The following formula is used to evaluate the s and ¢ point sprite texture coor-
dinates:

1 (x4 5 —aw)

Ss=—4+-—=—7 (3.3)
2 size
1 (nyr%*yw)
t— 3 + v a— POINT_SPRITE_COORD_ORIGIN = LOWER_LEFT
L M POINT_SPRITE_COORD_ORIGIN = UPPER_LEFT
2 size ’ — — — - —

(3.4)
where size is the point’s size, xy and y are the (integral) window coordinates of
the fragment, and z,, and y,, are the exact, unrounded window coordinates of the
vertex for the point.

Not all point widths need be supported, but the width 1.0 must be provided.
The range of supported widths and the width of evenly-spaced gradations within
that range are implementation-dependent. The range and gradations may be ob-
tained using the query mechanism described in chapter 6. If, for instance, the
width range is from 0.1 to 2.0 and the gradation width is 0.1, then the widths
0.1,0.2,...,1.9,2.0 are supported. Additional point widths may also be sup-
ported. There is no requirement that these widths must be equally spaced. If
an unsupported width is requested, the nearest supported width is used instead.

3.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, a bit indicating whether or not vertex program point size mode is enabled,

OpenGL 3.3 (Core Profile) - March 11, 2010

3.5. LINE SEGMENTS 111

a bit for the point sprite texture coordinate origin, and a floating-point value speci-
fying the point fade threshold size.

3.4.3 Point Multisample Rasterization

IfMULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (z,,, yy,). This region is a square with side equal
to the current point width. Coverage bits that correspond to sample points that
intersect the region are 1, other coverage bits are 0. All data associated with each
sample for the fragment are the data associated with the point being rasterized.

The set of point sizes supported is equivalent to those for point sprites without
multisample .

3.5 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID_VALUE. Antialiasing is controlled with Enable and Disable
using the symbolic constant LINE_SMOOTH.

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for z-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x s and y, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zpl + |y —ysl <1/2.}

OpenGL 3.3 (Core Profile) - March 11, 2010

3.5. LINE SEGMENTS 112

Figure 3.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects Ry, except if py is contained in Ry. See
figure 3.2.

To avoid difficulties when an endpoint lies on a boundary of R we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (z4,ya) and (xp, yp), respectively. Obtain the perturbed endpoints p/,
given by (24,9a) — (€, €%) and pj, given by (24, ys) — (€, €2). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj, intersects Ry, except if pj is contained in
Ry. €is chosen to be so small that rasterizing the line segment produces the same
fragments when ¢ is substituted for € for any 0 < ¢ < e.

When p, and p; lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to py)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to

OpenGL 3.3 (Core Profile) - March 11, 2010

3.5. LINE SEGMENTS 113

the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either z or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (z4,yq) and let p, = (24, yq) and pp = (x5, Yp). Set

(pr - pa)) (pb - pa)
1Py — Pall?
(Note that t = 0 at p, and ¢t = 1 at pp.) The value of an associated datum f for the
fragment, whether it be a varying shader output or the clip w coordinate, is found

as

t =

(3.5)

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq + t/wy
where f, and f; are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines

must be interpolated by

f= (3.6)

z2=(1—1t)zq + tz (3.7

where z, and z; are the depth values of the starting and ending endpoints of the
segment, respectively.

The noperspective and flat keywords used to declare varying shader
outputs affect how they are interpolated. When neither keyword is specified, inter-
polation is performed as described in equation 3.6. When the noperspective

OpenGL 3.3 (Core Profile) - March 11, 2010

3.5. LINE SEGMENTS 114

keyword is specified, interpolation is performed in the same fashion as for depth
values, as described in equation 3.7. When the f1at keyword is specified, no
interpolation is performed, and varying outputs are taken from the corresponding
varying value of the provoking vertex corresponding to that primitive (see sec-
tion 2.18).

3.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one. We now describe the rasterization of line segments for general values of the
line segment rasterization parameters.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The