The OpenGL® Shading Language

Language Version: 1.30
Document Revision: 10

22-Nov-2009

John Kessenich

Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost

Copyright (c) 2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be re-formatted AS
LONG AS the contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of merchantability
or fitness for a particular purpose or non-infringement of any intellectual property. Khronos Group makes
no, and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy,
completeness, timeliness, and reliability of the specification. Under no circumstances will the Khronos
Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect, special or
consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with
these materials.

Khronos, OpenKODE, OpenKOGS, OpenVG, OpenMAX, OpenSL ES and OpenWF are trademarks of
the Khronos Group Inc. COLLADA is a trademark of Sony Computer Entertainment Inc. used by
permission by Khronos. OpenGL and OpenML are registered trademarks and the OpenGL ES logo is a
trademark of Silicon Graphics Inc. used by permission by Khronos. All other product names, trademarks,
and/or company names are used solely for identification and belong to their respective owners.

Table of Contents

| 15 (Y6 10 od 5 (o) o FORR PSRRI 1
1.1 ACKNOWIEAZMENLS.ccueiiiiieiiieiie ettt ettt et sib et e st e et e st e ebeesnaeenseesaeeens 1
1.2 CRAIEES ..vveeieieiieeitie ettt ettt ettt et et e et e s at e e bt e s ateenbeesabeenbeeesbeenbeesateenbeesneeenteenneeenne 1

1.2.1 Summary of Functionality differences from version 1.2.........cccccceeviienieniienienieeninne 1
1.2.2 Change history of thiS T@VISION.......c.ceecuieriieriieiiie ettt ettt ettt et e ereeaee e e 3
1.3 OVRIVICW .. eeteeeee ettt e e et e e e et e e e et e e e e e aaaeeeeeeaaeeeeeeaasseeeeaaeeeeeesaseeeeannreeeeeennees 6
1.4 Error HandIINg.......cccveiiiieiiieiieeiieeieeete ettt ettt te e e seae et e sebeesbeessseensaessseenseensseenseas 6
1.5 Typographical CONVENTIONS.ccervieeririeeriieeeiiieeeireeeiteesireesseeesseeessreesssseesssseesnsseesssseesnnes 6
| R B 0] deTor: 15 10) s FO SRR 6

2 Overview of OpenGL ShadiNg........c.ceevuieeiiieeiieeiee et e e e e b e e sereeeeseeenee 7
A VL) 4 1) Qo (01T) SRRt 7
2.2 Fragment PrOCESSOT.uiiiiuiieeeeiiiieeeeiieeeeesetieeeeeieteeeeeneteeeeesaseeeeenssaeeeessnsaeeeesssseeesessssneesanns 7

3 BaSICS ittt et e e e e e e ————teeeeeeaa—————eteeaeeeaaa—————tteeeesaairraaaaes 8
RIB B O] 1 V.1 ¢ Yo v=) i 11 SUU TR PP RRRRPR 8
3.2 SOUICE SEIIMES. +euvetteteriterieeteeiteet et et ste ettt sb et sateste et ea e e s bt esbesanesbeeabeeseenbeentesaeenbeenseeaeen 8
3.3 PLOPIOCESSOL. .. eeeuiiieeiiieeitee ettt ett e ettt e ettt e e st eesabee e ateeesteeesbteesnsaeesaseeesabeeenabeesnneesneeesnneen 9
3.4 COMIMICIES. . uvvveeieeieeeeeirrreeeee e et eeeeeirereeeeeeeeeeeirrreeeeeeeeeestttseeeeaseeeesaetrsreseeeeeeseniarssneeseeeeennnnes 13
3.5 TOKEIIS. ...ttt e e et e e e et e e e et e e e e e et et e e ee e e e e enaaaeeeenaaaaeeeeaareeean 13
3.6 KEYWOIAS. ... ittt ettt et et et e et e e s taeesbaesabeesseessseenseessseenseassseenseensseenns 14
3.7 TAENUTIETS. ...t e e e e eat e e e et e e e e et e e e e eeaaaeeeeenaaeeeeeennees 15
IR I 215 Lol O T SRR 16

4 Variables And TVPES.....cccuuuveiiiieiiiieieeetee e eeeet e e e e e e e e et e e e e e e s sesabtareeeeeessessaareaeeeeeeeeeannnes 17
T B 5 1S Toll 74 1TSS 17

O O N VA0 T« PR 19
4.1.2 BOOLEANS. . .eeiiieeiiee e et e e e et e e e et e e e et e e e s ettt e e e eenraeeeeeaareeeens 19
413 INEEEETS. ..ttt ettt ettt ettt e et e st e e e bt e st e st e e s beeenbeeea 20
B.1.4 FLOALS.....uvieeeeeeieee e e e e e e e et e e e et e e e et ae e e eetae e e e eeaa e e e e eearaeeeennes 21
G1.5 VECLOTS. ..ottt e et et et e e e e e e e e e s etaaraeeeeeeeeeeaatbareeeseeeennnnnnrrees 22
A.1.6 IMALTICES.uvvveeeeeeeeeeeeetee et e e e et e e et e e e et e e e e eaaeeeeeeaaaeeeeeeaaeeeeeeareeeeeetaeeeeennneeeean 22
A.1.7 SAMPIETS....eeeuiieiiieiieeie ettt ettt e et e et e s e e teesbe e teesabeesbeeesbeensaesnbeenseeesseensaeensaens 22
41,8 SEIUCIUTIES.....cooeeerrrreeeieeeeeeeeitee et e e eeeeeee et e e e eeeestareeeeeeeeseessstarreeeseeeeesnsassreeeseeeesannanes 23
41,9 ATTAYS...eiieiieeiiie ettt e ettt e et e e et e e s atae e et eeesabee e aaee e sbee e tbeeetseeenbeeentteeeneeeeneeens 24
4.1.10 ImMPLCIt CONVEISIONS.......ceeeerurrrrreeeeeeeeeiiirrreeeeeeeeeeeisarrrreeeeeeesessisrrreeeesesesesnsrareeeseees 25
4.2 SCOPINE....eeeuieeeuieeeitteeeteeeeteeessteeaseeessseeessseeeassaeasseeassaeessseeassssesssseeessseessssesessseesssseessseeenns 26
4.3 Storage QUABITIEIS. . .veoveeeeeeieeieiieieiete ettt ettt ettt ettt et esbeete e seeseesaensassessesseesesseeneens 27
4.3.1 Default Storage QUAlITIET........c.eeeiiuiieeiieeciee ettt e e e aeeeaaeeeaaee e 28
43,2 G0Nt ettt ettt ea—tta—a——— 28
4.3.3 ConStant EXPrESSIONS. ...ccuuteuierueeertieriiietiesiteerteesiteeteeseteebeesieeebeeseeeeseesaseenseessneeseens 28
B34 INPULS. ..ottt ettt e ettt e et e et e e sabeeeaaes 29
4.3.5 UNIEOII...oiiiiiiiiie et e et e e et e e et ee e e et e e e eeaeeeeeeeaareeeeennnes 30

4.3.60 OULPULS.......oouiiiiiiieiiciiec ettt 30

4.3.7 INLEIPOIALION. ...cuviitieeiietieeiieeeieeete et ee et e et e ete et e s taeebaesabeesbeessaeensaessseesseessseenseennseanns 31
4.4 Parameter QUALITICTS.c..eeieuiieeiiieeciiecectee et eete et et e et e et e e etee e e ae e e eteeeeareeeeaseeenaneeens 33
4.5 Precision and Precision QUAalifiersS........c.ueeieeuiiiiiiiiiiie e 33

4.5.1 Range and PreCISION.......cccuiiruieeiiieeiieeeiiee ettt eestteesieeesteeeseaeeessaeeensaeesnseeesnseeensseeenns 33

4.5.2 Precision QUALITIETS.cceiuiiiiieiiiie e ettt eecte ettt e e et e e e eeaae e e e e etreeeeeeaareaeeeans 33

4.5.3 Default Precision QUAlIfIEIS.........ccoeiiuiiiiieiiiiiec et eaae e e 34

4.5.4 Available Precision QUAalifiers...........oooeiuiiiiiiiiiieiciiiee e 35
4.6 Variance and the Invariant QUAalifier..........ccccocooeiiiiiiiiiiiii e 35

4.6.1 The Invariant QUAlIfIET...........cccvuiiiiiieeiiie ettt et e e e e ser e e e v e e eereeenenas 35

4.6.2 Invariance of Constant EXPreSSIOnS.......ceereerieeruieeiiieniiesieeniieereeseesieesieeeieeseeeeneees 36
4.7 Order of QUAlIfICATION.ccuviiiriiieeiieeeiee ettt et eeete e e eaeeeetaeeeetaeeeeseeessaeessseeesaseaenns 36
Operators and EXPIreSSIONS.cccuviieeeiurieeeeeiteeeeeeeteeeeeeeteeeeeeeiteeeeeeeaeeeeeeiareeeeessreeeeesareeeeeesreeeens 37
T B) 07C) 710 TR 37
5.2 AITAY OPEIALIONS.ceevviieeeitreeeeeeeieeeeeeeteeeeeeeteeeeeeeaeeeeeeaeeeeeestaeeeeenseeeeeensreeeeeareeeeanareeeas 38
5.3 FUNCHION CAIIS....coiiviiiiiiiiie et e e e e e e eeaae e e e eeaaeeeeeenaeeeeeeennees 38
5.4 CONSIIUCTOTIS. ..oeiiiiiiieeiiiieeeeee e e e eeeiteeeeeeeeeeeee et e eeeeeeesasaaeeeesseseesssarrresseeseesesssreereeeeesssannnes 38

5.4.1 Conversion and Scalar CONSEIUCLOTS.uuvvviiiieiiiiriiireieeeeeeeeeireeeeeeeeeeeesrrareeeeeeeeeeanns 38

5.4.2 Vector and Matrix CONSIIUCTOTS.......cocouvvvveiieieeiieitiieeeeeeeeeeeeetieeeeeeeeeeeessanaeeeeeeeeeesnsanes 39

5.4.3 Structure CONSIUCLOTS.evvvvveieeeeieeeseeeeeeeeeeesenenennnnes 41

5.4.4 AT1ay CONSIIUCTOTS. .. uuviiieiiiieeieiirieeeeitieeeestreeeesereeeeseseeeeessseeeeessseeesssssseeesssssseesanns 42
5.5 Vector COMPONENLS......cciiutiiiiieeiiteeeite ettt ettt ettt ettt e et e et eesbteesbeeesbaeesabeeesabeeenans 42
5.6 MatriX COMPONEILS. .. .eevutieiieeiiteiieeieetteeteesteesteeteesteeeseessseeseesseeeseessseenseesssesnseesseesseens 43
5.7 Structure and Array OPEIAtIONS..........eeeeeivveeeeeiieieeeeireeeeeeieeeeeeeitreeeeeereeeeeeitreeeeeerreeeeeeanees 44
5.8 ASSIGIIMEILS. ... eeiuiieiieeiieeiieeiieetteeiteeteestteebeestteeteesseeeaseesseeenseenssessseenseesnseenseesnseenseesnseenses 44
5.9 EXDIESSIONS. ..ccuvieutieeurieiieniteeteeeteesteesseesteeasseesseessseenseeasseenseesnseesseessseenseesnseesssesssessseesseens 45
5.10 Vector and Matrix OPEIatioNS...........ccevuveeeeeeiureeeeeiiueeeeeeieeeeeeeisreeeeesiseeeeeesseeeeeessreseeesnness 48
Statements aNd STIUCKUTE........ccovviiiiiiiiieeeeeeee ettt eeete e eeee e e e eea et e e eeaaeeeeesaeeeeeeeaaeeeeeeaneeeeenns 51
6.1 Function DEefiNItiONS........cooouvvveiiiiiiiiieiiieeiee ettt eeeete et e e e e e e eeeaarr e e e e e e e e senannereeeeas 52

6.1.1 Function Calling CONVENTIONS.cceruveeeirrerireentieenreeesteeesreeessreesssseesseeessseeessseesns 53
LN 1<) (<To1 5 1o)« WO PR 55
ORI 115215 10) o WO RSP 55
0.4 JUINPS. .. .eeeieiiiieeeeieee e ettt e e ettt e e e sttt eeeesatteeeeestaeeeaasaaeeeeasssaeesasnsaeessassseeeansssaeesanssaeeeeanssneens 56
BUIt-d VATTADIES. c.evvvvviiiiiiiieeeeiieeeee ettt e e ettt e e e e e e sttt e e e e e e e s esababaeeeeeeens 58
7.1 Vertex Shader Special Variables..........c.eeouieriieiiiiiieiieeieeeeeie ettt 58
7.2 Fragment Shader Special Variables........ccc.voeooeuvieiiiiiiiie e 59
7.3 Vertex Shader Built-In INPULS........cooiuviieiiiiieeeieieiee ettt et eeeree e eeae e e eeaaeeeeenns 60
7.4 BUilt-In CONSLANTS.ceeeiuriieeietiieeeeeteeeeeeeteeeeeeteeeeeeetaeeeeeeteeeeeeeaeeeeeeaeeeeeenaeeeeeensseeeeenanees 61
7.5 Built-In UnifOrm SEALE........ccovuviiiieiieieieeieee ettt eeetee e eeaee e e eeaae e e eeaaeeeeeennes 62
7.6 Built-In Vertex Output and Fragment Input Variables..........ccccceeeeevuveeieeiiieeeeieiieeeeeeneeene. 65
BUilt-1n FUNCHIOMNS.cocivvveiiiiiee ettt eeeete e e e e e e eeataae e e e e e e e eesnaasaaeeeeeeeeesnnanraees 67
8.1 Angle and Trigonometry FUNCHONS.eevciiieiiiieeiieeciee ettt eiee e e e e eeaaeeen 68

8.2 EXPOnential FUNCHIONS.coiitiiiiiieieeeeeeeeeeeeeeeeeee e e e e e e e e eeeeeees 69

8.3 CommMON FUNCHIONS.veiiiiiiieieeeeiiieee et e eeete e eete e e et e e e et e e e eeaaeeeeeeaareeeeeaaeeeeensreeeeas 70
8.4 GEOMELIIC FUNCHOMS.eiiiiiveieeeeieeee ettt eete e e et eeeeeaaeeeeeeaaeeeeeenneeeeas 73
8.5 MatriX FUNCHIONS. ..uvvvviiieiiieeiiiiieeeee ettt e eeer e e e e e eeeetare e e e e e eeeseaaarreeeeseeeeennssnneess 75
8.6 Vector Relational FUNCHIONS.uuvvviiiiiiiiiiiiieieeiee et eeeeeeiaeeee e e e e e e eesanaraeeeeeeeeeeennsanes 76
8.7 Texture LooKUP FUNCHOMNS.cooovieieiiiiieiieeeeeeiieeeeee e e eeeeirteee e e e e e e e eeaarereeeeeseeeenassraeeeens 77
8.8 Fragment Processing FUNCHONS.cccouiiieiiiieiiieeciececiee ettt e sveeesveeesaaeeens 87
8.9 NOISE FUNCLIONS. ...ccuvveiiiiieeeeieeiiteeieeee e eeeitte ettt e e e e e eeeaaae e e e e e e eesesssaaeeeeesessssssssaraseeeeeesssssnnes 89
9 Shading Language GIamMAT..........cccueerueereieriieeieerieeeteesieesteesteeeteesseesateesseeenseesseesnseeseeenseennes 90
JO ISSUCS...coeieeeeeeeeeeeeeeeeeeeeeee e 102

1 Introduction

1.1

1.2

1.2.1

This document specifies only version 1.30 of the OpenGL Shading Language. It requires VERSION
to substitute 130, and requires #version to accept only 130. If #version is declared with 110 or 120, the
language accepted is a previous version of the shading language, which will be supported depending on
the version and type of context in the OpenGL API. See the OpenGL Graphics System Specification,
Version 3.0, for details on what language versions are supported.

Acknowledgments

This specification is based on the work of those who contributed to version 1.10 of the OpenGL Language
Specification, the OpenGL ES 2.0 Language Specification, version 1.10, and the following contributors to
this version:

Rob Barris
Pierre Boudier
Pat Brown
Nick Burns
Chris Dodd
Michael Gold
Nick Haemel
James Helferty
Brent Insko
Jeff Juliano

Jon Leech

Bill Licea-Kane
Barthold Lichtenbelt
Daniel Koch
Marc Olano

Tan Romanick
John Rosasco
Dave Shreiner
Jeremy Sandmel
Robert Simpson
Eskil Steenberg

Changes

Summary of Functionality differences from version 1.2
The following is a summary of features added in version 1.3:

« Integer support:

1 Introduction

« native signed and unsigned integers, integer vectors, and operations
* bitwise shifts and masking

* texture indices

* texture return values

+ integer uniforms, vertex inputs, vertex outputs, fragment inputs, and fragment outputs
* Dbuilt-in function support: abs, sign, min, max, clamp, ...

Other texture support:

» Size queries.

* Texture arrays.

o Offsetting.

« Explicit LOD and derivative controls

switch/case/default statements.

New built-ins: trunc(), round(), roundEven(), isnan(), isinf(), modf()
hyperbolic trigonometric functions

Preprocessor token pasting (##).

User-defined fragment output variables.

Shader input and output declarations via in and out.

Improved compatibility with OpenGL ES

non-perspective (linear) interpolation (nosperspective)

new vertex input g/ VertexID.

New vertex output and fragment shader input g/_ClipDistance[].

The following is a summary of features deprecated in version 1.3:

Use of the keywords attribute and varying (use in and out).

Use of gl_ClipVertex (use gl_ClipDistance)

Use of gl FragData and gl_FragColor (use user-defined out instead).
Built-in attributes. Use user-defined vertex inputs instead.

Fixed function vertex or fragment stages mixed with shader programs. Provide shaders for all active
programmable pipeline stages.

All built-in texture function names. See new names.
Use of the built-in varyings g/ FogFragCoord and gl TexCoord. Use user-defined variable instead.
The built in function ftransform. Use the invariant qualifier on a vertex output instead.

Most built-in state.

1 Introduction

+ gl MaxVaryingFloats (use gl MaxVaryingComponents instead)

* Built-in coloring: gl FrontColor, gl FrontSecondaryColor, gl Color, gl _SecondaryColor,
gl BackColor and gl BackSecondaryColor.

The following is a summary of features that have been removed in version 1.3:

* None, only deprecations occurred in this release.

1.2.2 Change history of this revision

Changes from revision and 9 of version 1.30 of the OpenGL Shading Language

¢ (Clarify that discard control flow exits the shader.

e Added the inclusion of g/ ClipDistance[] in the differences from 1.2 section.

* Remove accidental inclusion of textureGradOffset on samplerCubeShadow.

» Clarify it is generally an error to redeclare variables, including built-ins.

Changes from revision and 8 of version 1.30 of the OpenGL Shading Language

+ Fix 1.3 release omission: Deprecate all built-in coloring to match API deprecation and for
consistency.

+ Fix 1.3 release omission: Allow precision qualifiers in structures and function declarations.
Changes from revisions 6 and 7 of version 1.30 of the OpenGL Shading Language

« Fix all references to the OpenGL Graphics System specification, including matching notation for
texturing parameters.

Changes from revision 5 of version 1.30 of the OpenGL Shading Language
* Reserved superp.
* Made it an error to specify integer literals too big for an integer variable.
* Increased
o gl MaxVaryingComponents to 64
o gl MaxDrawBuffers to 8
o gl MaxTextureCoords to 8
+ Fixed some typos.
Changes from revision 4 of version 1.30 of the OpenGL Shading Language
+ Updated acknowledgments; let me know if anyone is missing.
* Added summary lists of what’s deprecated, removed, and added
+ Deprecated fixed functionality control of a programmable stage
« flat is for both user and predeclared built-in in/out variables

+ only statically used built-ins have to be redeclared as flat

1 Introduction

Made more clear that 1.1 and 1.2 shaders work, depending on state of the API

Made clear ## does macro expansion after pasting not before

ftransform() is deprecated instead of removed

built-in state is deprecated instead of removed

highp is always present in the fragment language, the default is highp

order of qualification is either (invariant-qualifier interpolation-qualifier storage-qualifier
precision-qualifier) or (storage-qualifier parameter-qualifier precision-qualifier)

uint and int can be mixed for <<, >> but not for other operators

combined descriptions of << and >>, and also of &, +, and *

switch statements can be empty, must have a statement between a label and the end of the switch,
allows flow control to fall through

updated the minimum maximums and added gl MaxVaryingComponents and deprecated
gl MaxVaryingFloats

added gl_ClipDistance[] to the fragment side

Removed #include support

Removed row_major

Removed common blocks

OpenGL ES synchronization

e}

(a=Db) is an r-value and never an I-value

Updated the grammar with I have added these to the grammar

o

o

o

o

o

switch statement

case/default labels, which are mixed with other statements (needs semantic check for in
switch)

uint, unsigned literals, unsigned vectors

17 new sampler types

new storage qualifiers in, out, centroid in, centroid out (untangled from parameter in/out/inout)
interpolation qualifiers noperspective, flat, smooth

precision qualifiers

allowed bitwise and shift operators

Changes from revision 3 of version 1.30 of the OpenGL Shading Language

Added deprecation section 1.6

Added user-defined fragment shader outputs.

Remove most built-in state.

1 Introduction

Deprecated built-in vertex inputs (attributes) and some outputs (varyings).
Added gl ClipDistance.
Deprecated mixing fixed vertex/fragment stage with programmable fragment/vertex stage.

Removed support for multiple programs tiling the pipeline (still original 1.2 model of one program
for the whole pipeline).

Removed inout as a way of declaring interface variables, to avoid the problem of things like
interpolation qualifiers not knowing if they are modifying the copy in or the copy out. Also removes
the problem of implicit pass through for a variable declared inout but never used.

True native integer support

» signed and unsigned integer semantics

+ Dbitwise operators and shifts

+ built-in functions operating on integers, abs, sign, min, max, clamp,
+ integer-based texture lookup functions, texel fetch

texture arrays

projective cube map texture and shadow

explicit gradient texture lookup

offset-texel texture lookup

texture size functions

add noperspective interpolation qualifier

Added trunc, round, roundEven, modf

Removed ftransform

Added isinf and isnan.

Added hyperbolic functions sinh, cosh, tanh, asinh, acosh, atanh.
Some synchronization with ES (inout parameter evaluation order, foo(veid), others)
Deprecated g/ ClipVertex

Added gl VertexID

It's an error to use #if etc. on an undefined name

Changes from revision 2 of version 1.30 of the OpenGL Shading Language

Large rework of section 8.7 Texture Lookup Functions. Dropped dimensionality/shadow from the
names, organized by type instead of dimensionality, added in Lod control.

Use gl Position for clipping if gl ClipVertex is not statically written.

Remove language about the fixed pipeline in the description of ftransform().

Changes from revision 10 of version 1.20 of the OpenGL Shading Language

1.3

1.4

1.5

1 Introduction

* in, out, and inout are used at global scope as the preferred way of declaring attributes, varyings,
and fragment shader outputs. This eases the usage of centroid, flat, smooth, invariant, etc. by
reducing the number of keywords needed to declare a variable, removes the misnomer that flat
variables vary, provides for a default interpolation, and scales to additional future programmable
p1pe stages.

« Common blocks are added and can be backed by buffers in the API.

+ “gl ” prefixed uniforms and attributes and several of the varyings no longer reflect built-in state,
but are predeclared by the language as a convenience to the user.

+ The ability to index into an array of samplers with a variable index is removed.
« Token pasting (##) is added to the preprocessor.

* Add row_major to support row-major matrices to allow packing of a 3-row 4-column matrix into 3
uniforms or 3 attributes.

« Support #include via named source strings.

* Accept the precision qualifiers from OpenGL ES with no expectation that anything is done with
them.

» switch statements are added for integer scalars only

» mix() is expanded to operate on a Boolean 3™ argument that does not interpolate but selects.

Overview
This document describes The OpenGL Shading Language, version 1.30.

Independent compilation units written in this language are called shaders. A program is a complete set of
shaders that are compiled and linked together. The aim of this document is to thoroughly specify the
programming language. The OpenGL Graphics System Specification will specify the OpenGL entry
points used to manipulate and communicate with programs and shaders.

Error Handling

Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases. Compilers are required to return messages regarding lexically,
grammatically, or semantically incorrect shaders.

Typographical Conventions

Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in Section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

1.6

1 Introduction

Deprecation

This version of the OpenGL Shading Language deprecates some features. These are clearly called out in
this specification as “deprecated”. They are still present in this version of the language, but are targeted
for potential removal in a future version of the shading language. The OpenGL API has a forward
compatibility mode that will disallow use of deprecated features. If compiling in a mode where use of
deprecated features is disallowed, their use causes compile time errors. See the OpenGL Graphics System
Specification for details on what causes deprecated language features to be accepted or to return an error.

2 Overview of OpenGL Shading

2.1

2.2

The OpenGL Shading Language is actually two closely related languages. These languages are used to
create shaders for the programmable processors contained in the OpenGL processing pipeline.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex or fragment.

Most OpenGL state is not tracked or made available to shaders. Typically, user-defined variables will be
used for communicating between different stages of the OpenGL pipeline. However, a small amount of
state is still tracked and automatically made available to shaders, and there are a few built-in variables for
interfaces between different stages of the OpenGL pipeline.

Vertex Processor

The vertex processor is a programmable unit that operates on incoming vertices and their associated data.
Compilation units written in the OpenGL Shading Language to run on this processor are called vertex
shaders. When a complete set of vertex shaders are compiled and linked, they result in a vertex shader
executable that runs on the vertex processor.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that require
knowledge of several vertices at a time. The vertex shaders running on the vertex processor must
compute the homogeneous position of the incoming vertex.

Fragment Processor

The fragment processor is a programmable unit that operates on fragment values and their associated
data. Compilation units written in the OpenGL Shading Language to run on this processor are called
fragment shaders. When a complete set of fragment shaders are compiled and linked, they result in a
fragment shader executable that runs on the fragment processor.

A fragment shader cannot change a fragment's (x, y’) position. Access to neighboring fragments is not
allowed. The values computed by the fragment shader are ultimately used to update frame-buffer memory
or texture memory, depending on the current OpenGL state and the OpenGL command that caused the
fragments to be generated.

3 Basics

3.1

3.2

Character Set

The source character set used for the OpenGL shading languages is a subset of ASCII. It includes the
following characters:

The letters a-z, A-Z, and the underscore (_).
The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (¥), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (*), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (), comma (,), and
question mark (?).

The number sign (#) for preprocessor use.

White space: the space character, horizontal tab, vertical tab, form feed, carriage-return, and line-
feed.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any of these combinations is simply referred to as a new-line. There is no
line continuation character.

In general, the language’s use of this character set is case sensitive.
There are no character or string data types, so no quoting characters are included.

There is no end-of-file character.

Source Strings

The source for a single shader is an array of strings of characters from the character set. A single shader
is made from the concatenation of these strings. Each string can contain multiple lines, separated by new-
lines. No new-lines need be present in a string; a single line can be formed from multiple strings. No
new-lines or other characters are inserted by the implementation when it concatenates the strings to form a
single shader. Multiple shaders can be linked together to form a single program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new-lines that have been processed.

3 Basics

3.3 Preprocessor

There is a preprocessor that processes the source strings as part of the compilation process.
The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
ffelse
#elif
#endif

f#error
#pragma

#extension
#version

#line

The following operators are also available
defined
##

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new-
line. Preprocessing does not change the number or relative location of new-lines in a source string.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause a diagnostic
message and make the implementation treat the shader as ill-formed.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

_ LINE
_ FILE
_ VERSION

__LINE _ will substitute a decimal integer constant that is one more than the number of preceding new-
lines in the current source string.

__FILE _ will substitute a decimal integer constant that says which source string number is currently
being processed.

10

3 Basics

_ VERSION _ will substitute a decimal integer reflecting the version number of the OpenGL shading
language. The version of the shading language described in this document will have VERSION
substitute the decimal integer 130.

All macro names containing two consecutive underscores (__) are reserved for future use as predefined
macro names. All macro names prefixed with “GL_” (“GL” followed by a single underscore) are also

reserved.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++ preprocessors.
Expressions following #if and #elif are further restricted to expressions operating on literal integer
constants, plus identifiers consumed by the defined operator. It is an error to use #if or #elif on
expressions containing undefined macro names, other than as arguments to the defined operator.
Character constants are not supported. The operators available are as follows.

Precedence | Operator class Operators Associativity
1 (highest) | parenthetical grouping O) NA
2 unary defined Right to Left
+ -~
3 multiplicative * I % Left to Right
4 additive + - Left to Right
5 bit-wise shift < >> Left to Right
6 relational < > <= >= Left to Right
7 equality = |I= Left to Right
8 bit-wise and & Left to Right
9 bit-wise exclusive or A Left to Right
10 bit-wise inclusive or | Left to Right
11 logical and && Left to Right
12 (lowest) logical inclusive or [Left to Right

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

Two tokens in a macro can be concatenated into one token using the token pasting (##) operator, as is
standard for C++ preprocessors. The result must be a valid single token, which will then be subject to
macro expansion. That is, macro expansion happens after token pasting and does not happen before token
pasting. There are no other number sign based operators (e.g. no # or #@), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the
C++ preprocessor, not those in the OpenGL Shading Language.

11

3 Basics

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the
processor targeted by the shader.

#error will cause the implementation to put a diagnostic message into the shader object’s information log
(see the OpenGL Graphics System Specification for how to access a shader object’s information log).
The message will be the tokens following the #error directive, up to the first new-line. The
implementation must then consider the shader to be ill-formed.

#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL
The STDGL pragma is used to reserve pragmas for use by future revisions of this language. No
implementation may use a pragma whose first token is STDGL.
#pragma optimize (on)
#pragma optimize (off)
can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma
#pragma debug (on)
#pragma debug (off)
can be used to enable compiling and annotating a shader with debug information, so that it can be used

with a debugger. It can only be used outside function definitions. By default, debug is turned off.

Shaders should declare the version of the language they are written to. The language version a shader is
written to is specified by

#version number

where number must be a version of the language, following the same convention as __ VERSION __ above.
The directive “#version 130” is required in any shader that uses version 1.30 of the language. Any
number representing a version of the language a compiler does not support will cause an error to be
generated. Version 1.10 of the language does not require shaders to include this directive, and shaders that
do not include a #version directive will be treated as targeting version 1.10. Different shaders
(compilation units) that are linked together in the same program must be the same version.

The #version directive must occur in a shader before anything else, except for comments and white space.

12

3 Basics

By default, compilers of this language must issue compile time syntactic, grammatical, and semantic
errors for shaders that do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with respect to extensions are declared with the
#extension directive

#extension extension name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following

behavior Effect

require Behave as specified by the extension extension_name.

Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enable Behave as specified by the extension extension_name.
Warn on the #extension if the extension extension_name is not supported.

Give an error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings
on any detectable use of that extension, unless such use is supported by other
enabled or required extensions.

If all is specified, then warn on all detectable uses of any extension used.

Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

13

3.4

3.5

3 Basics

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.
#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are constant integer expressions. After processing this directive
(including its new-line), the implementation will behave as if it is compiling at line number /ine+/ and
source string number source-string-number. Subsequent source strings will be numbered sequentially,
until another #line directive overrides that numbering,.

Comments

Comments are delimited by /* and */, or by // and a new-line. The begin comment delimiters (/* or //) are
not recognized as comment delimiters inside of a comment, hence comments cannot be nested. If a
comment resides entirely within a single line, it is treated syntactically as a single space. New-lines are
not eliminated by comments.

Tokens
The language is a sequence of tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator

HE

14

3 Basics

3.6 Keywords

The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

attribute const uniform varying

centroid flat smooth noperspective

break continue do for while switch case default
if else

in out inout

float int void bool true false

invariant

discard return

mat2 mat3 mat4

mat2x2 mat2x3 mat2x4

mat3x2 mat3x3 mat3x4

mat4x2 mat4x3 mat4x4

vec2 vec3 vecd ivec2 ivec3 ivec4 bvec2 bvec3 bvecd
uint uvec2 wuvec3 uvecd

lowp mediump highp precision

sampler1D sampler2D sampler3D samplerCube
sampler1DShadow sampler2DShadow samplerCubeShadow
sampler1DArray sampler2DArray
sampler1DArrayShadow sampler2DArrayShadow
isampler1D isampler2D isampler3D isamplerCube
isampler1DArray isampler2DArray

usampler1D usampler2D usampler3D usamplerCube
usampler1DArray usampler2DArray

struct
The following are the keywords reserved for future use. Using them will result in an error:

common partition active

asm

15

3.7

3 Basics

class union enum typedef template this packed

goto

inline noinline volatile public static extern external interface
long short double half fixed unsigned superp

input output

hvec2 hvec3 hvecd dvec2 dvec3 dvecd fvec2 fvec3 fvecd
sampler2DRect sampler3DRect sampler2DRectShadow
samplerBuffer

filter

imagelD image2D image3D imageCube

iimagelD iimage2D iimage3D iimageCube

uimagelD uimage2D uimage3D uimageCube

imagelDArray image2DArray

iimagelDArray iimage2DArray uimagelDArray uimage2DArray
imagelDShadow image2DShadow

imagelDArrayShadow image2DArrayShadow

imageBuffer iimageBuffer uimageBuffer

sizeof cast

namespace using

row_major

In addition, all identifiers containing two consecutive underscores (__) are reserved as possible future
keywords.

Identifiers

Identifiers are used for variable names, function names, structure names, and field selectors (field
selectors select components of vectors and matrices similar to structure fields, as discussed in Section 5.5
“Vector Components” and Section 5.6 “Matrix Components™). Identifiers have the form

identifier
nondigit
identifier nondigit
identifier digit

nondigit: one of
_abcedefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

digit: one of

16

3.8

3 Basics

0123456789

Identifiers starting with “gl " are reserved for use by OpenGL, and may not be declared in a shader as
either a variable or a function. However, as noted in the specification, there are some cases where
previously declared variables can be redeclared to change or add some property, and predeclared "gl "
names are allowed to be redeclared in a shader only for these specific purposes._More generally, it is an
error to redeclare a variable, including those starting “gl .

Static Use

Some language rules described below depend on whether something is statically written or used.

A shader contains a static use of (or static assignment to) a variable x if, after preprocessing, the shader
contains a statement that would read (or write) x, whether or not run-time flow of control will cause that
statement to be executed.

17

4 Variables and Types

4.1

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=). The grammar near the end of this document provides a full reference for the
syntax of declaring variables.

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL Shading Language is type safe. There are no implicit conversions between types, with the
exception that an integer value may appear where a floating-point type is expected, and be converted to a
floating-point value. Exactly how and when this can occur is described in Section 4.1.10 “Implicit
Conversions” and as referenced by other sections in this specification.

Basic Types
The OpenGL Shading Language supports the following basic data types, grouped as follows.

Transparent types

Type Meaning

void for functions that do not return a value
bool a conditional type, taking on values of true or false
int a signed integer

uint an unsigned integer

float a single floating-point scalar

vec2 a two-component floating-point vector
vec3 a three-component floating-point vector
vecd a four-component floating-point vector
bvec2 a two-component Boolean vector

bvec3 a three-component Boolean vector
bvec4 a four-component Boolean vector

ivec2 a two-component signed integer vector
ivec3 a three-component signed integer vector
ivecd a four-component signed integer vector

18

4 Variables and Types

Type Meaning

uvec2 a two-component unsigned integer vector

uvec3 a three-component unsigned integer vector

uvecd a four-component unsigned integer vector

mat2 a 2x2 floating-point matrix

mat3 a 3x3 floating-point matrix

mat4 a 4x4 floating-point matrix

mat2x2 same as a mat2

mat2x3 a floating-point matrix with 2 columns and 3 rows
mat2x4 a floating-point matrix with 2 columns and 4 rows
mat3x2 a floating-point matrix with 3 columns and 2 rows
mat3x3 same as a mat3

mat3x4 a floating-point matrix with 3 columns and 4 rows
mat4x2 a floating-point matrix with 4 columns and 2 rows
mat4x3 a floating-point matrix with 4 columns and 3 rows
mat4x4 same as a mat4

Floating Point Sampler Types (opaque)

Type Meaning

sampler1D a handle for accessing a 1D texture

sampler2D a handle for accessing a 2D texture

sampler3D a handle for accessing a 3D texture

samplerCube a handle for accessing a cube mapped texture
sampler1DShadow a handle for accessing a 1D depth texture with comparison
sampler2DShadow a handle for accessing a 2D depth texture with comparison
sampler1DArray a handle for accessing a 1D array texture

sampler2DArray a handle for accessing a 2D array texture
sampler1DArrayShadow | a handle for accessing a 1D array depth texture with comparison
sampler2DArrayShadow | a handle for accessing a 2D array depth texture with comparison

Signed Integer Sampler Types (opaque)

Type

Meaning

isampler1D

a handle for accessing an integer 1D texture

19

4.1.1

41.2

4 Variables and Types

Type Meaning

isampler2D a handle for accessing an integer 2D texture
isampler3D a handle for accessing an integer 3D texture
isamplerCube a handle for accessing an integer cube mapped texture
isampler1DArray a handle for accessing an integer 1D array texture
isampler2DArray a handle for accessing an integer 2D array texture

Unsigned Integer Sampler Types (opaque)

Type Meaning

usampler1D a handle for accessing an unsigned integer 1D texture
usampler2D a handle for accessing an unsigned integer 2D texture
usampler3D a handle for accessing an unsigned integer 3D texture
usamplerCube a handle for accessing an unsigned integer cube mapped texture
usampler1DArray a handle for accessing an unsigned integer 1D array texture
usampler2DArray a handle for accessing an unsigned integer 2D array texture

In addition, a shader can aggregate these using arrays and structures to build more complex types.

There are no pointer types.

Void

Functions that do not return a value must be declared as void. There is no default function return type.
The keyword void cannot be used in any other declarations (except for empty formal or actual parameter
lists).

Booleans

To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type, holding
only one of two values meaning either true or false. Two keywords true and false can be used as literal
Boolean constants. Booleans are declared and optionally initialized as in the follow example:

bool success; // declare “success” to be a Boolean

bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) must be an expression whose type is bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

20

41.3

4 Variables and Types

Integers

Signed and unsigned integer variables are fully supported. In this document, the term infeger is meant to
generally include both signed and unsigned integers. Unsigned integers have exactly 32 bits of precision.
Signed integers use 32 bits, including a sign bit, in two's complement form. Operations resulting in
overflow or underflow will not cause any exception, nor will they saturate, rather they will “wrap” to yield
the low-order 32 bits of the result.

Integers are declared and optionally initialized with integer expressions, as in the following example:

int i, J = 42; // default integer literal type is int
uint k = 3u; // “u” establishes the type as uint

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16)
as follows.

integer-constant :
decimal-constant integer-suffixp
octal-constant integer-suffixop
hexadecimal-constant integer-suffixop

integer-suffix. one of
uU

decimal-constant :
nonzero-digit
decimal-constant digit

octal-constant :
0
octal-constant octal-digit

hexadecimal-constant :
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit
digit :
0
nonzero-digit

nonzero-digit : one of
123456789

octal-digit : one of
01234567

hexadecimal-digit : one of
0123456789
abcdef

21

41.4

4 Variables and Types

ABCDEF

No white space is allowed between the digits of an integer constant, including after the leading 0 or after
the leading 0x or 0X of a constant, or before the suffix u or U. When the suffix u or U is present, the
literal has type uint, otherwise the type is int. A leading unary minus sign (-) is interpreted as an
arithmetic unary negation, not as part of the constant.

It is an error to provide a literal integer whose magnitude is too large to store in a variable of matching
signed or unsigned type.

Floats

Floats are available for use in a variety of scalar calculations. Floating-point variables are defined as in the
following example:

float a, b = 1.5;

As an input value to one of the processing units, a floating-point variable is expected to match the IEEE
single precision floating-point definition for precision and dynamic range. It is not required that the
precision of internal processing match the IEEE floating-point specification for floating-point operations,
but the guidelines for precision established by the OpenGL 1.4 specification must be met. Similarly,
treatment of conditions such as divide by 0 may lead to an unspecified result, but in no case should such a
condition lead to the interruption or termination of processing.

Floating-point constants are defined as follows.

floating-constant :
fractional-constant exponent-part, floating-suffix.y

digit-sequence exponent-part floating-suffix,

fractional-constant :
digit-sequence . digit-sequence
digit-sequence .
. digit-sequence
exponent-part :
e signop | digit-sequence
E sign,, digit-sequence
sign : one of
+_
digit-sequence :
digit
digit-sequence digit
Sfloating-suffix: one of
fF

22

41.5

41.6

41.7

4 Variables and Types

A decimal point (.) is not needed if the exponent part is present. No white space may appear anywhere
within a floating-point constant, including before a suffix. A leading unary minus sign (-) is interpreted as
a unary operator and is not part of the floating-point constant

Vectors

The OpenGL Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, or Booleans. Floating-point vector variables can be used to store colors,
normals, positions, texture coordinates, texture lookup results and the like. Boolean vectors can be used
for component-wise comparisons of numeric vectors. Some examples of vector declaration are:

vec?2 texcoordl, texcoord?2;
vec3 position;

vecd4d myRGBA;

ivec2 texturelLookup;

bvec3 less;

Initialization of vectors can be done with constructors, which are discussed shortly.

Matrices

The OpenGL Shading Language has built-in types for 2x2, 2x3, 2x4, 3x2, 3x3, 3x4, 4x2 4x3, and 4x4
matrices of floating-point numbers. The first number in the type is the number of columns, the second is
the number of rows. Example matrix declarations:

mat2 mat2D;

mat3 optMatrix;

mat4 view, projection;

matd4x4 view; // an alternate way of declaring a mat4
mat3x2 m; // a matrix with 3 columns and 2 rows

Initialization of matrix values is done with constructors (described in Section 5.4 “Constructors”) in
column-major order.

Samplers

Sampler types (e.g. sampler2D) are effectively opaque handles to textures and their filters. They are used
with the built-in texture functions (described in Section 8.7 “Texture Lookup Functions™) to specify
which texture to access and how it is to be filtered. They can only be declared as function parameters or
uniform variables (see Section 4.3.5 “Uniform™). Except for array indexing, structure field selection,
and parentheses, samplers are not allowed to be operands in expressions. Samplers aggregated into arrays
within a shader (using square brackets []) can only be indexed with integral constant expressions (see
Section 4.3.3 “Constant Expressions”). Samplers cannot be treated as l-values; hence cannot be used as
out or inout function parameters, nor can they be assigned into. As uniforms, they are initialized only
with the OpenGL API; they cannot be declared with an initializer in a shader. As function parameters,
only samplers may be passed to samplers of matching type. This enables consistency checking between
shader texture accesses and OpenGL texture state before a shader is run.

23

41.8

4 Variables and Types

Structures

User-defined types can be created by aggregating other already defined types into a structure using the
struct keyword. For example,

struct light {
float intensity;
vec3 position;

} lightVvar;

In this example, light becomes the name of the new type, and /ightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the complete correct grammar is as given in
Section 9 “Shading Language Grammar”™ .

struct-definition :
qualifier, = struct name, { member-list } declarators,, ;

o
member-list :

member-declaration;
member-declaration member-list;

member-declaration :
basic-type declarators;

where name becomes the user-defined type, and can be used to declare variables to be of this new type.
The name shares the same name space as other variables, types, and functions, with the same scoping
rules. The optional qualifier only applies to any declarators, and is not part of the type being defined for
name.

Structures must have at least one member declaration. Member declarators may contain precision
qualifiers, but may not contain any other qualifiers. Nor do they contain any bit fields. Member types
must be already defined (there are no forward references). Member declarations cannot contain
initializers. Member declarators can contain arrays. Such arrays must have a size specified, and the size
must be an integral constant expression that's greater than zero (see Section 4.3.3 “Constant
Expressions”). Each level of structure has its own name space for names given in member declarators;
such names need only be unique within that name space.

Anonymous structures are not supported. Embedded structure definitions are not supported.

24

41.9

4 Variables and Types

struct S { float f; };

struct T {

S; // Error: anonymous structures disallowed
struct { ... }; // Error: embedded structures disallowed
S s; // Okay: nested structures with name are allowed

b

Structures can be initialized at declaration time using constructors, as discussed in Section 5.4.3
“Structure Constructors” .

Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing an optional size. When an array size is specified in a declaration, it must be an integral constant
expression (see Section 4.3.3 “Constant Expressions”) greater than zero. If an array is indexed with an
expression that is not an integral constant expression, or if an array is passed as an argument to a function,
then its size must be declared before any such use. It is legal to declare an array without a size and then
later re-declare the same name as an array of the same type and specify a size. It is illegal to declare an
array with a size, and then later (in the same shader) index the same array with an integral constant
expression greater than or equal to the declared size. It is also illegal to index an array with a negative
constant expression. Arrays declared as formal parameters in a function declaration must specify a size.
Undefined behavior results from indexing an array with a non-constant expression that’s greater than or
equal to the array’s size or less than 0. Only one-dimensional arrays may be declared. All basic types and
structures can be formed into arrays. Some examples are:

float frequencies[3];
uniform vec4 lightPosition[4];
light lights[];
const int numLights = 2;
light lights[numLights];
An array type can be formed by specifying a type followed by square brackets ([]) and including a size:

float[5]

This type can be used anywhere any other type can be used, including as the return value from a function

float[5] foo() { }

as a constructor of an array

float[5] (3.4, 4.2, 5.0, 5.2, 1.1)

as an unnamed parameter

void foo (float[5])

and as an alternate way of declaring a variable or function parameter.

25

4 Variables and Types

float[5] a;

It is an error to declare arrays of arrays:

float al5]([3]; // illegal
float[5] al3]; // illegal

Arrays can have initializers formed from array constructors:

float al[5] = float[5] (3.4, 4.2, 5.0, 5.2, 1.1);
float al[5] float[] (3.4, 4.2, 5.0, 5.2, 1.1); // same thing

Unsized arrays can be explicitly sized by an initializer at declaration time:

float al[b5];

float b[] = a; // b is explicitly size 5
float b[5] = a; // means the same thing

However, implicitly sized arrays cannot be assigned to. Note, this is a rare case that initializers and
assignments appear to have different semantics.

Arrays know the number of elements they contain. This can be obtained by using the length method:

a.length(); // returns 5 for the above declarations

The length method cannot be called on an array that has not been explicitly sized.

26

4 Variables and Types

4.1.10 Implicit Conversions

4.2

In some situations, an expression and its type will be implicitly converted to a different type. The
following table shows all allowed implicit conversions:

Type of expression Can be implicitly converted to

int float

uint

ivec2 vec2

uvec2

ivec3 vec3

uvec3

ivecd vecd

uvecd

There are no implicit array or structure conversions. For example, an array of int cannot be implicitly
converted to an array of float. There are no implicit conversions between signed and unsigned integers.

When an implicit conversion is done, it is not a re-interpretation of the expression's bit pattern, but a
conversion of its value to an equivalent value in the new type. For example, the integer value -5 will be
converted to the floating-point value -5.0. Integer values having more bits of precision than a floating
point mantissa will lose precision when converted to float.

The conversions in the table above are done only as indicated by other sections of this specification.

Scoping

The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
it is declared in. If it is declared in a while test or a for statement, then it is scoped to the end of the
following sub-statement. Otherwise, if it is declared as a statement within a compound statement, it is
scoped to the end of that compound statement. If it is declared as a parameter in a function definition, it is
scoped until the end of that function definition. A function body has a scope nested inside the function’s
definition. The if statement’s expression does not allow new variables to be declared, hence does not
form a new scope.

27

4 Variables and Types

Within a declaration, the scope of a name starts immediately after the initializer if present or immediately
after the name being declared if not. Several examples:

int x = 1;

int x = 2, y = x; // y is initialized to 2

struct S

{
int x;

b

{
S S =8S8(0,0); // 'S' is only visible as a struct and constructor
S; // 'S' is now visible as a variable

}

int x = x; // Error if x has not been previously defined.

All variable names, structure type names, and function names in a given scope share the same name space.
Function names can be redeclared in the same scope, with the same or different parameters, without error.
An implicitly sized array can be re-declared in the same scope as an array of the same base type.
Otherwise, within one compilation unit, a declared name cannot be redeclared in the same scope; doing so
results in a redeclaration error. If a nested scope redeclares a name used in an outer scope, it hides all
existing uses of that name. There is no way to access the hidden name or make it unhidden, without
exiting the scope that hid it.

The built-in functions are scoped in a scope outside the global scope users declare global variables in.
That is, a shader's global scope, available for user-defined functions and global variables, is nested inside
the scope containing the built-in functions. When a function name is redeclared in a nested scope, it hides
all functions declared with that name in the outer scope. Function declarations (prototypes) cannot occur
inside of functions; they must be at global scope, or for the built-in functions, outside the global scope.

Shared globals are global variables declared with the same name in independently compiled units
(shaders) of the same language (vertex or fragment) that are linked together to make a single program.
Shared globals share the same name space, and must be declared with the same type. They will share the
same storage. Shared global arrays must have the same base type and the same explicit size. An array
implicitly sized in one shader can be explicitly sized by another shader. If no shader has an explicit size
for the array, the largest implicit size is used. Scalars must have exactly the same type name and type
definition. Structures must have the same name, sequence of type names, and type definitions, and field
names to be considered the same type. This rule applies recursively for nested or embedded types. All
initializers for a shared global must have the same value, or a link error will result.

28

4 Variables and Types

4.3 Storage Qualifiers

Variable declarations may have one storage qualifier specified in front of the type. These are summarized

as

Qualifier Meaning

< none: default > local read/write memory, or an input parameter to a function

const a compile-time constant, or a function parameter that is read-only

in linkage into a shader from a previous stage, variable is copied in

centroid in linkage with centroid based interpolation

out linkage out of a shader to a subsequent stage, variable is copied out

centroid out linkage with centroid based interpolation

attribute deprecated; linkage between a vertex shader and OpenGL for per-vertex
data

uniform value does not change across the primitive being processed, uniforms
form the linkage between a shader, OpenGL, and the application

varying deprecated; linkage between a vertex shader and a fragment shader for

centroid varying interpolated data

Outputs from a vertex shader (out) and inputs to a fragment shader (in) can be further qualified with one
or more of these interpolation qualifiers

Qualifier Meaning

smooth perspective correct interpolation
flat no interpolation

noperspective linear interpolation

These interpolation qualifiers may only precede the qualifiers in, centroid in, out, or centroid out in a
declaration. They do not apply to the deprecated storage qualifiers varying or centroid varying. They
also do not apply to inputs into a vertex shader or outputs from a fragment shader.

Local variables can only use the const storage qualifier.

Function parameters can use const, in, and out qualifiers, but as parameter qualifiers. Parameter
qualifiers are discussed in Section 6.1.1 “Function Calling Conventions”.

Function return types and structure fields do not use storage qualifiers.

Data types for communication from one run of a shader executable to its next run (to communicate
between fragments or between vertices) do not exist. This would prevent parallel execution of the same
shader executable on multiple vertices or fragments.

29

4.3.1

4.3.2

43.3

4 Variables and Types

Initializers may only be used in declarations of globals with no storage qualifier, with a const qualifier or
with a uniform qualifier. Global variables without storage qualifiers that are not initialized in their
declaration or by the application will not be initialized by OpenGL, but rather will enter main() with
undefined values.

Default Storage Qualifier

If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other pipeline stages. For either global or local unqualified variables, the declaration will
appear to allocate memory associated with the processor it targets. This variable will provide read/write
access to this allocated memory.

Const

Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more descriptive
shaders than using hard-wired numerical constants. The const qualifier can be used with any of the basic
data types. It is an error to write to a const variable outside of its declaration, so they must be initialized
when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

Structure fields may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor.

Initializers for const declarations must be constant expressions, as defined in Section 4.3.3 “Constant
Expressions.”

Constant Expressions

A constant expression is one of

+ aliteral value (e.g., 5 or true)

+ aglobal or local variable qualified as const (i.e. not including function parameters)

+ an expression formed by an operator on operands that are all constant expressions, including getting an
element or length of a constant array, or a field of a constant structure, or components of a constant
vector.

+ aconstructor whose arguments are all constant expressions

* abuilt-in function call whose arguments are all constant expressions, with the exception of the texture
lookup functions, the noise functions, and ftransform. The built-in functions dFdx, dFdy, and
fwidth must return 0 when evaluated inside an initializer with an argument that is a constant
expression.

Function calls to user-defined functions (non-built-in functions) cannot be used to form constant
expressions.

An integral constant expression is a constant expression that evaluates to a scalar signed or unsigned
integer.

30

4.3.4

4 Variables and Types

Constant expressions will be evaluated in an invariant way so as to create the same value in multiple
shaders when the same constant expressions appear in those shaders. See section 4.6.1 “The Invariant
Qualifier” for more details on how to create invariant expressions.

Inputs

Shader input variables are declared with the in storage qualifier or the centroid in storage qualifier. They
form the input interface between previous stages of the OpenGL pipeline and the declaring shader. Input
variables must be declared at global scope. Values from the previous pipeline stage are copied into input
variables at the beginning of shader execution. Variables declared as in or centroid in may not be written
to during shader execution.

Vertex shader input variables (or attributes) receive per-vertex data. They are declared in a vertex shader
with the in qualifier or the deprecated attribute qualifier. It is an error to use centroid in in a vertex
shader. The values copied in are established by the OpenGL API. It is an error to use attribute in a non-
vertex shader. Vertex shader inputs can only be float, floating-point vectors, matrices, signed and
unsigned integers and integer vectors. They cannot be arrays or structures.

Example declarations in a vertex shader:

in vec4 position;
in vec3 normal;
in vec2 texCoord;

See Section 7 “Built-in Variables” for a list of the built-in input names.

Fragment shader inputs (or varyings) get per-fragment values, typically interpolated from a previous
stage's outputs. They are declared in fragment shaders with the in storage qualifier, the centroid in
storage qualifier, or the deprecated varying and centroid varying storage qualifiers. Fragment inputs
can only be signed and unsigned integers and integer vectors, float, floating-point vectors, matrices, or
arrays of these. Structures cannot be input.

Fragment inputs are declared as in the following examples:

in vec3 normal;

centroid in vec2 TexCoord;

invariant centroid in vec4 Color;
noperspective out float temperature;

flat in vec3 myColor;

centroid noperspective in vec2 myTexCoord;

It is expected that graphics hardware will have a small number of fixed vector locations for passing vertex
inputs. Therefore, the OpenGL Shading language defines each non-matrix input variable as taking up one
such vector location . There is an implementation dependent limit on the number of locations that can be
used, and if this is exceeded it will cause a link error. (Declared input variables that are not statically used
do not count against this limit.) A scalar input counts the same amount against this limit as a vec4, so
applications may want to consider packing groups of four unrelated float inputs together into a vector to
better utilize the capabilities of the underlying hardware. A matrix input will use up multiple locations.
The number of locations used will equal the number of columns in the matrix.

31

4.3.5

4.3.6

4 Variables and Types

Uniform

The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only and are initialized externally either at link
time or through the API. The link time initial value is either the value of the variable's initializer, if
present, or 0 if no initializer is present. Sampler types cannot have initializers.

Example declarations are:

uniform vecd4 lightPosition;
uniform vec3 color = vec3(0.7, 0.7, 0.2); // value assigned at link time

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit. The number of user-defined
uniform variables and the number of built-in uniform variables that are used within a shader are added
together to determine whether available uniform storage has been exceeded.

If multiple shaders are linked together, then they will share a single global uniform name space. Hence,
the types and initializers of uniform variables with the same name must match across all shaders that are
linked into a single executable. It is legal for some shaders to provide an initializer for a particular
uniform variable, while another shader does not, but all provided initializers must be equal.

Outputs

Shader output variables are declared with the out or centroid out storage qualifiers. They form the
output interface between the declaring shader and the subsequent stages of the OpenGL pipeline. Output
variables must be declared at global scope. During shader execution they will behave as normal
unqualified global variables. Their values are copied out to the subsequent pipeline stage on shader exit.

There is not an inout storage qualifier at global scope for declaring a single variable name as both input
and output to a shader. Output variables must be declared with different names than input variables.

Vertex output variables output per-vertex data and are declared using the out storage qualifier, the
centroid out storage qualifier, or the deprecated varying storage qualifier. They can only be float,
floating-point vectors, matrices, signed or unsigned integers or integer vectors, or arrays of any these. Ifa
vertex output is a signed or unsigned integer or integer vector, then it must be qualified with the
interpolation qualifier flat. Structures cannot be output.

Vertex outputs are declared as in the following examples:

32

4.3.7

4 Variables and Types

out vec3 normal;

centroid out vec2 TexCoord;

invariant centroid out vec4 Color;

noperspective out float temperature; // varying is deprecated
flat out vec3 myColor;

noperspective centroid out vec2 myTexCoord;

Fragment outputs output per-fragment data and are declared using the out storage qualifier. It is an error
to use centroid out in a fragment shader. Fragment outputs can only be float, floating-point vectors,
signed or unsigned integers or integer vectors, or arrays of any these. Matrices and structures cannot be
output. Fragment outputs are declared as in the following examples:

out vecd FragmentColor;
out uint Luminosity;

Interpolation

The presence of and type of interpolation is controlled by the storage qualifiers centroid in and centroid
out, and by the optional interpolation qualifiers smooth, flat, and noperspective as well as by default
behaviors established through the OpenGL API when no interpolation qualifier is present. When an
interpolation qualifier is used, it overrides settings established through the OpenGL API. It is a compile-
time error to use more than one interpolation qualifier.

The following predeclared variables can be redeclared with an interpolation qualifier:

Vertex language:
gl FrontColor (deprecated)
gl BackColor (deprecated)
gl FrontSecondaryColor (deprecated)
gl BackSecondaryColor (deprecated)
Fragment language:
gl Color (deprecated)

gl SecondaryColor (deprecated)

For example,

in vecd4 gl Color; // predeclared by the fragment language
flat in vecd4 gl Color; // redeclared by user to be flat

If gl_Color is redeclared with an interpolation qualifier, then g/ FrontColor and gl _BackColor (if they
are written to) must also be redeclared with the same interpolation qualifier, and vice versa. If

gl SecondaryColor is redeclared with an interpolation qualifier, then gl FrontSecondaryColor and

gl _BackSecondaryColor (if they are written to) must also be redeclared with the same interpolation
qualifier, and vice versa. This qualifier matching on predeclared variables is only required for variables
that are statically used within the shaders in a program.

33

44

4 Variables and Types

A variable qualified as flat will not be interpolated. Instead, it will have the same value for every
fragment within a triangle. This value will come from a single provoking vertex, as described by the
OpenGL Graphics System Specification. User-declared variables can be qualified as flat and the
predeclared variables listed above and can be redeclared as flat. It is an error to declare any other built-in
variable as flat. A variable may be qualified as flat centroid, which will mean the same thing as
qualifying it only as flat.

A variable qualified as smooth will be interpolated in a perspective-correct manner over the primitive
being rendered. Interpolation in a perspective correct manner is specified in equations 3.6 and 3.8 in the
OpenGL Graphics System Specification, Version 3.0.

A variable qualified as noperspective must be interpolated linearly in screen space, as described in
equation 3.7 and the approximation that follows equation 3.8 in the OpenGL Graphics System
Specification, Version 3.0.

This paragraph only applies if interpolation is being done: If single-sampling, the value is interpolated to
the pixel's center, and the centroid qualifier, if present, is ignored. If multi-sampling and the variable is
not qualified with centroid, then the value must be interpolated to the pixel's center, or anywhere within
the pixel, or to one of the pixel's samples. If multi-sampling and the variable is qualified with centroid,
then the value must be interpolated to a point that lies in both the pixel and in the primitive being
rendered, or to one of the pixel's samples that falls within the primitive. Due to the less regular location of
centroids, their derivatives may be less accurate than non-centroid interpolated variables.

The type and presence of the interpolation qualifiers and storage qualifiers and invariant qualifiers of
variables with the same name declared in linked vertex and fragments shaders must match, otherwise the
link command will fail. Only those input variables read in the fragment shader executable must be written
to by the vertex shader executable; declaring superfluous output variables in a vertex shader is
permissible.

Parameter Qualifiers

Parameters can have these qualifiers.

Qualifier Meaning

< none: default > same is in

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized
for use when passed in

inout for function parameters passed both into and out of a function

34

4.5

4.5.1

4.5.2

4.5.3

4 Variables and Types

Parameter qualifiers are discussed in more detail in Section 6.1.1 “Function Calling Conventions”.

Precision and Precision Qualifiers

Precision qualifiers are added for code portability with OpenGL ES, not for functionality. They have the
same syntax as in OpenGL ES, as described below, but they have no semantic meaning, which includes no
effect on the precision used to store or operate on variables.

If an extension adds in the same semantics and functionality in the OpenGL ES 2.0 specification for
precision qualifiers, then the extension is allowed to reuse the keywords below for that purpose.
Range and Precision

Section number reserved for future use.

Precision Qualifiers

Any floating point or any integer declaration can have the type preceded by one of these precision
qualifiers:

Qualifier Meaning
highp None.
mediump None.
lowp None.

For example:

lowp float color;

out mediump vec2 P;

lowp ivec2 foo (lowp mat3);
highp mat4 m;

Literal constants do not have precision qualifiers. Neither do Boolean variables. Neither do floating point
constructors nor integer constructors when none of the constructor arguments have precision qualifiers.

Precision qualifiers, as with other qualifiers, do not effect the basic type of the variable. In particular,
there are no constructors for precision conversions; constructors only convert types. Similarly, precision
qualifiers, as with other qualifiers, do not contribute to function overloading based on parameter types. As
discussed in the next chapter, function input and output is done through copies, and therefore qualifiers do
not have to match.

The same object declared in different shaders that are linked together must have the same precision
qualification. This applies to inputs, outputs, uniforms, and globals.

Default Precision Qualifiers

The precision statement

35

4.5.4

4.6

4 Variables and Types

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int or float, and the
precision-qualifier can be lowp, mediump, or highp. Any other types or qualifiers will result in an error.
If type is float, the directive applies to non-precision-qualified floating point type (scalar, vector, and
matrix) declarations. If type is int, the directive applies to all non-precision-qualified integer type (scalar,
vector, signed, and unsigned) declarations. This includes global variable declarations, function return
declarations, function parameter declarations, and local variable declarations.

Non-precision qualified declarations will use the precision qualifier specified in the most recent precision
statement that is still in scope. The precision statement has the same scoping rules as variable
declarations. If it is declared inside a compound statement, its effect stops at the end of the innermost
statement it was declared in. Precision statements in nested scopes override precision statements in outer
scopes. Multiple precision statements for the same basic type can appear inside the same scope, with later
statements overriding earlier statements within that scope.

The vertex language has the following predeclared globally scoped default precision statements:
precision highp float;
precision highp int;

The fragment language has the following predeclared globally scoped default precision statement:
precision mediump int;

The fragment language has no default precision qualifier for floating point types. Hence for float, floating

point vector and matrix variable declarations, either the declaration must include a precision qualifier or
the default float precision must have been previously declared.

Available Precision Qualifiers

The built-in macro GL_ FRAGMENT PRECISION HIGH is defined to 1:

#define GL_FRAGMENT PRECISION HIGH 1

This macro is available in both the vertex and fragment languages.

Variance and the Invariant Qualifier

In this section, variance refers to the possibility of getting different values from the same expression in
different programs. For example, say two vertex shaders, in different programs, each set gl_Position with
the same expression in both shaders, and the input values into that expression are the same when both
shaders run. It is possible, due to independent compilation of the two shaders, that the values assigned to
gl_Position are not exactly the same when the two shaders run. In this example, this can cause problems
with alignment of geometry in a multi-pass algorithm.

In general, such variance between shaders is allowed. When such variance does not exist for a particular
output variable, that variable is said to be invariant.

36

4.6.1

4 Variables and Types

The Invariant Qualifier

To ensure that a particular output variable is invariant, it is necessary to use the invariant qualifier. It can
either be used to qualify a previously declared variable as being invariant

invariant gl Position; // make existing gl Position be invariant

out vec3 Color;
invariant Color; // make existing Color be invariant

or as part of a declaration when a variable is declared

invariant centroid out vec3 Color;

The invariant qualifier must appear before any interpolation qualifiers or storage qualifiers when
combined with a declaration. Only variables output from a shader can be candidates for invariance. This
includes user-defined output variables and the built-in output variables. For variables leaving a vertex
shader and coming into a fragment shader with the same name, the invariant keyword has to be used in
both the vertex and fragment shaders.

The invariant keyword can be followed by a comma separated list of previously declared identifiers. All
uses of invariant must be at the global scope, and before any use of the variables being declared as
invariant.

To guarantee invariance of a particular output variable across two programs, the following must also be
true:

+ The output variable is declared as invariant in both programs.

* The same values must be input to all shader input variables consumed by expressions and flow control
contributing to the value assigned to the output variable.

» The texture formats, texel values, and texture filtering are set the same way for any texture function
calls contributing to the value of the output variable.

+ All input values are all operated on in the same way. All operations in the consuming expressions and
any intermediate expressions must be the same, with the same order of operands and same
associativity, to give the same order of evaluation. Intermediate variables and functions must be
declared as the same type with the same explicit or implicit precision qualifiers. Any control flow
affecting the output value must be the same, and any expressions consumed to determine this control
flow must also follow these invariance rules.

« All the data flow and control flow leading to setting the invariant output variable reside in a single
compilation unit.

Essentially, all the data flow and control flow leading to an invariant output must match.

Initially, by default, all output variables are allowed to be variant. To force all output variables to be
invariant, use the pragma

37

4.6.2

4.7

4 Variables and Types

#pragma STDGL invariant(all)

before all declarations in a shader. If this pragma is used after the declaration of any variables or
functions, then the set of outputs that behave as invariant is undefined. It is an error to use this pragma in
a fragment shader.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be degraded
by use of invariance. Hence, use of this pragma is intended as a debug aid, to avoid individually declaring
all output variables as invariant.

Invariance of Constant Expressions

Invariance must be guaranteed for constant expressions. A particular constant expression must evaluate to
the same result if it appears again in the same shader or a different shader. This includes the same
expression appearing in both a vertex and fragment shader or the same expression appearing in different
vertex or fragment shaders.

Constant expressions must evaluate to the same result when operated on as already described above for
invariant variables.

Order of Qualification
When multiple qualifications are present, they must follow a strict order. This order is as follows.
invariant-qualifier interpolation-qualifier storage-qualifier precision qualifier

storage-qualifier parameter-qualifier precision qualifier

38

5 Operators and Expressions

Operators
The OpenGL Shading Language has the following operators.
Precedence |Operator Class Operators Associativity
1 (highest) parenthetical grouping () NA
array subscript [Left to Right
function call and constructor structure ()
field or method selector, swizzler .
2 post fix increment and decrement ++ -
prefix increment and decrement ++ - Right to Left
3 unary + -~
4 multiplicative * [% Left to Right
5 additive + - Left to Right
6 bit-wise shift << >> Left to Right
7 relational < > <= >= |LefttoRight
8 equality = [= Left to Right
9 bit-wise and & Left to Right
10 bit-wise exclusive or A Left to Right
11 bit-wise inclusive or | Left to Right
12 logical and && Left to Right
13 logical exclusive or AN Left to Right
14 logical inclusive or H Left to Right
15 selection ?: Right to Left
Assignment = Right to Left
arithmetic assignments += =
% =
%=/ <<= >>=
16 &= "= |=
17 (lowest) sequence 5 Left to Right

There is no address-of operator nor a dereference operator. There is no typecast operator; constructors

are used instead.

39

5.2

5.3

5.4

5.4.1

5 Operators and Expressions

Array Operations

These are now described in Section 5.7 “Structure and Array Operations”.

Function Calls

If a function returns a value, then a call to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in Section 6.1 “Function Definitions” .

Constructors

Constructors use the function call syntax, where the function name is a type, and the call makes an object
of that type. Constructors are used the same way in both initializers and expressions. (See Section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

In general, constructors are not built-in functions with predetermined prototypes. For arrays and
structures, there must be exactly one argument in the constructor for each element or field. For the other
types, the arguments must provide a sufficient number of components to perform the initialization, and it
is an error to include so many arguments that they cannot all be used. Detailed rules follow. The
prototypes actually listed below are merely a subset of examples.

Conversion and Scalar Constructors

Converting between scalar types is done as the following prototypes indicate:

int (bool) // converts a Boolean value to an int

int (float) // converts a float value to an int

float (bool) // converts a Boolean value to a float

float (int) // converts a signed integer value to a float

bool (float) // converts a float value to a Boolean

bool (int) // converts a signed integer value to a Boolean

uint (bool) // converts a Boolean value to an unsigned integer

uint (float) // converts a float value to an unsigned integer

uint (int) // converts a signed integer value to an unsigned integer
int (uint) // converts an unsigned integer to a signed integer

bool (uint) // converts an unsigned integer value to a Boolean value
float (uint) // converts an unsigned integer value to a float value

When constructors are used to convert a float to an int or uint, the fractional part of the floating-point
value is dropped. It is undefined to convert a negative floating point value to an uint.

When a constructor is used to convert an int, uint, or a float to a bool, 0 and 0.0 are converted to false,
and non-zero values are converted to true. When a constructor is used to convert a bool to an int, uint,
or float, false is converted to 0 or 0.0, and true is converted to 1 or 1.0.

40

5.4.2

5 Operators and Expressions

The constructor int(uint) preserves the bit pattern in the argument, which will change the argument's
value if its sign bit is set. The constructor uint(int) preserves the bit pattern in the argument, which will
change its value if it is negative.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized
to 0.0.

If a vector is constructed from multiple scalars, one or more vectors, or one or more matrices, or a mixture
of these, the vectors' components will be constructed in order from the components of the arguments. The
arguments will be consumed left to right, and each argument will have all it's components consumed, in
order, before any components from the next argument are consumed. Similarly for constructing a matrix
from multiple scalars or vectors, or a mixture of these. Matrix components will be constructed and
consumed in column major order. In these cases, there must be enough components provided in the
arguments to provide an initializer for every component in the constructed value. It is an error to provide
extra arguments beyond this last used argument.

If a matrix is constructed from a matrix, then each component (column i, row) in the result that has a
corresponding component (column Z, row ;) in the argument will be initialized from there. All other
components will be initialized to the identity matrix. If a matrix argument is given to a matrix constructor,
it is an error to have any other arguments.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of the
object being constructed, the scalar construction rules (above) are used to convert the parameters.

41

5 Operators and Expressions

Some useful vector constructors are as follows:

vec3 (float) // initializes each component of with the float
vecd (ivecd) // makes a vec4 with component-wise conversion
vecd (mat2) // the vecd4 is column 0 followed by column 1

vec?2 (float, float)
ivec3 (int, int, int)

bvecd (int, int, float,

vec?2 (vec3)
vec3 (vecd)

vec3 (vec2, float)
vec3 (float, vec2)
vecd (vec3, float)
(float, wvec3)
vecd (vec2, vec2)

vecd

Some examples of these are:

vec4 color = vec4 (0.0,
vecd (1.0);

vec4 rgba

//
//

//
//

// initializes a vec2 with 2 floats
// initializes an ivec3 with 3 ints
float) // uses 4 Boolean conversions

drops the third component of a vec3
drops the fourth component of a veci4d

vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y

1.0, 0.0, 1.0);
// sets each component to 1.0

vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2 (float)
mat3 (float)
mat4 (float)

That is, result[i][j] is set to the float argument for all i = and set to O for all i# j.

42

54.3

5 Operators and Expressions

To initialize a matrix by specifying vectors or scalars, the components are assigned to the matrix elements
in column-major order.

mat2 (vec2, vec2); // one column per argument
mat3 (vec3, vec3, vec3); // one column per argument
mat4d (vecd, vecd, vecd, vecd); // one column per argument
mat3x2 (vec2, vec2, vec2); // one column per argument
mat2 (float, float, // first column

float, float); // second column
mat3 (float, float, float, // first column

float, float, float, // second column

float, float, float); // third column

mat4 (float, float, float, float, // first column
float, float, float, float, // second column
float, float, float, float, // third column
float, float, float, float); // fourth column

mat2x3 (vec2, float, // first column
vec2, float); // second column

A wide range of other possibilities exist, to construct a matrix from vectors and scalars, as long as enough
components are present to initialize the matrix. To construct a matrix from a matrix:

mat3x3 (matdx4); // takes the upper-left 3x3 of the mat4dx4

mat2x3 (mat4x2); // takes the upper-left 2x2 of the mat4x4, last row is 0,0

matdx4 (mat3x3); // puts the mat3x3 in the upper-left, sets the lower right
// component to 1, and the rest to 0

Structure Constructors

Once a structure is defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
float intensity;
vec3 position;

b
light lightVar = 1light (3.0, vec3(1.0, 2.0, 3.0));

The arguments to the constructor will be used to set the structure's fields, in order, using one argument per
field. Each argument must be the same type as the field it sets, or be a type that can be converted to the
field's type according to Section 4.1.10 “Implicit Conversions.”

Structure constructors can be used as initializers or in expressions.

43

5 Operators and Expressions

5.4.4 Array Constructors

5.5

Array types can also be used as constructor names, which can then be used in expressions or initializers.
For example,

const float c[3]
const float d[3]

float[3] (5.0, 7.2, 1.1);
float[] (5.0, 7.2, 1.1);

float g;

float a[5] = float[5](g, 1, g, 2.3, 9);
float b[3]:;

b = float[3](g, g + 1.0, g + 2.0);

There must be exactly the same number of arguments as the size of the array being constructed. If no size
is present in the constructor, then the array is explicitly sized to the number of arguments provided. The
arguments are assigned in order, starting at element 0, to the elements of the constructed array. Each
argument must be the same type as the element type of the array, or be a type that can be converted to the
element type of the array according to Section 4.1.10 “Implicit Conversions.”

Vector Components

The names of the components of a vector are denoted by a single letter. As a notational convenience,
several letters are associated with each component based on common usage of position, color or texture
coordinate vectors. The individual components of a vector can be selected by following the variable
name with period (.) and then the component name.

The component names supported are:

{x, v, z, w} Useful when accessing vectors that represent points or normals
{r,g b, a} Useful when accessing vectors that represent colors
{s, t, p, q} Useful when accessing vectors that represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.

Note that the third component of the texture coordinate set, » in OpenGL, has been renamed p so as to
avoid the confusion with r (for red) in a color.

Accessing components beyond those declared for the vector type is an error so, for example:

vec2 pos;
pos.x // 1is legal
pos.z // is illegal

44

5.6

5 Operators and Expressions

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vecd vi4;

vd.rgba; // is a vecd4d and the same as just using v4,

v4.rgb; // is a vec3,

vd.b; // is a float,

vid.xy; // is a vec2,

v4d.xgba; // is illegal - the component names do not come from
// the same set.

The order of the components can be different to swizzle them, or replicated:

vecd4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vecd swiz= pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vecd dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vecd4 pos = vec4 (1.0, 2.0, 3.0, 4.0);

pos.xw = vec2 (5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)

pos.wx = vec2 (7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)

pos.xx = vec2 (3.0, 4.0); // illegal - 'x' used twice

pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must be applied to an I-value of vector type, contain no duplicate
components, and it results in an l-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors to provide numeric indexing. So in

vecd pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, as well as a generic way of accessing components. Any integer expression can be used as the
subscript. The first component is at index zero. Reading from or writing to a vector using a constant
integral expression with a value that is negative or greater than or equal to the size of the vector is illegal.
When indexing with non-constant expressions, behavior is undefined if the index is negative, or greater
than or equal to the size of the vector.

Matrix Components

The components of a matrix can be accessed using array subscripting syntax. Applying a single subscript
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a
vector of the same size as the matrix. The leftmost column is column 0. A second subscript would then
operate on the resulting vector, as defined earlier for vectors. Hence, two subscripts select a column and
then a row.

45

5.7

5.8

5 Operators and Expressions

mat4d m;

m[l] = vecd (2.0); // sets the second column to all 2.0

m[0][0] = 1.0; // sets the upper left element to 1.0

m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix with a non-constant
expression. It is an error to access a matrix with a constant expression that is outside the bounds of the
matrix.

Structure and Array Operations

The fields of a structure and the length method of an array are selected using the period (.).

In total, only the following operators are allowed to operate on arrays and structures as whole entities:

field or method selector

equality = I=

assignment =

indexing (arrays only) [1]

The equality operators and assignment operator are only allowed if the two operands are same size and
type. Structure types must be of the same declared structure. Both array operands must be explicitly
sized. When using the equality operators, two structures are equal if and only if all the fields are
component-wise equal, and two arrays are equal if and only if all the elements are element-wise equal.

Array elements are accessed using the array subscript operator ([]). An example of accessing an array
element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Array elements are accessed using an expression whose type is int or uint.

Behavior is undefined if a shader subscripts an array with an index less than 0 or greater than or equal to
the size the array was declared with.

Arrays can also be accessed with the method operator (.) and the length method to query the size of the
array:

lightIntensity.length () // return the size of the array

Assignments
Assignments of values to variable names are done with the assignment operator (=):

lvalue-expression = rvalue-expression

46

5.9

5 Operators and Expressions

The lvalue-expression evaluates to an l-value. The assignment operator stores the value of rvalue-
expression into the 1-value and returns an r-value with the type and precision of /value-expression. The
Ivalue-expression and rvalue-expression must have the same type, or the expression must have a type in
the table in Section 4.1.10 “Implicit Conversions” that converts to the type of lvalue-expression, in which
case an implicit conversion will be done on the rvalue-expression before the assignment is done. Any
other desired type-conversions must be specified explicitly via a constructor. L-values must be writable.
Variables that are built-in types, entire structures or arrays, structure fields, l-values with the field selector
(.) applied to select components or swizzles without repeated fields, I-values within parentheses, and 1-
values dereferenced with the array subscript operator ([]) are all 1-values. Other binary or unary
expressions, function names, swizzles with repeated fields, and constants cannot be I-values. The ternary
operator (?:) is also not allowed as an 1l-value.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.
The other assignment operators are
» addinto (+=)

+ subtract from (=

* multiply into (*=)

« divide into (/=)

* modulus into (%=)

o left shift by (<<=)

+ right shift by (>>=)

* and into (&=)

* inclusive-or into (|=)

» exclusive-or into (A=)

where the general expression
lvalue op= expression
is equivalent to
lvalue = lvalue op expression

where op is as described below, and the 1-value and expression must satisfy the semantic requirements of
both op and equals (=).

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

Expressions

Expressions in the shading language are built from the following:

+ Constants of type bool, int, uint, float, all vector types, and all matrix types.

47

5 Operators and Expressions

Constructors of all types.

Variable names of all types.

An array name with the length method applied.
Subscripted array names.

Function calls that return values.

Component field selectors and array subscript results.

Parenthesized expression. Any expression can be parenthesized. Parentheses can be used to group
operations. Operations within parentheses are done before operations across parentheses.

The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on integer and
floating-point scalars, vectors, and matrices. If one operand is floating-point based and the other is
not, then the conversions from Section 4.1.10 “Implicit Conversions” are applied to the non-floating-
point-based operand. If the operands are integer types, they must both be signed or both be unsigned.
All arithmetic binary operators result in the same fundamental type (signed integer, unsigned integer,
or floating-point) as the operands they operate on, after operand type conversion. After conversion,
the following cases are valid

» The two operands are scalars. In this case the operation is applied, resulting in a scalar.

* One operand is a scalar, and the other is a vector or matrix. In this case, the scalar operation is
applied independently to each component of the vector or matrix, resulting in the same size vector
or matrix.

» The two operands are vectors of the same size. In this case, the operation is done component-wise
resulting in the same size vector.

» The operator is add (+), subtract (-), or divide (/), and the operands are matrices with the same
number of rows and the same number of columns. In this case, the operation is done component-
wise resulting in the same size matrix.

» The operator is multiply (*), where both operands are matrices or one operand is a vector and the
other a matrix. A right vector operand is treated as a column vector and a left vector operand as a
row vector. In all these cases, it is required that the number of columns of the left operand is equal
to the number of rows of the right operand. Then, the multiply (*) operation does a linear
algebraic multiply, yielding an object that has the same number of rows as the left operand and the
same number of columns as the right operand. Section 5.10 “Vector and Matrix Operations”
explains in more detail how vectors and matrices are operated on.

All other cases are illegal.

Dividing by zero does not cause an exception but does result in an unspecified value. Use the built-in
functions dot, cross, matrixCompMult, and outerProduct, to get, respectively, vector dot product,
vector cross product, matrix component-wise multiplication, and the matrix product of a column
vector times a row vector.

48

5 Operators and Expressions

The operator modulus (%) operates on signed or unsigned integers or integer vectors. The operand
types must both be signed or both be unsigned. The operands cannot be vectors of differing size. If
one operand is a scalar and the other vector, then the scalar is applied component-wise to the vector,
resulting in the same type as the vector. If both are vectors of the same size, the result is computed
component-wise. The resulting value is undefined for any component computed with a second
operand that is zero, while results for other components with non-zero second operands remain
defined. If both operands are non-negative, then the remainder is non-negative. Results are undefined
if one or both operands are negative. The operator modulus (%) is not defined for any other data
types (non-integer types).

The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and ++) operate
on integer or floating-point values (including vectors and matrices). All unary operators work
component-wise on their operands. These result with the same type they operated on. For post- and
pre-increment and decrement, the expression must be one that could be assigned to (an 1-value). Pre-
increment and pre-decrement add or subtract 1 or 1.0 to the contents of the expression they operate on,
and the value of the pre-increment or pre-decrement expression is the resulting value of that
modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to the contents
of the expression they operate on, but the resulting expression has the expression’s value before the
post-increment or post-decrement was executed.

The relational operators greater than (>), less than (<), greater than or equal (>=), and less than or
equal (<=) operate only on scalar integer and scalar floating-point expressions. The result is scalar
Boolean. Either the operands’ types must match, or the conversions from Section 4.1.10 “Implicit
Conversions” will be applied to the integer operand, after which the types must match. To do
component-wise relational comparisons on vectors, use the built-in functions lessThan,
lessThanEqual, greaterThan, and greaterThanEqual.

The equality operators equal (==), and not equal (!=) operate on all types. They result in a scalar
Boolean. If the operand types do not match, then there must be a conversion from Section 4.1.10
“Implicit Conversions” applied to one operand that can make them match, in which case this
conversion is done. For vectors, matrices, structures, and arrays, all components, fields, or elements of
one operand must equal the corresponding components, fields, or elements in the other operand for the
operands to be considered equal. To get a vector of component-wise equality results for vectors, use
the built-in functions equal and notEqual.

The logical binary operators and (& &), or (||), and exclusive or (**) operate only on two Boolean
expressions and result in a Boolean expression. And (&&) will only evaluate the right hand operand
if the left hand operand evaluated to true. Or (||) will only evaluate the right hand operand if the left
hand operand evaluated to false. Exclusive or (**) will always evaluate both operands.

The logical unary operator not (!). It operates only on a Boolean expression and results in a Boolean
expression. To operate on a vector, use the built-in function not.

The sequence (,) operator that operates on expressions by returning the type and value of the right-
most expression in a comma separated list of expressions. All expressions are evaluated, in order,
from left to right.

49

5.10

5 Operators and Expressions

» The ternary selection operator (?:). It operates on three expressions (exp! ? exp2 : exp3). This
operator evaluates the first expression, which must result in a scalar Boolean. If the result is true, it
selects to evaluate the second expression, otherwise it selects to evaluate the third expression. Only
one of the second and third expressions is evaluated. The second and third expressions can be any
type, as long their types match, or there is a conversion in Section 4.1.10 “Implicit Conversions” that
can be applied to one of the expressions to make their types match. This resulting matching type is the
type of the entire expression.

* The one's complement operator (~). The operand must be of type signed or unsigned integer or integer
vector, and the result is the one's complement of its operand; each bit of each component is
complemented, including any sign bits.

» The shift operators (<<) and (>>). For both operators, the operands must be signed or unsigned
integers or integer vectors. One operand can be signed while the other is unsigned. In all cases, the
resulting type will be the same type as the left operand. If the first operand is a scalar, the second
operand has to be a scalar as well. If the first operand is a vector, the second operand must be a scalar
or a vector, and the result is computed component-wise. The result is undefined if the right operand is
negative, or greater than or equal to the number of bits in the left expression's base type. The value of
El << E2 is E1 (interpreted as a bit pattern) left-shifted by E2 bits. The value of E1 >> E2 is E1 right-
shifted by E2 bit positions. If E1 is a signed integer, the right-shift will extend the sign bit. If E1 is an
unsigned integer, the right-shift will zero-extend.

+ The bitwise operators and (&), exclusive-or (*), and inclusive-or (|). The operands must be of type
signed or unsigned integers or integer vectors. The operands cannot be vectors of differing size. If one
operand is a scalar and the other a vector, the scalar is applied component-wise to the vector, resulting
in the same type as the vector. The fundamental types of the operands (signed or unsigned) must
match, and will be the resulting fundamental type. For and (&), the result is the bitwise-and function
of the operands. For exclusive-or (*), the result is the bitwise exclusive-or function of the operands.
For inclusive-or (|), the result is the bitwise inclusive-or function of the operands.

For a complete specification of the syntax of expressions, see Section 9 “Shading Language Grammar.”

Vector and Matrix Operations

With a few exceptions, operations are component-wise. Usually, when an operator operates on a vector or
matrix, it is operating independently on each component of the vector or matrix, in a component-wise
fashion. For example,

vec3 v, u;
float f;

v =u + f£;

will be equivalent to

v.x = u.x + f;

v.y = u.y + £;

v.z = u.z + £;
And

50

5 Operators and Expressions

vec3 v, u, w;
w =v + u;

will be equivalent to

W.X = V.X + U.x;
wW.y = V.y + u.y;
wW.zZ = V.z + u.z;

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply.

vec3 v, u;
mat3 m;

u=v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1l]); // dot(a,b) is the inner (dot) product of a and b

u.z = dot(v, m[2]);
And
u=m?* vy,

is equivalent to

u.x = m[0].x * v.x + m[l].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[l].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[l]l.z * v.y + m[2].z * v.z;

51

5 Operators and Expressions

And

mat3 m, n, r;
r=m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[l].x * n[0].y + m[2].x * n[0].z;
r{l].x = m[O0]. n[l].x + m[1l]. mi2]. .Z;
r[{2].x = m[0].x * n[2].x + m[l].x * n[2].y + m[2].x * n[2].z;

b

*
b

*
o]
-~
Y
+
b

*
o]
-~

r[{0].y = m[0].y * n[0].x + m[l]l.y * n[O].y + m[2].y * n[0].z;
r[l]. m[0]. n(l].x + m[1l]. m(2]. .Z;
r(2].y = m[0].y * n[2].x + m[l].y * n[2].y + m[2].y * n[2].z;

=
]
=
>*
=
>*
=]
-
=
.
=
>*
3
-

r{0].z = m[0].z * n[0].x + m[l]l.z * n[O].y + m[2].z * n[0].z;
r{l].z = m[0].z * n[1]. m{l].z * n[l].y + m[2].z * n[l].z;
r[(2].z = m[0].z * n[2].x + m[l]l.z * n[2].y + m[2].z * n[2].z;

b
+

and similarly for other sizes of vectors and matrices.

52

6 Statements and Structure

The fundamental building blocks of the OpenGL Shading Language are:
+ statements and declarations

+ function definitions

» sclection (if-else and switch-case-default)

+ iteration (for, while, and do-while)

* jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit:
global-declaration
translation-unit global-declaration

global-declaration:
function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

Sfunction-definition:

function-prototype { statement-list }
statement-list:

Statement

statement-list statement

Statement.
compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:
{ statement-list }

simple-statement:
declaration-statement
expression-statement
selection-statement

53

6.1

6 Statements and Structure

iteration-statement
Jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in Section 9 “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

Function Definitions

As indicated by the grammar above, a valid shader is a sequence of global declarations and function
definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, typel argl, ..., typen argn);

and a function is defined like

// definition
returnType functionName (typeO arg0, typel argl, ..., typen argn)
{

// do some computation

return returnValue;

}

where returnType must be present and include a type. Each of the fypeN must include a type and can
optionally include a parameter qualifier and/or const.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments and as the return type. In both cases, the array must be explicitly sized.
An array is passed or returned by using just its name, without brackets, and the size of the array must
match the size specified in the function's declaration.

Structures are also allowed as argument types. The return type can also be structure.

See Section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with a body before they are called. For
example:

float myfunc (float f, // f is an input parameter
out float qg); // g is an output parameter

Functions that return no value must be declared as void. Functions that accept no input arguments need
not use void in the argument list because prototypes (or definitions) are required and therefore there is no
ambiguity when an empty argument list "()" is declared. The idiom “(void)” as a parameter list is
provided for convenience.

54

6.1.1

6 Statements and Structure

Function names can be overloaded. The same function name can be used for multiple functions, as long
as the parameter types differ. If a function name is declared twice with the same parameter types, then the
return types and all qualifiers must also match, and it is the same function being declared. When function
calls are resolved, an exact type match for all the arguments is sought. If an exact match is found, all
other functions are ignored, and the exact match is used. If no exact match is found, then the implicit
conversions in Section 4.1.10 “Implicit Conversions” will be applied to find a match. Mismatched types
on input parameters (in or inout or default) must have a conversion from the calling argument type to the
formal parameter type. Mismatched types on output parameters (out or inout) must have a conversion
from the formal parameter type to the calling argument type. When argument conversions are used to find
a match, it is a semantic error if there are multiple ways to apply these conversions to make the call match
more than one function.

For example,

in vec4 x, out vecd

(V)i
(in vecd x, out ivecd y); // okay, different argument type
int f(in vec4 x, out ivec4 y); // error, only return type differs
(in vec4 x, in ivecd y); // error, only qualifier differs
int f(const in vec4 x, out ivecd y); // error, only qualifier differs

Calling the first two functions above with the following argument types yields

f (vecd, vecid) // exact match of vec4d f(in vec4 x, out vecd vy)

f(vecd, ivecd) // exact match of vecd f(in vecd x, out ivecd vy)

f(ivecd4, vecd) // error, convertible to both

f(ivecd, ivecd) // okay, convertible only to vec4d f(in vecd x, out ivecd y)

User-defined functions can have multiple declarations, but only one definition. A shader can redefine
built-in functions. If a built-in function is redeclared in a shader (i.e. a prototype is visible) before a call
to it, then the linker will only attempt to resolve that call within the set of shaders that are linked with it.

The function main is used as the entry point to a shader executable. A shader need not contain a function
named main, but one shader in a set of shaders linked together to form a single shader executable must.
This function takes no arguments, returns no value, and must be declared as type void:

void main ()

{

}

The function main can contain uses of return. See Section 6.4 “Jumps” for more details.

It is an error to declare or define a function main with any other parameters or return type.

Function Calling Conventions

Functions are called by value-return. This means input arguments are copied into the function at call time,
and output arguments are copied back to the caller before function exit. Because the function works with
local copies of parameters, there are no issues regarding aliasing of variables within a function. To
control what parameters are copied in and/or out through a function definition or declaration:

* The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied out.

55

6 Statements and Structure

» The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied in.
This should be used whenever possible to avoid unnecessarily copying parameters in.

» The keyword inout is used as a qualifier to denote the parameter is to be both copied in and copied
out.

» A function parameter declared with no such qualifier means the same thing as specifying in.

All arguments are evaluated at call time, exactly once, in order, from left to right. Evaluation of an in
parameter results in a value that is copied to the formal parameter. Evaluation of an out parameter results
in an l-value that is used to copy out a value when the function returns. Evaluation of an inout parameter
results in both a value and an l-value; the value is copied to the formal parameter at call time and the 1-
value is used to copy out a value when the function returns.

The order in which output parameters are copied back to the caller is undefined.

If the function matching described in the previous section required argument type conversions, these
conversions are applied at copy-in and copy-out times.

In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters
declared as out or inout.

No qualifier is allowed on the return type of a function.

function-prototype :
precision-qualifier type function-name(const-qualifier parameter-qualifier precision-qualifier
type name array-specifier, ...)

type :

any basic type, array type, structure name, or structure definition
const-qualifier :

empty

const
parameter-qualifier :

empty

in

out

inout

name :
empty
identifier
array-specifier :
empty
[integral-constant-expression |

56

6.2

6.3

6 Statements and Structure

However, the const qualifier cannot be used with out or inout. The above is used for function
declarations (i.e. prototypes) and for function definitions. Hence, function definitions can have unnamed
arguments.

Recursion is not allowed, not even statically. Static recursion is present if the static function call graph of
the program contains cycles.

Selection

Conditional control flow in the shading language is done by either if, if-else, or switch statements:

selection-statement :
if (bool-expression) statement
if (bool-expression) statement else statement
switch (init-expression) { switch-statement-list,y }

Where switch-statement-list is a list of zero or more switch-statement and other statements defined by the
language, where switch-statement adds some forms of labels. That is

switch-statement-list :
switch-statement
switch-statement-list switch-statement

switch-statement :
case constant-expression :
default :
Statement

If an if-expression evaluates to true, then the first statement is executed. If it evaluates to false and there
is an else part then the second statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

The type of init-expression in a switch statement must be a scalar integer. If a case label has a constant-
expression of equal value, then execution will continue after that label. Otherwise, if there is a default
label, execution will continue after that label. Otherwise, execution skips the rest of the switch statement.
It is an error to have more than one default or a replicated constant-expression. A break statement not
nested in a loop or other switch statement (either not nested or nested only in if or if-else statements) will
also skip the rest of the switch statement. Fall through labels are allowed, but it is an error to have no
statement between a label and the end of the switch statement.

No case or default labels can be nested inside other flow control nested within their corresponding
switch.

Iteration

For, while, and do loops are allowed as follows:

57

6.4

6 Statements and Structure

for (init-expression; condition-expression; loop-expression)
sub-statement

while (condition-expression)
sub-statement

do
statement
while (condition-expression)

See Section 9 “Shading Language Grammar” for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. 1f the condition-
expression evaluates to true, then the body of the loop is executed. After the body is executed, a for loop
will then evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating
until the condition-expression evaluates to false. The loop is then exited, skipping its body and skipping
its loop-expression. Variables modified by the loop-expression maintain their value after the loop is
exited, provided they are still in scope. Variables declared in init-expression or condition-expression are
only in scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is then
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

The do-while loop first executes the body, then executes the condition-expression. This is repeated until
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the
do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope lasts
only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

Jumps
These are the jumps:

Jump_statement:
continue;
break;
return;
return expression;
discard; // in the fragment shader language only

58

6 Statements and Structure

There is no “goto” nor other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the inner most loop of
which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop
condition-expression from which the loop continues as previously defined. For for loops, the jump is to
the loop-expression, followed by the condition-expression.

The break jump can also be used only in loops and switch statements. It is simply an immediate exit of
the inner-most loop or switch statements containing the break. No further execution of condition-
expression, loop-expression, or switch-statement is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to any buffers will occur._Control flow exits the shader, and subsequent implicit or explicit
derivatives are undefined when this control flow is non-uniform (meaning different fragments within the
primitive take different control paths). It would typically be used within a conditional statement, for
example:

if (intensity < 0.0)
discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the return
value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in a fragment shader. Using return in
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.

59

7 Built-in Variables

71

Vertex Shader Special Variables

Some OpenGL operations occur in fixed functionality between the vertex processor and the fragment
processor. Shaders communicate with the fixed functionality of OpenGL through the use of built-in
variables.

These built-in vertex shader variables for communicating with fixed functionality are intrinsically
declared as follows:

out vec4 gl Position; // must be written to

out float gl PointSize; // may be written to

in int gl_VertexID;

out float gl ClipDistance[]; // may be written to

out vec4d gl ClipVertex; // may be written to, deprecated

The variable g/ _Position is available only in the vertex language and is intended for writing the
homogeneous vertex position. All executions of a well-formed vertex shader executable must write a
value into this variable. It can be written at any time during shader execution. It may also be read back
by a vertex shader after being written. This value will be used by primitive assembly, clipping, culling,
and other fixed functionality operations that operate on primitives after vertex processing has occurred.
Compilers may generate a diagnostic message if they detect g/ Position is not written, or read before
being written, but not all such cases are detectable. Its value is undefined if the vertex shader executable
does not write gl_Position.

The variable gl PointSize is available only in the vertex language and is intended for a vertex shader to
write the size of the point to be rasterized. It is measured in pixels.

The variable gl VertexID is a vertex shader an input variable that holds an integer index for the vertex, as
defined by the OpenGL Graphics System Specification. While the variable gl VertexID is always
present, its value is not always defined. For details on when it is defined, see the "Shader Inputs"
subsection of section 2.20.3 "Shader Execution" of the OpenGL Graphics System Specification, Version
3.0.

The variable g/ ClipDistance provides the forward compatible mechanism in the vertex shader for
controlling user clipping. To use this, a vertex shader is responsible for maintaining a set of clip planes,
computing the distance from the vertex to each clip plane, and storing distances to the plane in

gl ClipDistance[i] for each plane i. A distance of 0 means the vertex is on the plane, a positive distance
means the vertex is inside the clip plane, and a negative distance means the point is outside the clip plane.
The clip distances will be linearly interpolated across the primitive and the portion of the primitive with
interpolated distances less than 0 will be clipped.

60

7.2

7 Built-in Variables

The gl ClipDistance array is predeclared as unsized and must be sized by the shader either redeclaring it
with a size or indexing it only with integral constant expressions. This needs to size the array to include
all the clip planes that are enabled via the OpenGL API; if the size does not include all enabled planes,
results are undefined. The size can be at most gl MaxClipDistances. The number of varying components
(see gl_MaxVaryingComponents) consumed by g/ ClipDistance will match the size of the array, no
matter how many planes are enabled. The shader must also set all values in g/ ClipDistance that have
been enabled via the OpenGL API, or results are undefined. Values written into g/ ClipDistance for
planes that are not enabled have no effect.

The variable g/ _ClipVertex is deprecated. It is available only in the vertex language and provides a place
for vertex shaders to write the coordinate to be used with the user clipping planes. The user must ensure
the clip vertex and user clipping planes are defined in the same coordinate space. User clip planes work
properly only under linear transform. It is undefined what happens under non-linear transform.

If a linked set of shaders forming the vertex stage contains no static write to gl ClipVertex or

gl _ClipDistance, but the application has requested clipping against user clip planes through the API, then
the coordinate written to g/ _Position is used for comparison against the user clip planes. This behavior is
also deprecated. Writing to g/ ClipDistance is the preferred method for user clipping. It is an error for a
shader to statically write both g/ ClipVertex and gl ClipDistance.

If gl _PointSize is not written to, its value is undefined in subsequent pipe stages.

Fragment Shader Special Variables

The built-in special variables that are accessible from a fragment shader are intrinsically declared as
follows:

in wvec4 gl FragCoord;

in bool gl FrontFacing;

in float gl ClipDistance[];

out vec4 gl FragColor; // deprecated
out vec4 gl FragData[gl MaxDrawBuffers]; // deprecated
out float gl FragDepth;

Except as noted below, they behave as other input and output variables.

The output of the fragment shader executable is processed by the fixed function operations at the back end
of the OpenGL pipeline.

Fragment shaders output values to the OpenGL pipeline using the built-in variables g/ FragColor,
gl FragData, and gl _FragDepth, unless the discard statement is executed. Both gl FragColor and
gl _FragData are deprecated; the preferred usage is to explicitly declare these outputs in the fragment
shader using the out storage qualifier.

The fixed functionality computed depth for a fragment may be obtained by reading g/ FragCoord.z,
described below.

Deprecated: Writing to gl_FragColor specifies the fragment color that will be used by the subsequent
fixed functionality pipeline. If subsequent fixed functionality consumes fragment color and an execution
of the fragment shader executable does not write a value to g/ FragColor then the fragment color
consumed is undefined.

61

7.3

7 Built-in Variables

If the frame buffer is configured as a color index buffer then behavior is undefined when using a fragment
shader.

Writing to g/ FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and no shader writes g/ FragDepth, then the fixed function value for depth will be
used as the fragment’s depth value. If a shader statically assigns a value to g/ FragDepth, and there is an
execution path through the shader that does not set gl_FragDepth, then the value of the fragment’s depth
may be undefined for executions of the shader that take that path. That is, if the set of linked fragment
shaders statically contain a write to gl FragDepth, then it is responsible for always writing it.

Deprecated: The variable gl FragData is an array. Writing to gl FragData[n] specifies the fragment
data that will be used by the subsequent fixed functionality pipeline for data n. If subsequent fixed
functionality consumes fragment data and an execution of a fragment shader executable does not write a
value to it, then the fragment data consumed is undefined.

If a shader statically assigns a value to g/ _FragColor, it may not assign a value to any element of

gl FragData. If a shader statically writes a value to any element of g/ FragData, it may not assign a
value to g/ _FragColor. That is, a shader may assign values to either g/ FragColor or gl FragData, but
not both. Multiple shaders linked together must also consistently write just one of these variables.
Similarly, if user declared output variables are in use (statically assigned to), then the built-in variables
gl _FragColor and gl _FragData may not be assigned to. These incorrect usages all generate compile time
errors.

If a shader executes the discard keyword, the fragment is discarded, and the values of any user-defined
fragment outputs, g/ FragDepth, gl FragColor, and gl FragData become irrelevant.

The variable gl FragCoord is available as an input variable from within fragment shaders and it holds the
window relative coordinates X, y, z, and 1/w values for the fragment. If multi-sampling, this value can be
for any location within the pixel, or one of the fragment samples. The use of centroid in does not further
restrict this value to be inside the current primitive. This value is the result of the fixed functionality that
interpolates primitives after vertex processing to generate fragments. The z component is the depth value
that would be used for the fragment’s depth if no shader contained any writes to g/ _FragDepth. This is
useful for invariance if a shader conditionally computes g/ FragDepth but otherwise wants the fixed
functionality fragment depth.

Fragment shaders have access to the input built-in variable gl FrontFacing, whose value is true if the
fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by selecting
one of two colors calculated by a vertex shader.

The built-in input variable g/ ClipDistance array contains linearly interpolated values for the vertex
values written by the vertex shader to the g/ ClipDistance vertex output variable. This array must be
sized in the fragment shader either implicitly or explicitly to be the same size as it was sized in the vertex
shader. Only elements in this array that have clipping enabled will have defined values.

Vertex Shader Built-In Inputs

Deprecated: The following predeclared input names can be used from within a vertex shader to access the
current values of OpenGL state.

62

7 Built-in Variables

in vec4 gl Color; // deprecated
in vec4 gl SecondaryColor; // deprecated
in vec3 gl Normal; // deprecated
in vec4 gl Vertex; // deprecated

in vec4 gl MultiTexCoord0; // deprecated
in vec4 gl MultiTexCoordl; // deprecated
in vec4 gl MultiTexCoord2; // deprecated
in vec4 gl MultiTexCoord3; // deprecated
in vec4 gl MultiTexCoord4; // deprecated
in vec4 gl MultiTexCoord5; // deprecated
in vec4 gl MultiTexCoord6; // deprecated
in vec4 gl MultiTexCoord7; // deprecated
in float gl FogCoord; // deprecated

Built-In Constants

The following built-in constants are provided to vertex and fragment shaders. The actual values used are
implementation dependent, but must be at least the value shown. Some are deprecated, as indicated in
comments.

//

// Implementation dependent constants. The example values below
// are the minimum values allowed for these maximums.

//

const int gl MaxTextureUnits = 16;

const int gl MaxVertexAttribs = 16;

const int gl MaxVertexUniformComponents = 1024;

const int gl MaxVaryingFloats = 64; // Deprecated
const int gl MaxVaryingComponents = 64;

const int gl MaxVertexTextureImageUnits = 16;

const int gl MaxCombinedTexturelImageUnits = 16;

const int gl MaxTextureImageUnits = 16;

const int gl MaxFragmentUniformComponents = 1024;

const int gl MaxDrawBuffers = 8;

const int gl MaxClipDistances = 8;

//

// The following are deprecated.

//

const int gl MaxClipPlanes = 8; // deprecated
const int gl MaxTextureCoords = 8; // deprecated

The constant gl MaxVaryingFloats is deprecated, use gl MaxVaryingComponents instead. The constant
gl MaxClipPlanes is deprecated along with user clip planes, use clip distances and gl MaxClipDistances
instead. The constant g/ MaxTextureCoords is deprecated, use user-defined interpolants instead.

63

7.5

7 Built-in Variables

Built-In Uniform State

As an aid to accessing OpenGL processing state, the following uniform variables are built into the
OpenGL Shading Language. All section numbers and notations are references to the OpenGL Graphics
System Specification, Version 3.0.

//
// Depth range in window coordinates, section 2.12.1
//
struct gl DepthRangeParameters ({
float near; // n
float far; // £
float diff; // £ - n
i
uniform gl DepthRangeParameters gl DepthRange;

The following state is deprecated:

//

// Deprecated.

//

uniform mat4 gl ModelViewMatrix;

uniform mat4 gl ProjectionMatrix;

uniform mat4 gl_ModelViewProjectionMatrix;

uniform mat4 gl TextureMatrix[gl MaxTextureCoords];

//
// Deprecated.
//
uniform mat3 gl NormalMatrix; // transpose of the inverse of the
// upper leftmost 3x3 of gl ModelViewMatrix

uniform mat4 gl ModelViewMatrixInverse;

uniform mat4 gl ProjectionMatrixInverse;

uniform mat4 gl ModelViewProjectionMatrixInverse;

uniform mat4 gl TextureMatrixInverse[gl MaxTextureCoords];

uniform mat4 gl ModelViewMatrixTranspose;

uniform mat4 gl ProjectionMatrixTranspose;

uniform mat4 gl ModelViewProjectionMatrixTranspose;

uniform mat4 gl TextureMatrixTranspose[gl MaxTextureCoords];

uniform mat4 gl ModelViewMatrixInverseTranspose;

uniform mat4 gl ProjectionMatrixInverseTranspose;

uniform mat4 gl ModelViewProjectionMatrixInverseTranspose;

uniform mat4 gl TextureMatrixInverseTranspose[gl MaxTextureCoords];

64

!/

// Deprecated.

!/

uniform float gl NormalScale;

uniform vec4 gl ClipPlane[gl MaxClipPlanes];

PointParameters {

size;

sizeMin;

sizeMax;

fadeThresholdSize;
distanceConstantAttenuation;
distancelinearAttenuation;

//

// Deprecated.

//

//

// Deprecated.

//

struct gl
float
float
float
float
float
float
float

b

distanceQuadraticAttenuation;

uniform gl PointParameters gl Point;

MaterialParameters {

//
// Deprecated.
//
struct gl |
vecd
vecd
vecd
vecd
float

}s

emission; // Ecm
ambient; // Acm
diffuse; // Dcm
specular; // Scm
shininess; // Srm

uniform gl MaterialParameters gl FrontMaterial;

uniform gl MaterialParameters gl BackMaterial;

65

7 Built-in Variables

7 Built-in Variables

//
// Deprecated.
//
struct gl LightSourceParameters {
vecd ambient; // Acli
vecd diffuse; // Dcli
vecd specular; // Scli
vecd position; // Ppli
vec4 halfVector; // Derived: Hi
vec3 spotDirection; // Sdli
float spotExponent; // Srli
float spotCutoff; // Crli
// (range: [0.0,90.0], 180.0)
float spotCosCutoff; // Derived: cos(Crli)

// (range: [1.0,0.0]1,-1.0)
float constantAttenuation; // KO
float linearAttenuation; // K1
float quadraticAttenuation;// K2
}i

uniform gl LightSourceParameters gl LightSource[gl MaxLights];

struct gl LightModelParameters ({
vecd ambient; // Acs

bi
uniform gl LightModelParameters gl LightModel;

//
// Deprecated.
// Derived state from products of light and material.

//
struct gl LightModelProducts {
vecd sceneColor; // Derived. Ecm + Acm * Acs

b

uniform gl LightModelProducts gl FrontLightModelProduct;
uniform gl LightModelProducts gl BackLightModelProduct;

struct gl LightProducts {

vecd ambient; // Acm * Acli
vecd diffuse; // Dcm * Dcli
vecd specular; // Scm * Scli

b

uniform gl LightProducts gl FrontLightProduct[gl MaxLights];
uniform gl LightProducts gl BackLightProduct[gl MaxLights];

66

7.6

!/

// Deprecated.

//

uniform
uniform
uniform
uniform
uniform
uniform
uniform
uniform
uniform

!/

// Deprecated.

//

vecd
vec4d
vecd
vecd
vecd
vecd
vecd
vecd
vecd

7 Built-in Variables

gl TextureEnvColor[gl MaxTextureUnits];
gl EyePlaneS[gl MaxTextureCoords];

gl EyePlaneT[gl MaxTextureCoords];

gl EyePlaneR[gl MaxTextureCoords];

gl EyePlaneQ[gl MaxTextureCoords];

gl ObjectPlaneS[gl MaxTextureCoords];
gl ObjectPlaneT[gl MaxTextureCoords];
gl ObjectPlaneR[gl MaxTextureCoords];
gl ObjectPlaneQ[gl MaxTextureCoords];

struct gl FogParameters {
vecd4d color;

float
float
float
float

}s

end;
scale; // Derived: 1.0 / (end - start)

density;
start;

uniform gl FogParameters gl Fog;

Built-In Vertex Output and Fragment Input Variables

Unlike user-defined interpolated variables, the mapping between the built-in vertex output variables to the
built-in fragment input variables doesn't have a strict one-to-one correspondence. Two sets are provided,
one for each language. Their relationship is described below.

It is deprecated to have the GL provide fixed functionality behavior for a programmable pipeline stage.
For example, mixing a fixed functionality vertex stage with a programmable fragment stage is deprecated.
Pipeline configurations where only a proper subset of stages are being used do not require the unused

stages to have shaders.

The following built-in vertex output variables are available, but deprecated. A particular one should be
written to if any functionality in a corresponding fragment shader or fixed pipeline uses it or state derived
from it. Otherwise, behavior is undefined.

67

7 Built-in Variables

out vec4 gl FrontColor; // deprecated
out vec4 gl BackColor; // deprecated
out vec4 gl FrontSecondaryColor; // deprecated
out vec4 gl BackSecondaryColor; // deprecated

out vec4 gl TexCoord[]; // deprecated, at most will be gl MaxTextureCoords
out float gl FogFragCoord;// deprecated

For gl FogFragCoord (deprecated), the value written will be used as the “c” value in section 3.11 of the
OpenGL Graphics System Specification, Version 3.0, by the fixed functionality pipeline. For example, if
the z-coordinate of the fragment in eye space is desired as “c”, then that's what the vertex shader
executable should write into g/ FogFragCoord.

As with all arrays, indices used to subscript gl TexCoord (deprecated) must either be an integral constant
expressions, or this array must be re-declared by the shader with a size. The size can be at most

gl MaxTextureCoords. Using indexes close to 0 may aid the implementation in preserving varying
resources.

The following fragment input variables are available in a fragment shader.

in vec2 gl PointCoord;

The following fragment inputs are also available in a fragment shader, but are deprecated:

in float gl FogFragCoord; // deprecated
in vec4d gl TexCoordl[]; // deprecated
in vec4 gl Color; // deprecated
in vec4 gl SecondaryColor; // deprecated

Deprecated: The values in g/_Color and gl_SecondaryColor will be derived automatically by the system
from gl FrontColor, gl BackColor, gl _FrontSecondaryColor, and gl _BackSecondaryColor based on
which face is visible. If fixed functionality is used for vertex processing, then g/ FogFragCoord will
either be the z-coordinate of the fragment in eye space, or the interpolation of the fog coordinate, as
described in section 3.11 of the OpenGL Graphics System Specification, Version 3.0. The

gl TexCoord[] values are the interpolated g/ TexCoord/[] values from a vertex shader or the texture
coordinates of any fixed pipeline based vertex functionality.

Indices to the fragment shader g/ TexCoord array are as described above in the vertex shader text.

The values in g/ PointCoord are two-dimensional coordinates indicating where within a point primitive
the current fragment is located, when point sprites are enabled. They range from 0.0 to 1.0 across the
point. If the current primitive is not a point, or if point sprites are not enabled, then the values read from
gl _PointCoord are undefined.

68

8 Built-in Functions

The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

+ They expose some necessary hardware functionality in a convenient way such as accessing a texture
map. There is no way in the language for these functions to be emulated by a shader.

» They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but they
are very common and may have direct hardware support. It is a very hard problem for the compiler to
map expressions to complex assembler instructions.

» They represent an operation graphics hardware is likely to accelerate at some point. The trigonometry
functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent computations
in their own shader code since the built-in functions are assumed to be optimal (e.g., perhaps supported
directly in hardware).

User code can replace built-in functions with their own if they choose, by simply re-declaring and defining
the same name and argument list. Because built-in functions are in a more outer scope than user built-in
functions, doing this will hide all built-in functions with the same name as the re-declared function.

When the built-in functions are specified below, where the input arguments (and corresponding output)
can be float, vec2, vec3, or vecd, genType is used as the argument. Where the input arguments (and
corresponding output) can be int, ivec2, ivec3, or ivec4, gen/Type is used as the argument. Where the
input arguments (and corresponding output) can be uint, uvec2, uvec3, or uvecd, genUType is used as the
argument. For any specific use of a function, the actual type substituted for genType, genlType, or
genUType has to be the same for all arguments and for the return type. Similarly for mat, which can be
any matrix basic type.

69

8.1

8 Built-in Functions

Angle and Trigonometry Functions

Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genType radians (genType degrees) Converts degrees to radians, i.e. %80 -degrees
] 180 .

genType degrees (genType radians) Converts radians to degrees, i.e. v -radians

genType sin (genType angle)

The standard trigonometric sine function.

genType cos (genType angle)

The standard trigonometric cosine function.

genType tan (genType angle)

The standard trigonometric tangent.

genType asin (genType x)

Arc sine. Returns an angle whose sine is x. The range
. L ™o

of values returned by this function is 55

Results are undefined if |x|>1.

genType acos (genType x)

Arc cosine. Returns an angle whose cosine is x. The
range of values returned by this function is [0, TT.
Results are undefined if |x|>1.

genType atan (genType y, genType x)

Arc tangent. Returns an angle whose tangent is y/x. The
signs of x and y are used to determine what quadrant the
angle is in. The range of values returned by this
functionis [—7r,7]. Results are undefined if x and
y are both 0.

genType atan (genType y_over x)

Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this function

. T
I

70

8 Built-in Functions

Syntax

Description

genType sinh (genType x)

Returns the hyperbolic sine function
ex _ e—x

2

genType cosh (genType x)

Returns the hyperbolic cosine function
e'+e”
2

genType tanh (genType x)

Returns the hyperbolic tangent function
sinh(x)
cosh(x)

genType asinh (genType x)

Arc hyperbolic sine; returns the inverse of sinh.

genType acosh (genType x)

Arc hyperbolic cosine; returns the non-negative inverse
of cosh. Results are undefined if x < 1.

genType atanh (genType x)

Arc hyperbolic tangent; returns the inverse of tanh.
Results are undefined if |x|>1.

8.2 Exponential Functions

These all operate component-wise. The description is per component.

Syntax

Description

genType pow (genType x, genType y)

Returns x raised to the y power, i.e., x”
Results are undefined if x < 0.

Results are undefined if x = 0 and y <= 0.

genType exp (genType x)

Returns the natural exponentiation of x, i.e., e*.

genType log (genType x)

Returns the natural logarithm of x, i.e., returns the value
v which satisfies the equation x = ¢’.

Results are undefined if x <= 0.

genType exp2 (genType x)

Returns 2 raised to the x power, i.e., 2"

genType log2 (genType x)

Returns the base 2 logarithm of x, i.e., returns the value
y which satisfies the equation x=2"

Results are undefined if x <= 0.

71

8 Built-in Functions

Syntax

Description

genType sqrt (genType x)

Returns \/; .
Results are undefined if x < 0.

genType inversesqrt (genType x)

1
Returns W

Results are undefined if x <= 0.

Common Functions

These all operate component-wise. The description is per component.

Syntax

Description

genType abs (genType x)
genlType abs (genIType x)

Returns x if x >= 0, otherwise it returns —x.

genType sign (genType x)
genlType sign (genlType x)

Returns 1.0 if x>0, 0.0 if x =0, or —1.0 if x < 0.

genType floor (genType x)

Returns a value equal to the nearest integer that is less
than or equal to x.

genType trunc (genType x)

Returns a value equal to the nearest integer to x whose
absolute value is not larger than the absolute value of x.

genType round (genType x)

Returns a value equal to the nearest integer to x. The
fraction 0.5 will round in a direction chosen by the
implementation, presumably the direction that is fastest.
This includes the possibility that round(x) returns the
same value as roundEven(x) for all values of x.

genType roundEven (genType x)

Returns a value equal to the nearest integer to x. A
fractional part of 0.5 will round toward the nearest even
integer. (Both 3.5 and 4.5 for x will return 4.0.)

genType ceil (genType x)

Returns a value equal to the nearest integer that is
greater than or equal to x.

genType fract (genType x)

Returns x — floor (x).

72

8 Built-in Functions

Syntax

Description

genType mod (genType x, float y)
genType mod (genType x, genType y)

Modulus. Returns x —y Lfloor (x/).

genType modf (genType x, out genType i)

Returns the fractional part of x and sets i to the integer
part (as a whole number floating point value). Both the
return value and the output parameter will have the same
sign as x.

genType min (genType x, genType)
genType min (genType x, float y)
genlType min (genIType x, genlType y)
genlType min (genlType x, int y)
genUType min (genUType x, genUType)
genUType min (genUType x, uint y)

Returns y if y < x, otherwise it returns x.

genType max (genType x, genType y)
genType max (genType x, float y)
genlType max (genlType x, genlType y)
genlType max (genlType x, int)
genUType max (genUType x, genUType y)
genUType max (genUType x, uint y)

Returns y if x <y, otherwise it returns x.

genType clamp (genType x,
genType minVal,
genType maxVal)
genType clamp (genType x,
float minVal,
float maxVal)
genlType clamp (genlType x,
genlType minVal,
genlType maxVal)
genlType clamp (genlType x,
int minVal,
int maxVal)
genUType clamp (genUType x,
genUType minVal,
genUType maxVal)
genUType clamp (genUType x,
uint minVal,
uint maxVal)

Returns min (max (x, minVal), maxVal).

Results are undefined if minVal > maxVal.

73

8 Built-in Functions

Syntax Description
genType mix (genType x, Returns the linear blend of x and y, i.e.
genType y, x(l—a)+ya
genType a)
genType mix (genType x,
genType y,
float a)
genType mix (genType x, Selects which vector each returned component comes
genTypey, from. For a component of a that is false, the
bvec a) corresponding component of x is returned. For a

component of a that is true, the corresponding
component of y is returned. Components of x and y that
are not selected are allowed to be invalid floating point
values and will have no effect on the results. Thus, this
provides different functionality than

genType mix(genType x, genType y, genType(a))
where a is a Boolean vector.

genType step (genType edge, genType x)
genType step (float edge, genType x)

Returns 0.0 if x < edge, otherwise it returns 1.0.

genType smoothstep (genType edge,
genType edgel,
genType x)

genType smoothstep (float edge,
float edgel,

genType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edgel and
performs smooth Hermite interpolation between 0 and 1
when edgel < x < edgel. This is useful in cases where
you would want a threshold function with a smooth
transition. This is equivalent to:

genType t;

t=clamp ((x — edge0) / (edgel — edge0), 0, 1);
returnt ¥t * (3 — 2 * t);

Results are undefined if edge) >= edgel.

bvec isnan (genType x)

Returns true if x holds a NaN (not a number)
representation in the underlying implementation's set of
floating point representations. Returns false otherwise,
including for implementations with no NaN
representations.

bvec isinf (genType x)

Returns true if x holds a positive infinity or negative
infinity representation in the underlying implementation's
set of floating point representations. Returns false
otherwise, including for implementations with no infinity
representations.

74

8.4 Geometric Functions

8 Built-in Functions

These operate on vectors as vectors, not component-wise.

Syntax

Description

float length (genType x)

Returns the length of vector x, i.e.,

V[0 +x[1T+...

float distance (genType p0, genType pl)

Returns the distance between p0 and p1, i.e.
length (p0 —pl)

float dot (genType x, genType y)

Returns the dot product of x and y, i.e.,
x[0]-y[0]+x[1]- y[1]+...

vec3 cross (vec3 x, vec3 y)

Returns the cross product of x and y, i.e.

x[1]-y[2]-y[1]x[2]
x[2] y[0]-y[2]-x[0]
x[0]-y[1]-y[0]x[1]

genType normalize (genType x)

Returns a vector in the same direction as x but with a
length of 1.

vec4 ftransform()

Deprecated; use invariant.

For vertex shaders only. This function will ensure that
the incoming vertex value will be transformed in a way
that produces exactly the same result as would be
produced by OpenGL’s fixed functionality transform. It
is intended to be used to compute gl Position, e.g.,

gl Position = ftransform()

This function should be used, for example, when an
application is rendering the same geometry in separate
passes, and one pass uses the fixed functionality path to
render and another pass uses programmable shaders.

genType faceforward(genType N,
genType 1,
genType Nref)

If dot(Nref, I) < 0 return N, otherwise return —N.

75

8 Built-in Functions

Syntax Description

genType reflect (genType I, genType N) For the incident vector / and surface orientation N,
returns the reflection direction:

I-2 Udot(N, 1 LIN

N must already be normalized in order to achieve the
desired result.

genType refract(genType I, genType N, For the incident vector / and surface normal N, and the
float eta) ratio of indices of refraction efa, return the refraction
vector. The result is computed by

k=1.0-eta * eta * (1.0 - dot(N, 1) * dot(N, I))
if (k<0.0)

return genType(0.0)
else

return efa * I - (eta * dot(N, 1) + sqrt(k)) * N

The input parameters for the incident vector / and the
surface normal N must already be normalized to get the
desired results.

76

8.5

Matrix Functions

8 Built-in Functions

Syntax

Description

mat matrixCompMult (mat x, mat y)

Multiply matrix x by matrix y component-wise, i.e.,
result[i][j] is the scalar product of x[i][j] and y[i][j].

Note: to get linear algebraic matrix multiplication, use
the multiply operator (*).

mat2 outerProduct(vec2 c, vec2 r)
mat3 outerProduct(vec3 c, vec3 r)
mat4 outerProduct(vecsd c, vecd r)

mat2x3 outerProduct(vec3 c, vec2 r)
mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)
mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)
mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter ¢ as a column vector (matrix
with one column) and the second parameter as a row
vector (matrix with one row) and does a linear algebraic
matrix multiply ¢ * 7, yielding a matrix whose number of
rows is the number of components in ¢ and whose
number of columns is the number of components in 7.

mat2 transpose(mat2 m)
mat3 transpose(mat3 m)
mat4 transpose(mat4 m)

mat2x3 transpose(mat3x2 m)
mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)
mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)
mat4x3 transpose(mat3x4 m)

Returns a matrix that is the transpose of m. The input
matrix m is not modified.

77

8.6

Vector Relational Functions

8 Built-in Functions

Relational and equality operators (<, <=, >, >=, ==, !=) are defined to produce scalar Boolean results. For
vector results, use the following built-in functions. Below, “bvec” is a placeholder for one of bvec2,
bvec3, or bvec4, “ivec” is a placeholder for one of ivec2, ivec3, or ivec4, “uvec” is a placeholder for
uvec2, uvec3, or uvecd, and “vec” is a placeholder for vec2, vec3, or vec4. In all cases, the sizes of the
input and return vectors for any particular call must match.

Syntax

Description

bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)
bvec lessThan(uvec x, uvec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)
bvec lessThanEqual(uvec x, uvec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec X, ivec y)
bvec greaterThan(uvec x, uvec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)
bvec greaterThanEqual(uvec x, uvec y)

Returns the component-wise compare of x >=y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(uvec x, uvec y)
bvec equal(bvec x, bvec y)

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(uvec x, uvec y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x == y.

Returns the component-wise compare of x = y.

bool any(bvec x)

Returns true if any component of x is true.

bool all(bvec x)

Returns true only if all components of x are true.

bvec not(bvec x)

Returns the component-wise logical complement of x.

78

8.7

8 Built-in Functions

Texture Lookup Functions

Texture lookup functions are available to both vertex and fragment shaders. However, level of detail is
not implicitly computed for vertex shaders. The functions in the table below provide access to textures
through samplers, as set up through the OpenGL API. Texture properties such as size, pixel format,
number of dimensions, filtering method, number of mip-map levels, depth comparison, and so on are also
defined by OpenGL API calls. Such properties are taken into account as the texture is accessed via the
built-in functions defined below.

Texture data can be stored by the GL as floating point, unsigned normalized integer, unsigned integer or
signed integer data. This is determined by the type of the internal format of the texture. Texture lookups
on unsigned normalized integer and floating point data return floating point values in the range [0, 1].

Texture lookup functions are provided that can return their result as floating point, unsigned integer or
signed integer, depending on the sampler type passed to the lookup function. Care must be taken to use
the right sampler type for texture access. The following table lists the supported combinations of sampler
types and texture internal formats. Blank entries are unsupported. Doing a texture lookup will return
undefined values for unsupported combinations.

et T o [0SR [t s [t s
Floating point Supported

Normalized Integer Supported

Signed Integer Supported

Unsigned Integer Supported

If an integer sampler type is used, the result of a texture lookup is an ivec4. If an unsigned integer sampler
type is used, the result of a texture lookup is a uvec4. If a floating point sampler type is used, the result of
a texture lookup is a vec4, where each component is in the range [0, 1].

[[Tt}

In the prototypes below, the “g” in the return type “gvec4” is used as a placeholder for nothing, “i”’, or “u
making a return type of vecd, ivecd, or uvecd. In these cases, the sampler argument type also starts with
“g”, indicating the same substitution done on the return type; it is either a floating point, signed integer, or
unsigned integer sampler, matching the basic type of the return type, as described above.

For shadow forms (the sampler parameter is a shadow-type), a depth comparison lookup on the depth
texture bound to sampler is done as described in section 3.9.14 of the OpenGL Graphics System
Specification, Version 3.0. See the table below for which component specifies D,.. The texture bound to
sampler must be a depth texture, or results are undefined. If a non-shadow texture call is made to a
sampler that represents a depth texture with depth comparisons turned on, then results are undefined. Ifa
shadow texture call is made to a sampler that represents a depth texture with depth comparisons turned
off, then results are undefined. If a shadow texture call is made to a sampler that does not represent a
depth texture, then results are undefined.

79

8 Built-in Functions

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in a vertex shader. For a fragment shader, if bias is present, it is added to the implicit level of
detail prior to performing the texture access operation.

The implicit level of detail is selected as follows: For a texture that is not mip-mapped, the texture is used
directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the implementation
is used to do the texture lookup. If it is mip-mapped and running on the vertex shader, then the base
texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may require implicit derivatives. Implicit
derivatives are undefined within non-uniform control flow and for vertex shader texture fetches.

For Cube forms, the direction of P is used to select which face to do a 2-dimensional texture lookup in, as
described in section 3.9.6 in the OpenGL Graphics System Specification, Version 3.0.

For Array forms, the array layer used will be
max (0,min (d —1, floor(layer+0.5)))

where d is the depth of the texture array and /ayer comes from the component indicated in the tables
below.

80

8 Built-in Functions

Syntax

Description

int textureSize (gsamplerl D sampler, int lod)
ivec2 textureSize (gsampler2D sampler, int lod)
ivec3 textureSize (gsampler3D sampler, int lod)
ivec2 textureSize (gsamplerCube sampler, int lod)

int textureSize (sampler1 DShadow sampler, int lod)
ivec2 textureSize (sampler2DShadow sampler, int lod)
ivec2 textureSize (samplerCubeShadow sampler, int lod)
ivec2 textureSize (gsampler1 DArray sampler, int lod)
ivec3 textureSize (gsampler2DArray sampler, int lod)
ivec2 textureSize (samplerl DArrayShadow sampler, int lod)
ivec3 textureSize (sampler2DArrayShadow sampler, int lod)

Returns the dimensions of level
lod for the texture bound to
sampler, as described in section
2.20.4 of the OpenGL Graphics
System Specification, Version
3.0, under "Texture Size
Query".

The components in the return
value are filled in, in order, with
the width, height, depth of the
texture.

For the array forms, the last
component of the return value is
the number of layers in the
texture array.

gvec4 texture (gsampler1D sampler, float P [, float bias])
gvecd texture (gsampler2D sampler, vec2 P [, float bias])
gvec4 texture (gsampler3D sampler, vec3 P [, float bias])
gvecd texture (gsamplerCube sampler, vec3 P [, float bias])
float texture (sampler1 DShadow sampler, vec3 P [, float bias])
float texture (sampler2DShadow sampler, vec3 P [, float bias])
float texture (samplerCubeShadow sampler, vec4d P [, float bias])
gvecd texture (gsamplerl DArray sampler, vec2 P [, float bias])
gvec4 texture (gsampler2DArray sampler, vec3 P [, float bias])
float texture (sampler1 DArrayShadow sampler, vec3 P
[, float bias])
float texture (sampler2DArrayShadow sampler, vec4 P)

Use the texture coordinate P to
do a texture lookup in the
texture currently bound to
sampler. The last component of
P is used as D,.s for the shadow
forms. For array forms, the array
layer comes from the last
component of P in the non-
shadow forms, and the second to
last component of P in the
shadow forms.

gvec4 textureProj (gsampler1D sampler, vec2 P [, float bias])
gvec4d textureProj (gsampler1D sampler, vecd P [, float bias])
gvec4 textureProj (gsampler2D sampler, vec3 P [, float bias])
gvec4d textureProj (gsampler2D sampler, vecd P [, float bias])
gvec4 textureProj (gsampler3D sampler, vecd P [, float bias])
float textureProj (samplerl DShadow sampler, vec4 P
[, float bias])
float textureProj (sampler2DShadow sampler, vec4 P
[, float bias])

Do a texture lookup with
projection. The texture
coordinates consumed from P,
not including the last component
of P, are divided by the last
component of P. The resulting
3" component of P in the
shadow forms is used as D,y
After these values are computed,
texture lookup proceeds as in
texture.

81

8 Built-in Functions

Syntax

Description

gvec4d textureLod (gsampler1D sampler, float P, float lod)

gvec4 textureLod (gsampler2D sampler, vec2 P, float lod)

gvec4d textureLod (gsampler3D sampler, vec3 P, float lod)

gvec4d textureLod (gsamplerCube sampler, vec3 P, float lod)
float textureLod (samplerl DShadow sampler, vec3 P, float lod)
float textureLod (sampler2DShadow sampler, vec3 P, float lod)

gvec4d textureLod (gsampler1 DArray sampler, vec2 P, float lod)

gvec4d textureLod (gsampler2DArray sampler, vec3 P, float lod)
float textureLod (samplerl DArrayShadow sampler, vec3 P,

float lod)

Do a texture lookup as in
texture but with explicit LOD;
lod specifies Awse (see equation
3.16 in OpenGL Graphics
System Specification, Version
3.0) and set the partial
derivatives in section 3.9.7 as
follows.

Ou _ ov _ ow _
5_0 ﬁx_o ﬁx_o
ou _ ov _ o Ow _
PP T

gvec4d textureOffset (gsampler1D sampler, float P,
int offset [, float bias])
gvecd textureOffset (gsampler2D sampler, vec2 P,
ivec2 offset [, float bias])
gvecsd textureOffset (gsampler3D sampler, vec3 P,
ivec3 offset [, float bias])
float textureOffset (sampler] DShadow sampler, vec3 P,
int offset [, float bias])
float textureOffset (sampler2DShadow sampler, vec3 P,
ivec2 offset [, float bias])
gvecd textureOffset (gsamplerl DArray sampler, vec2 P,
int offset [, float bias])
gvecd textureOffset (gsampler2DArray sampler, vec3 P,
ivec2 offset [, float bias])
float textureOffset (samplerl DArrayShadow sampler, vec3 P,
int offset [, float bias])

Do a texture lookup as in
texture but with offser added to
the (u,v,w) texel coordinates
before looking up each texel.
The offset value must be a
constant expression. A limited
range of offset values are
supported; the minimum and
maximum offset values are
implementation-dependent and
given by
MIN_PROGRAM_TEXEL_OFFSET and
MAX_PROGRAM_TEXEL_OFFSET,
respectively.

Note that offset does not apply
to the layer coordinate for
texture arrays. This is explained
in detail in section 3.9.7 of the
OpenGL Graphics System
Specification, Version 3.0,
where offsetis (6,,6,,6,).
Note that texel offsets are also
not supported for cube maps.

82

8 Built-in Functions

Syntax

Description

gvec4d texelFetch (gsampler1D sampler, int P, int lod)

gvec4 texelFetch (gsampler2D sampler, ivec2 P, int lod)
gvec4d texelFetch (gsampler3D sampler, ivec3 P, int lod)
gvec4d texelFetch (gsamplerl DArray sampler, ivec2 P, int lod)
gvec4d texelFetch (gsampler2DArray sampler, ivec3 P, int lod)

Use integer texture coordinate P
to lookup a single texel from
sampler. The array layer comes
from the last component of P for
the array forms. The level-of-
detail /od as described in section
2.20.4 of the OpenGL Graphics
System Specification, Version
3.0, under "Texel Fetches".

gvecd texelFetchOffset (gsampler1D sampler, int P, int lod,
int offser)

gvec4d texelFetchOffset (gsampler2D sampler, ivec2 P, int lod,
ivec2 offset)

gvecd texelFetchOffset (gsampler3D sampler, ivec3 P, int lod,
ivec3 offset)

gvecsd texelFetchOffset (gsampler1 DArray sampler, ivec2 P, int lod,
int offser)

gvec4d texelFetchOffset (gsampler2DArray sampler, ivec3 P, int lod,
ivec2 offset)

Fetch a single texel as in
texelFetch offset by offset as
described in textureOffset.

gvecd textureProjOffset (gsampler1D sampler, vec2 P,
int offset [, float bias])
gvec4 textureProjOffset (gsampler1 D sampler, vec4 P,
int offset [, float bias])
gvec4d textureProjOffset (gsampler2D sampler, vec3 P,
ivec2 offset [, float bias])
gvec4d textureProjOffset (gsampler2D sampler, vec4 P,
ivec2 offset [, float bias])
gvec4d textureProjOffset (gsampler3D sampler, vec4 P,
ivec3 offset [, float bias])
float textureProjOffset (sampler] DShadow sampler, vec4 P,
int offset [, float bias])
float textureProjOffset (sampler2DShadow sampler, vecd P,
ivec2 offset [, float bias])

Do a projective texture lookup
as described in textureProj
offset by offset as described in
textureOffset.

83

8 Built-in Functions

Syntax

Description

gvec4d textureLodOffset (gsampler1 D sampler, float P,
float lod, int offset)
gvecd textureLodOffset (gsampler2D sampler, vec2 P,
float lod, ivec2 offset)
gvec4d textureLodOffset (gsampler3D sampler, vec3 P,
float lod, ivec3 offsef)
float textureLodOffset (sampler1 DShadow sampler, vec3 P,
float lod, int offser)
float textureLodOffset (sampler2DShadow sampler, vec3 P,
float lod, ivec2 offsef)
gvec4d textureLodOffset (gsamplerl DArray sampler, vec2 P,
float lod, int offser)
gvecd textureLodOffset (gsampler2DArray sampler, vec3 P,
float lod, ivec2 offset)

float textureLodOffset (sampler1 DArrayShadow sampler, vec3 P,

float lod, int offsef)

Do an offset texture lookup with
explicit LOD. See textureLod
and textureOffset.

gvec4 textureProjLod (gsampler1D sampler, vec2 P, float lod)
gvec4d textureProjLod (gsamplerl D sampler, vecd P, float lod)
gvecd textureProjLod (gsampler2D sampler, vec3 P, float lod)
gvec4d textureProjLod (gsampler2D sampler, vecd P, float lod)
gvec4 textureProjLod (gsampler3D sampler, vec4 P, float lod)

float textureProjLod (sampler1 DShadow sampler, vecd P, float lod)
float textureProjLod (sampler2DShadow sampler, vec4 P, float lod)

Do a projective texture lookup
with explicit LOD. See
textureProj and textureLod.

gvec4d textureProjLodOffset (gsampler1D sampler, vec2 P,
float lod, int offset)

gvec4 textureProjLodOffset (gsampler1D sampler, vecd P,
float lod, int offset)

gvec4d textureProjLodOffset (gsampler2D sampler, vec3 P,
float lod, ivec2 offsef)

gvecd textureProjLodOffset (gsampler2D sampler, vec4d P,
float lod, ivec2 offset)

gvec4d textureProjLodOffset (gsampler3D sampler, vec4 P,
float lod, ivec3 offsef)

float textureProjLodOffset (samplerl DShadow sampler, vec4 P,

float lod, int offset)

float textureProjLodOffset (sampler2DShadow sampler, vec4 P,

float lod, ivec2 offsef)

Do an offset projective texture
lookup with explicit LOD. See
textureProj, textureLod, and
textureOffset.

84

8 Built-in Functions

Syntax

Description

gvec4d textureGrad (gsampler1D sampler, float P,
float dPdx, float dPdy)
gvecd textureGrad (gsampler2D sampler, vec2 P,
vec2 dPdx, vec2 dPdy)
gvec4 textureGrad (gsampler3D sampler, vec3 P,
vec3 dPdx, vec3 dPdy)
gvec4d textureGrad (gsamplerCube sampler, vec3 P,
vec3 dPdx, vec3 dPdy)
float textureGrad (sampler | DShadow sampler, vec3 P,
float dPdx, float dPdy)
float textureGrad (sampler2DShadow sampler, vec3 P,
vec2 dPdx, vec2 dPdy)
float textureGrad (samplerCubeShadow sampler, vec4 P,
vec3 dPdx, vec3 dPdy)
gvec4d textureGrad (gsampler1DArray sampler, vec2 P,
float dPdx, float dPdy)
gvec4d textureGrad (gsampler2DArray sampler, vec3 P,
vec2 dPdx, vec2 dPdy)
float textureGrad (sampler | DArrayShadow sampler, vec3 P,
float dPdx, float dPdy)
float textureGrad (sampler2DArrayShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

Do a texture lookup as in
texture but with explicit
gradients. The partial
derivatives of P are with respect
to window x and window y. Set

oP
6_s _ I for a 1D texture
0x OP.s otherwise

Ox

OP
51 _ 5 for a 1D texture
0y OP.s otherwise

oy

0.0 for a 1D texture
o —\or
Oox — otherwise

Ox

0.0 for a 1D texture
ot
oy = ot otherwise
y dy

0.0 for 1D or 2D
or _lap
ox P cube, other

ox

0.0 for 1D or 2D
or. =i{0P
oy P cube, other

Oy

For the cube version, the partial
derivatives of P are assumed to
be in the coordinate system used
before texture coordinates are
projected onto the appropriate
cube face.

85

8 Built-in Functions

Syntax

Description

gvec4d textureGradOffset (gsampler1 D sampler, float P,
float dPdx, float dPdy, int offset)
gvecd textureGradOffset (gsampler2D sampler, vec2 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4d textureGradOffset (gsampler3D sampler, vec3 P,
vec3 dPdx, vec3 dPdy, ivec3 offset)
float textureGradOffset (sampler1 DShadow sampler, vec3 P,
float dPdx, float dPdy, int offset)
float textureGradOffset (sampler2DShadow sampler, vec3 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

...... and D

—float-te

vw3deA, vee3 d], ivO offset)
gvecd textureGradOffset (gsamplerl DArray sampler, vec2 P,
float dPdx, float dPdy, int offset)
gvec4d textureGradOffset (gsampler2DArray sampler, vec3 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)
float textureGradOffset (sampler1 DArrayShadow sampler, vec3 P,
float dPdx, float dPdy, int offset)
float textureGradOffset (sampler2DArrayShadow sampler, vec4 P,

vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup with both
explicit gradient and offset, as
described in textureGrad and
textureOffset.

gvec4d textureProjGrad (gsamplerlD sampler, vec2 P,
float dPdx, float dPdy)
gvec4d textureProjGrad (gsamplerl D sampler, vecd P,
float dPdx, float dPdy)
gvec4d textureProjGrad (gsampler2D sampler, vec3 P,
vec2 dPdx, vec2 dPdy)
gvec4d textureProjGrad (gsampler2D sampler, vecd P,
vec2 dPdx, vec2 dPdy)
gvecd textureProjGrad (gsampler3D sampler, vec4 P,
vec3 dPdx, vec3 dPdy)
float textureProjGrad (samplerlDShadow sampler, vec4 P,
float dPdx, float dPdy)
float textureProjGrad (sampler2DShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

Do a texture lookup both
projectively, as described in
textureProj, and with explicit
gradient as described in
textureGrad. The partial
derivatives dPdx and dPdy are
assumed to be already projected.

86

8 Built-in Functions

Syntax

Description

gvec4d textureProjGradOffset (gsampler1D sampler, vec2 P,
float dPdx, float dPdy, int offset)
gvecd textureProjGradOffset (gsamplerl1D sampler, vec4 P,
float dPdXx, float dPdy, int offset)
gvecsd textureProjGradOffset (gsampler2D sampler, vec3 P,
vec2 dPdx, vec2 dPdy, vec2 offset)
gvecd textureProjGradOffset (gsampler2D sampler, vec4 P,
vec2 dPdx, vec2 dPdy, vec2 offset)
gvec4d textureProjGradOffset (gsampler3D sampler, vec4 P,
vec3 dPdx, vec3 dPdy, vec3 offset)
float textureProjGradOffset (samplerl DShadow sampler, vec4 P,
float dPdx, float dPdy, int offset)
float textureProjGradOffset (sampler2DShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy, vec2 offset)

Do a texture lookup projectively
and with explicit gradient as
described in textureProjGrad,
as well as with offset, as
described in textureOffset.

87

The following texture functions are deprecated.

8 Built-in Functions

Syntax

Description

vec4 texturelD (sampler1D sampler,
float coord [, float bias])
vec4 texturelDProj (samplerl D sampler,
vec2 coord [, float bias])
vec4 texturelDProj (samplerlD sampler,
vec4 coord [, float bias])
vec4 texturelDLod (sampler1D sampler,
float coord, float lod)
vec4 texturelDProjLod (sampler1D sampler,
vec2 coord, float lod)
vec4 texturelDProjLod (sampler1D sampler,
vecd coord, float lod)

Deprecated. See corresponding signature
above without “1D” in the name.

vec4 texture2D (sampler2D sampler,
vec2 coord [, float bias])
vec4 texture2DProj (sampler2D sampler,
vec3 coord [, float bias])
vec4 texture2DProj (sampler2D sampler,
vec4 coord [, float bias])
vec4 texture2DLod (sampler2D sampler,
vec2 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,
vec3 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,
vecd coord, float lod)

Deprecated. See corresponding signature
above without “2D” in the name.

vec4 texture3D (sampler3D sampler,
vec3 coord [, float bias])
vec4 texture3DProj (sampler3D sampler,
vecd coord [, float bias])
vec4 texture3DLod (sampler3D sampler,
vec3 coord, float lod)
vec4 texture3DProjLod (sampler3D sampler,
vecd coord, float lod)

Deprecated. See corresponding signature
above without “3D” in the name.

Use the texture coordinate coord to do a
texture lookup in the 3D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate is
divided by coord.q.

vec4 textureCube (samplerCube sampler,
vec3 coord [, float bias])
vec4 textureCubeLod (samplerCube sampler,
vec3 coord, float lod)

Deprecated. See corresponding signature
above without “Cube” in the name.

88

8.8

8 Built-in Functions

Syntax Description
vec4 shadow1D (sampler1 DShadow sampler, Deprecated. Same functionality as the

vec3 coord [, float bias]) “texture” based names above with the same
vec4 shadow2D (sampler2DShadow sampler, signature.

vec3 coord [, float bias])
vec4 shadow1DProj (sampler] DShadow sampler,
vecd coord [, float bias])
vec4 shadow2DProj (sampler2DShadow sampler,
vec4d coord [, float bias])
vec4 shadow1DLod (samplerl DShadow sampler,
vec3 coord, float lod)
vec4 shadow2DLod (sampler2DShadow sampler,
vec3 coord, float lod)
vec4 shadow1DProjLod(sampler DShadow sampler,
vec4d coord, float lod)
vec4 shadow2DProjLod(sampler2DShadow sampler,
vecd coord, float lod)

Fragment Processing Functions

Fragment processing functions are only available in fragment shaders.

Derivatives may be computationally expensive and/or numerically unstable. Therefore, an OpenGL
implementation may approximate the true derivatives by using a fast but not entirely accurate derivative
computation. Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

F(x+dx)—F(x) ~ dFdx(x)-dx la
dFdx(x) ~ F(x+dx)—F(x) b
dx
Backward differencing:

F(x—dx)—F(x) ~ —dFdx(x)-dx 2a

F(x)=F (x—dx)

dFdx(x)~ =

2b

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0 in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

89

8 Built-in Functions

A GL implementation may use the above or other methods to perform the calculation, subject to the
following conditions:

1. The method may use piecewise linear approximations. Such linear approximations imply that higher
order derivatives, dFdx(dFdx(x)) and above, are undefined.

2. The method may assume that the function evaluated is continuous. Therefore derivatives within the
body of a non-uniform conditional are undefined.

3. The method may differ per fragment, subject to the constraint that the method may vary by window
coordinates, not screen coordinates. The invariance requirement described in section 3.2 of the
OpenGL Graphics System Specification, Version 3.0, is relaxed for derivative calculations, because
the method may be a function of fragment location.

Other properties that are desirable, but not required, are:
4. Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

5. Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(y))
and dFdy(dFdx(x)) are undefined.

6. Derivatives of constant arguments should be 0.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 5.6 of the OpenGL Graphics System Specification, Version 3.0), allowing a user to make an
image quality versus speed trade off.

Syntax Description

genType dFdx (genType p) Returns the derivative in x using local differencing for
the input argument p.

genType dFdy (genType p) Returns the derivative in y using local differencing for
the input argument p.

These two functions are commonly used to estimate the
filter width used to anti-alias procedural textures. We
are assuming that the expression is being evaluated in
parallel on a SIMD array so that at any given point in
time the value of the function is known at the grid points
represented by the SIMD array. Local differencing
between SIMD array elements can therefore be used to
derive dFdx, dFdy, etc.

genType fwidth (genType p) Returns the sum of the absolute derivative in x and y
using local differencing for the input argument p, i.e.:
abs (dFdx (p)) + abs (dFdy (p));

90

8.9

8 Built-in Functions

Noise Functions

Noise functions are available to both fragment and vertex shaders. They are stochastic functions that can
be used to increase visual complexity. Values returned by the following noise functions give the
appearance of randomness, but are not truly random. The noise functions below are defined to have the
following characteristics:

The return value(s) are always in the range [-1.0,1.0], and cover at least the range [-0.6, 0.6], with a
Gaussian-like distribution.

The return value(s) have an overall average of 0.0
They are repeatable, in that a particular input value will always produce the same return value

They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it has the same
statistical character)

They have a statistical invariance under translation (i.e., no matter how the domain is translated, it has
the same statistical character)

They typically give different results under translation.
The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.

They are C! continuous everywhere (i.e., the first derivative is continuous)

Syntax Description

float noisel (genType x)

Returns a 1D noise value based on the input value x.

vec2 noise2 (genType x)

Returns a 2D noise value based on the input value x.

vec3 noise3 (genType x)

Returns a 3D noise value based on the input value x.

vec4d noise4 (genType x)

Returns a 4D noise value based on the input value x.

91

9 Shading Language Grammar

The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

ATTRIBUTE CONST BOOL FLOAT INT UINT

BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN SWITCH CASE DEFAULT
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 UVEC2 UVEC3 UVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4 CENTROID IN OUT INOUT UNIFORM VARYING

NOPERSPECTIVE FLAT SMOOTH

MAT2X2 MAT2X3 MAT2X4

MAT3X2 MAT3X3 MAT3X4

MAT4X2 MAT4X3 MAT4X4

SAMPLER1D SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2DSHADOW
SAMPLERCUBESHADOW SAMPLERI1DARRAY SAMPLER2DARRAY SAMPLER1DARRAYSHADOW
SAMPLER2DARRAYSHADOW ISAMPLER1D ISAMPLER2D ISAMPLER3D ISAMPLERCUBE
ISAMPLERIDARRAY ISAMPLER2DARRAY USAMPLER1D USAMPLER2D USAMPLER3D
USAMPLERCUBE USAMPLER1DARRAY USAMPLER2DARRAY

STRUCT VOID WHILE

IDENTIFIER TYPE NAME FLOATCONSTANT INTCONSTANT UINTCONSTANT BOOLCONSTANT
FIELD SELECTION

LEFT OP RIGHT OP

INC OP DEC_OP LE OP GE OP EQ OP NE OP

AND OP OR OP XOR_OP MUL ASSIGN DIV ASSIGN ADD ASSIGN

MOD ASSIGN LEFT ASSIGN RIGHT ASSIGN AND ASSIGN XOR ASSIGN OR ASSIGN
SUB_ASSIGN

LEFT PAREN RIGHT PAREN LEFT BRACKET RIGHT BRACKET LEFT BRACE RIGHT BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT ANGLE RIGHT ANGLE VERTICAL BAR CARET AMPERSAND QUESTION

INVARIANT
HIGH PRECISION MEDIUM PRECISION LOW PRECISION PRECISION

The following describes the grammar for the OpenGL Shading Language in terms of the above tokens.

variable_identifier:
IDENTIFIER

primary_expression:
variable_identifier
INTCONSTANT

92

9 Shading Language Grammar

UINTCONSTANT

FLOATCONSTANT

BOOLCONSTANT

LEFT PAREN expression RIGHT PAREN

postfix_expression:
primary_expression
postfix_expression LEFT BRACKET integer _expression RIGHT BRACKET
function_call
postfix_expression DOT FIELD SELECTION
postfix_expression INC_OP
postfix_expression DEC_OP

integer expression:

expression

function_call:

function_call or_method

function_call or _method:
function_call generic

postfix_expression DOT function_call generic

function_call generic:
function_call header with _parameters RIGHT PAREN
function_call _header no_parameters RIGHT PAREN

function_call_header no_parameters:
Sfunction_call _header VOID

function_call _header

function_call_header with_parameters:
function_call _header assignment_expression

function_call _header with _parameters COMMA assignment _expression

function_call_header:
function_identifier LEFT PAREN

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them as

93

9 Shading Language Grammar

// keywords. They are now recognized through “type_specifier”.

function_identifier:
type_specifier
IDENTIFIER
FIELD SELECTION

unary_expression:
postfix_expression
INC _OP unary_expression
DEC _OP unary_expression

unary_operator unary_expression
// Grammar Note: No traditional style type casts.

unary_operator:
PLUS
DASH
BANG
TILDE

// Grammar Note: No '*' or '&'unary ops. Pointers are not supported.

multiplicative _expression:
unary_expression
multiplicative expression STAR unary expression
multiplicative _expression SLASH unary_expression

multiplicative _expression PERCENT unary_expression

additive_expression:
multiplicative_expression
additive_expression PLUS multiplicative_expression

additive _expression DASH multiplicative expression

shift_expression.
additive_expression
shift_expression LEFT _OP additive_expression
shift_expression RIGHT OP additive _expression

relational _expression:

94

9 Shading Language Grammar

shift_expression

relational expression LEFT ANGLE shift expression
relational _expression RIGHT ANGLE shift _expression
relational _expression LE_OP shift_expression

relational _expression GE_OP shift_expression

equality _expression:
relational _expression
equality expression EQ OP relational expression

equality _expression NE_OP relational _expression

and_expression:
equality _expression

and_expression AMPERSAND equality expression

exclusive_or_expression:
and_expression

exclusive or_expression CARET and_expression

inclusive_or_expression:
exclusive or _expression

inclusive_or_expression VERTICAL BAR exclusive or_expression

logical _and_expression:
inclusive_or_expression

logical_and_expression AND_OP inclusive or_expression

logical xor_expression:
logical _and_expression

logical xor expression XOR_OP logical and expression

logical or_expression:
logical xor expression

logical_or_expression OR_OP logical xor_expression

conditional expression:
logical_or_expression

logical or_expression QUESTION expression COLON assignment _expression

assignment_expression:

95

9 Shading Language Grammar

conditional _expression

unary_expression assignment_operator assignment_expression

assignment_operator:
EQUAL
MUL ASSIGN
DIV _ASSIGN
MOD ASSIGN
ADD ASSIGN
SUB_ASSIGN
LEFT ASSIGN
RIGHT ASSIGN
AND_ASSIGN
XOR_ASSIGN
OR_ASSIGN

expression.
assignment_expression

expression COMMA assignment _expression

constant_expression:

conditional _expression

declaration:
function_prototype SEMICOLON
init_declarator_list SEMICOLON
PRECISION precision_qualifier type specifier no_prec SEMICOLON

unction_prototype:
ion_prototyp
function_declarator RIGHT PAREN

function_declarator:
function_header

function_header with_parameters

function_header with_parameters.
function_header parameter declaration

function_header with_parameters COMMA parameter_declaration

function_header:

96

9 Shading Language Grammar

fully specified type IDENTIFIER LEFT PAREN

parameter_declarator:
type_specifier IDENTIFIER
type_specifier IDENTIFIER LEFT BRACKET constant_expression RIGHT BRACKET

parameter_declaration:
parameter_type_qualifier parameter _qualifier parameter_declarator
parameter_qualifier parameter_declarator
parameter_type_qualifier parameter qualifier parameter _type_specifier

parameter_qualifier parameter_type_specifier

parameter_qualifier:
/* empty */
IN
our
INOUT

parameter_type specifier:

type_specifier

init_declarator_list:
single_declaration
init_declarator_list COMMA IDENTIFIER
init_declarator _list COMMA IDENTIFIER LEFT BRACKET RIGHT BRACKET

init_declarator _list COMMA IDENTIFIER LEFT BRACKET constant_expression
RIGHT BRACKET

init_declarator list COMMA IDENTIFIER LEFT BRACKET
RIGHT BRACKET EQUAL initializer

init_declarator list COMMA IDENTIFIER LEFT BRACKET constant expression
RIGHT BRACKET EQUAL initializer

init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration:
fully specified type
fully specified type IDENTIFIER
fully specified type IDENTIFIER LEFT BRACKET RIGHT BRACKET
fully specified type IDENTIFIER LEFT BRACKET constant expression RIGHT BRACKET
fully specified type IDENTIFIER LEFT BRACKET RIGHT BRACKET EQUAL initializer
fully specified type IDENTIFIER LEFT BRACKET constant_expression

97

fully specified type IDENTIFIER EQUAL initializer
INVARIANT IDENTIFIER // Vertex only.

// Grammar Note: No 'enum', or 'typedef'.

fully specified type:
type_specifier
type_qualifier type_specifier

invariant_qualifier:
INVARIANT

interpolation_qualifier:
SMOOTH
FLAT
NOPERSPECTIVE

parameter_type_qualifier:
CONST

type_qualifier:
storage_qualifier
interpolation_qualifier type_qualifier

invariant_qualifier type_qualifier

invariant_qualifier interpolation_qualifier type_qualifier

storage_qualifier:
CONST
ATTRIBUTE // Vertex only.
VARYING
CENTROID VARYING
IN
our
CENTROID IN
CENTROID OUT

UNIFORM

98

9 Shading Language Grammar

RIGHT BRACKET EQUAL initializer

9 Shading Language Grammar

type_specifier:
type_specifier no_prec
precision_qualifier type_specifier _no_prec

type_specifier no_prec:
type_specifier_nonarray
type_specifier_nonarray LEFT BRACKET RIGHT BRACKET
type_specifier nonarray LEFT BRACKET constant _expression RIGHT BRACKET

type_specifier_nonarray:
VOID
FLOAT
INT
UINT
BOOL
VEC2
VEC3
VEC4
BVEC2
BVEC3
BVEC4
IVEC2
IVEC3
IVEC4
UVEC2
UVEC3
UVEC4
MAT2
MAT3
MAT4
MAT2X2
MAT2X3
MAT2X4
MAT3X2
MAT3X3
MAT3X4

99

MAT4X2

MAT4X3

MAT4X4

SAMPLERID
SAMPLER2D
SAMPLER3D
SAMPLERCUBE
SAMPLERIDSHADOW
SAMPLER2DSHADOW

SAMPLERCUBESHADOW

SAMPLERIDARRAY
SAMPLER2DARRAY

SAMPLERIDARRAYSHADOW
SAMPLER2DARRAYSHADOW

ISAMPLERID
ISAMPLER2D
ISAMPLER3D
ISAMPLERCUBE
ISAMPLERIDARRAY
ISAMPLER2DARRAY
USAMPLERID
USAMPLER2D
USAMPLER3D
USAMPLERCUBE
USAMPLERIDARRAY
USAMPLER2DARRAY
struct_specifier

TYPE NAME

precision_qualifier:

HIGH PRECISION
MEDIUM PRECISION
LOW_PRECISION

struct_specifier:

9 Shading Language Grammar

STRUCT IDENTIFIER LEFT BRACE struct declaration_list RIGHT BRACE
STRUCT LEFT BRACE struct_declaration_list RIGHT BRACE

struct_declaration_list:

struct_declaration

100

9 Shading Language Grammar

struct_declaration_list struct_declaration

struct_declaration:
type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:
struct_declarator

struct_declarator_list COMMA struct_declarator

struct_declarator:
IDENTIFIER
IDENTIFIER LEFT BRACKET constant_expression RIGHT BRACKET

initializer:

assignment_expression

declaration_statement:

declaration

Statement:
compound_statement

simple_statement
// Grammar Note: labeled statements for SWITCH only, 'goto’ is not supported.

simple_statement:
declaration_statement
expression_statement
selection_statement
switch_statement
case_label
iteration_statement

Jump_statement

compound_statement:
LEFT BRACE RIGHT BRACE
LEFT BRACE statement list RIGHT BRACE

Statement_no_new_scope:

compound_statement no_new_scope

101

9 Shading Language Grammar

simple_statement

compound_statement _no_new_scope:
LEFT BRACE RIGHT BRACE
LEFT BRACE statement list RIGHT BRACE

statement _list:
Statement

statement_list statement

expression_statement:
SEMICOLON
expression SEMICOLON

selection_statement:
IF LEFT PAREN expression RIGHT PAREN selection_rest_statement

selection_rest statement:
statement ELSE statement

Statement

condition:
expression
fully specified type IDENTIFIER EQUAL initializer

switch_statement:
SWITCH LEFT PAREN expression RIGHT PAREN LEFT BRACE switch_statement list
RIGHT BRACE

switch_statement list:
/* nothing */
statement_list

case_label:
CASE expression COLON
DEFAULT COLON

iteration_statement:
WHILE LEFT PAREN condition RIGHT PAREN statement no_new_scope
DO statement WHILE LEFT PAREN expression RIGHT PAREN SEMICOLON
FOR LEFT PAREN for_init_statement for_rest_statement RIGHT PAREN

102

Statement_no_new_scope

for_init_statement:
expression_statement

declaration_statement

conditionopt:
condition
/* empty */

for_rest statement:
conditionopt SEMICOLON
conditionopt SEMICOLON expression

Jump_statement:
CONTINUE SEMICOLON
BREAK SEMICOLON
RETURN SEMICOLON
RETURN expression SEMICOLON

DISCARD SEMICOLON // Fragment shader only.

// Grammar Note: No 'goto’. Gotos are not supported.

translation_unit:
external_declaration

translation_unit external_declaration

external_declaration:
function_definition

declaration

function_definition:

function_prototype compound_statement no_new_scope

103

9 Shading Language Grammar

10 Issues

10 Issues

2. How do we do flat shading?
Alternate Resolution: Add flat qualifier for varyings.
Alternate Resolution: Add flat qualifier for varyings that obeys shade mode.
Resolution: Add flat, but restrict it to gl *color varyings with the same semantics as flat in 2.x. In the API, there
is immutable state in the program object that sets the default. Also add smooth to the language for overriding
when the default is flat.
3. What is the complete list of fundamental data types transparently exchangeable?
Alternate Resolution: Just floating point types.
Resolution: float, int, and bool.
4. Are there any cache flushing issues around writing to bound partitions? -> See issue 9.
5. Complex matrix -> matrix constructors.
Resolution: Defer.
6. How do we do two-sided coloring? This interacts with clamping, because fixed hardware dealing with this would
also clamp.
No language impact.
Resolution: A two-sided enable goes into program object as immutable state. It is not a link error if one-sided is
enabled and back-color is written. All other mis-matches are just undefined.
7. Do we do clamping? How is this determined?
No language impact.
Resolution: Have immutable state in the program object that says whether color input to the rasterizer is
clamped. Add another for fragment output.
9. What about cache flushing common blocks? Is it bound during writes? Do we expect all shader hardware to

have to write to the same resource shaders read common blocks from?

We might expect separate resources. But, this is part of a much bigger problem that needs to be resolved in the
APL

Alternative 1: Implementations use API calls like draw to be responsible for implicitly refreshing the resource.
Alternative 2: Add an explicit call to say you are done changing it.

Resolution: See API spec. resolution.

10. Problem with built-in texture function names, how do we reduce?

- we will at least drop the texture type from the function name

104

10 Issues

- consider using named parameters
- consider using programs to specify the lookup
11. Do we want application named fragment-shader outputs.
Resolution: Yes.
12. Should we switch to application-assigned slots for the varying linkage between vertex and fragment shaders?
Alternate Resolution: No. Keep doing it the way 2.x does it.
Resolution: This is an API issue. See API spec.
13. Can we query declared varyings?
Resolution: Yes. This is an APl issue. See API spec.
14. Are there any sSRGB impacts to the language?

Resolution: No. The shader pipe assumes linear space. sRGB is in filtering state going into the shader and in
output space after leaving the shader.

15. How do you declare a flat varying? We said the only variables that can be flat are "gl *color", but those are
already declared.

Resolution: Just like invariant, allow a built-in variable to be redeclared as long as the redeclaration just
adds/changes the qualifiers. Note we also allow redeclarations to give an array explicit size.

-> don't allow bad redeclarations of built-ins

16. Should allow variations in the value of a flat varying across a triangle? (For the case where real interpolators are
still used and might not get exactly the same result for each pixel.)

Resolution: No. The value is invariant across the triangle.

17. Do precision qualifiers have to match? If the intention is to aid porting, not really save space/power, it is
actually more helpful if they don't have to match like they do in the ES spec.

Alternate Resolution: No. Allow precision mismatches. This would imply all precisions are interchangeable,
hence we could formalize that and just say the language recognizes the keywords, but they don't have any
meaning. This means the specification is very simple and easy to understand.

-> get the most recent ES spec to see what it does.
Resolution: precision qualifiers have no semantics.

18. Does an application running on mixed hardware have the same layout for a common block for all shaders the
common block is in? Different contexts can be for different adapters.

Resolution: Offsets could be different on different hardware. But, if they are successfully created, then the
offsets will match, and common blocks can be shared. Future could consider things like “packed common” or
“vec4 common” ...

19. Do we support initializers inside of common blocks? How does the API handle them? We already chose the
language syntax that makes it easy to provide.

Resolution: Yes. Face-to-face strawpoll: for 9, against 3, abstain 5.

105

21.

10 Issues

Does flat/smooth/default have to match across stages?

Alternate Resolution A. No. Exclude flat/smooth from other stage's languages, and say it's really a fragment
shader control. Problem is that depends on implementation and where the interpolation happens.

Alternate Resolution B. It is interfaces whose sides have to match, not shaders. The output of one stage has to
match the input of the next stage. The input to a stage does not have to match the output of that stage. Semantics
have been, but can be more clearly stated as: the variable the shader is manipulating was copied in from the input
interface at the beginning and copied out to the output interface at the end.

Alternate Resolution C. Build on B, take inout and in and out into account, with it's benefit of allowing reuse of
names. That means allowing both “in color” and “out color” in the same shader to mean the same thing as “inout
color”. Then, they can be decorated differently “in color” and “out flat color” without contradiction because the
decorations are modifying the interface, not the variable the shader is manipulating. Note that even without this
issue we need to say what happens with either “inout color” or “in color; out color”. See issue 24.

Resolution: Interfaces match. Inputs and outputs within a shader do not have to match.

22. Does invariant still have to match across stages?

23.

Resolution: Yes.

Do we want to get rid of gl DepthRange? Getting rid of it only really makes sense if it's the only remaining

state that has to be tracked.

Resolution: No, keep it.

24. If a shader declares “inout color” and then does not use the variable color (but the previous and/or following
stage did use color), what happens?

25.

26.

Alternate Resolution. There is an implicit copy from the input color to the output color. Note this is a corollary
anyway of the idea that input variables are copied in at start of shader and copied out to the output at the end of
the shader. Note the interaction with this and basing set of varyings off of declarations vs. static or active use.

Resolution: Remove inout. This also fixes interpolation qualifier ambiguities.
What API mechanism do we use to do #include.

Alternate Resolution A: Simple database of names mapped to include strings on the server in the context.
Shader has includes that use those names, and compile time does string substitutions from the simple database.

Alternate Resolution B: Rob's proposal. Similar to A, but strings are stored as “text objects”. More
differences... see Rob's email.

Alternative Resolution C: Pass in each time a mapping of names to strings that's used by that compile.
Alternative Resolution D:
Alternative Resolution E: No #include.

Alternative Resolution F: Re-use shader objects: give them names, include by name. Requires changing the
semantics of shader object to not parse shaders that have a name. Shaders that are the roots of compile cannot
have names.

Resolution: This is handled by the API spec., through new objects for storing text strings.

Do we want to restrict switch to something simpler than C?

106

10 Issues

Resolution: Yes. No case inside flow control.
27. Can precision qualifiers be specified to do nothing instead of ES functionality?
Resolution: leave ES-like functionality to extensions.

30. Are diagnostics for included files identifying locations as a triple (name string, string number, line number) or a
pair (name string, line number). The implication being that the API sets the included text either as an array of strings
or a single string. What does FILE _ return

Resolution: As a pair. FILE can return a string or a number, depending on the context.
32. Are we allowing bool/int in common blocks now, just like we do for the default partition?
Resolution: Yes, put bool/int back into common blocks.

35. Do we want to say “centroid in” or “in centroid”, and similarly for smooth and flat? May have implications to
expressing aliasing of varying with longer chains of qualifiers.

Resolution: “centroid in”
36. What packing rules go in the language spec.?

Resolution: It depends on whether future mechanisms for influencing packing are in the API or in the language.
For now, the language spec. will specify the packing rules if a common block contains nothing but vec4s.

37. Are we removing user clip planes? Need to remove gl ClipVertex.

Resolution: No. For 1.30, keep gl ClipVertex with it's previous semantics. If gl ClipVertex is not statically
written, then gl Position is used instead for clipping against user planes if they've been enabled. Also, add
gl ClipDistance.

38. Do we need to add any guarantees of precision of pass through data? Like 16 bits of color?
Resolution: Deferred.
39. int(uint) and uint(int) are not conversions, they are reinterprets. This is a poor consistency in the language.

Resolution: These are constructors, not type casts, which can do what they want. In this case they reinterpret,
even though in other cases they convert.

40. How should the number of clip distances be set? How does this relate to API side enables? How does it relate to
sizing the gl ClipDistance array in the language?

Resolution: Use enables.
41. Do we need to specify the precision of integer division?
42. Is the API adding support for #include? If not, remove from language.
Resolution: Remove.
43. Some gl VertexID description seems like it does not belong in the language spec.
Done.
44. What needs to be said about transform feedback of built-in vertex outputs?

Resolution: Nothing.

107

10 Issues

45. Still need to finish some ES synchronization (a set of pretty small details).

46. Lacking a partition scheme that's memory efficient for the case of lots of inactive uniforms declared in a common
block (partition).

Resolution: This is unnecessary. Having just the default partition (non-common globals) support this space
optimization is sufficient, as it is not for sharing between programs and offsets always have to be queried.

47. Need more clarity on the effects of uint vs int. It appears to allow binary operations between an int and a uint,
but doesn't really say what happens.

Resolution: No implicit conversions; some operators are defined to take mixed operands, most are not.
48. List deprecated features in one place.
Resolution. Yes.

49. Should the token-pasting language say that that results of the token pasting are then further processed by the
preprocessor?

Resolution: Yes.
50. flat, noperspective, centroid, smooth axes, combinations, etc. Is there an issue here?
51. broader support for mixing signed and unsigned in an expression

dup. of 47
52. deprecating gl FragColor deprecates broadcast. Is that okay?

Resolution: Yes.

53. What does "Not having shaders for programming all programmable stages..." mean to commands like
DrawPixels that today run a fragment shader without a vertex shader. Do you have to make up a dummy vertex
shader? Of course, with fixed-function vertex attributes (and thus RasterPos attributes) gone, it seems like
DrawPixels (and Bitmap) as we know and love (?) it today would have to go. Not having seen a list of deprecated
features for OpenGL 3.0, I have no idea if it's already on the list.

Resolution: All programmable stages that are being used must have shaders provided for those stages. (Don't
mention programs.)

54. Should we remove row_major from the language.
Resolution: Yes.
55. Should we add gl_ClipDistance as input to the fragment shader.
Resolution: Yes.
56. Don't say 1.2 and 1.1 are not accepted.
Resolution: Yes, accept 1.1 and 1.2.
57. Do we have user-defined flat variables?
Resolution: Yes. Fix spec. inconsistency. Only way to have integer varyings.

58. Should we really remove functionality instead of deprecate it?

108

10 Issues

Resolution: Deprecate before remove. Read API spec. appendix.
59. Can a global out redeclare the same name as a global in?

Resolution: No.

109

	1 Introduction
	1.1Acknowledgments
	1.2Changes
	1.2.1Summary of Functionality differences from version 1.2
	1.2.2Change history of this revision

	1.3Overview
	1.4Error Handling
	1.5Typographical Conventions
	1.6Deprecation

	2 Overview of OpenGL Shading
	2.1Vertex Processor
	2.2Fragment Processor

	3 Basics
	3.1Character Set
	3.2Source Strings
	3.3Preprocessor
	3.4Comments
	3.5Tokens
	3.6Keywords
	3.7Identifiers
	3.8Static Use

	4 Variables and Types
	4.1Basic Types
	4.1.1Void
	4.1.2Booleans
	4.1.3Integers
	4.1.4Floats
	4.1.5Vectors
	4.1.6Matrices
	4.1.7Samplers
	4.1.8Structures
	4.1.9Arrays
	4.1.10Implicit Conversions

	4.2Scoping
	4.3Storage Qualifiers
	4.3.1Default Storage Qualifier
	4.3.2Const
	4.3.3Constant Expressions
	4.3.4Inputs
	4.3.5Uniform
	4.3.6Outputs
	4.3.7Interpolation

	4.4Parameter Qualifiers
	4.5Precision and Precision Qualifiers
	4.5.1Range and Precision
	4.5.2Precision Qualifiers
	4.5.3Default Precision Qualifiers
	4.5.4Available Precision Qualifiers

	4.6Variance and the Invariant Qualifier
	4.6.1The Invariant Qualifier
	4.6.2Invariance of Constant Expressions

	4.7Order of Qualification

	5 Operators and Expressions
	5.1Operators
	5.2Array Operations
	5.3Function Calls
	5.4Constructors
	5.4.1Conversion and Scalar Constructors
	5.4.2Vector and Matrix Constructors
	5.4.3Structure Constructors
	5.4.4Array Constructors

	5.5Vector Components
	5.6Matrix Components
	5.7Structure and Array Operations
	5.8Assignments
	5.9Expressions
	5.10Vector and Matrix Operations

	6 Statements and Structure
	6.1Function Definitions
	6.1.1Function Calling Conventions

	6.2Selection
	6.3Iteration
	6.4Jumps

	7 Built-in Variables
	7.1Vertex Shader Special Variables
	7.2Fragment Shader Special Variables
	7.3Vertex Shader Built-In Inputs
	7.4Built-In Constants
	7.5Built-In Uniform State
	7.6Built-In Vertex Output and Fragment Input Variables

	8 Built-in Functions
	8.1Angle and Trigonometry Functions
	8.2Exponential Functions
	8.3Common Functions
	8.4Geometric Functions
	8.5Matrix Functions
	8.6Vector Relational Functions
	8.7Texture Lookup Functions
	8.8Fragment Processing Functions
	8.9Noise Functions

	9 Shading Language Grammar
	10 Issues

