
The OpenGL® Shading Language

Language Version: 4.20
Document Revision: 11

12-Dec-2011

Editor: John Kessenich

Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost

Copyright (c) 2008-2011 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.
Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be re-formatted AS
LONG AS the contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.
Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of merchantability
or fitness for a particular purpose or non-infringement of any intellectual property. Khronos Group makes
no, and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy,
completeness, timeliness, and reliability of the specification. Under no circumstances will the Khronos
Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect, special or
consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with
these materials.
Khronos, OpenKODE, OpenKOGS, OpenVG, OpenMAX, OpenSL ES and OpenWF are trademarks of
the Khronos Group Inc. COLLADA is a trademark of Sony Computer Entertainment Inc. used by
permission by Khronos. OpenGL and OpenML are registered trademarks and the OpenGL ES logo is a
trademark of Silicon Graphics Inc. used by permission by Khronos. All other product names, trademarks,
and/or company names are used solely for identification and belong to their respective owners.

2

Table of Contents
1 Introduction...1

1.1 Acknowledgments..2
1.2 Changes..2

1.2.1 Summary of Changes from Version 4.10...2
1.3 Overview..4
1.4 Error Handling..5
1.5 Typographical Conventions...5
1.6 Deprecation..5

2 Overview of OpenGL Shading..6
2.1 Vertex Processor..6
2.2 Tessellation Control Processor...6
2.3 Tessellation Evaluation Processor..7
2.4 Geometry Processor...7
2.5 Fragment Processor..7

3 Basics..8
3.1 Character Set..8
3.2 Source Strings..8
3.3 Preprocessor...9
3.4 Comments..14
3.5 Tokens..15
3.6 Keywords..15
3.7 Identifiers...17
3.8 Definitions..17

3.8.1 Static Use..18
3.8.2 Uniform and Non-Uniform Control Flow..18
3.8.3 Dynamically Uniform Expressions...18

4 Variables and Types..19
4.1 Basic Types..19

4.1.1 Void..23
4.1.2 Booleans...23
4.1.3 Integers...23
4.1.4 Floats..25
4.1.5 Vectors..26
4.1.6 Matrices..26
4.1.7 Opaque Types...27

4.1.7.1 Samplers...27
4.1.7.2 Images...27
4.1.7.3 Atomic Counters...28

4.1.8 Structures..28
4.1.9 Arrays...29

3

4.1.10 Implicit Conversions..31
4.1.11 Initializers...32

4.2 Scoping...34
4.3 Storage Qualifiers...36

4.3.1 Default Storage Qualifier..37
4.3.2 Constant Qualifier..37
4.3.3 Constant Expressions...37
4.3.4 Input Variables...38
4.3.5 Uniform..40
4.3.6 Output Variables...41
4.3.7 Interface Blocks..43

4.4 Layout Qualifiers..46
4.4.1 Input Layout Qualifiers...46

4.4.1.1 Tessellation Evaluation Inputs..48
4.4.1.2 Geometry Shader Inputs..49
4.4.1.3 Fragment Shader Inputs..51

4.4.2 Output Layout Qualifiers..52
4.4.2.1 Tessellation Control Outputs..53
4.4.2.2 Geometry Outputs...54
4.4.2.3 Fragment Outputs...56

4.4.3 Uniform Block Layout Qualifiers...57
4.4.4 Opaque-Uniform Layout Qualifiers..59

4.4.4.1 Atomic Counter Layout Qualifiers...60
4.4.4.2 Format Layout Qualifiers..61

4.5 Interpolation Qualifiers..63
4.5.1 Redeclaring Built-in Interpolation Variables in the Compatibility Profile.................64

4.6 Parameter Qualifiers...65
4.7 Precision and Precision Qualifiers...65

4.7.1 Range and Precision...65
4.7.2 Precision Qualifiers..66
4.7.3 Default Precision Qualifiers...67
4.7.4 Available Precision Qualifiers..68

4.8 Variance and the Invariant Qualifier..68
4.8.1 The Invariant Qualifier...68
4.8.2 Invariance of Constant Expressions...69

4.9 The Precise Qualifier..69
4.10 Memory Qualifiers...71
4.11 Order of Qualification..73

5 Operators and Expressions..74
5.1 Operators..74
5.2 Array Operations...75
5.3 Function Calls..75

4

5.4 Constructors...75
5.4.1 Conversion and Scalar Constructors..75
5.4.2 Vector and Matrix Constructors...76
5.4.3 Structure Constructors..78
5.4.4 Array Constructors...79

5.5 Vector and Scalar Components and Length...79
5.6 Matrix Components..81
5.7 Structure and Array Operations..81
5.8 Assignments...82
5.9 Expressions..83
5.10 Vector and Matrix Operations..86

6 Statements and Structure...88
6.1 Function Definitions...89

6.1.1 Function Calling Conventions..91
6.1.2 Subroutines...93

6.2 Selection...94
6.3 Iteration..95
6.4 Jumps..96

7 Built-in Variables..97
7.1 Built-In Language Variables..97

7.1.1 Compatibility Profile Built-In Language Variables..104
7.2 Compatibility Profile Vertex Shader Built-In Inputs...107
7.3 Built-In Constants..107

7.3.1 Compatibility Profile Built-In Constants..109
7.4 Built-In Uniform State...110

7.4.1 Compatibility Profile State...110
8 Built-in Functions...114

8.1 Angle and Trigonometry Functions..115
8.2 Exponential Functions..117
8.3 Common Functions..118
8.4 Floating-Point Pack and Unpack Functions...124
8.5 Geometric Functions..126
8.6 Matrix Functions..128
8.7 Vector Relational Functions...130
8.8 Integer Functions..132
8.9 Texture Functions...134

8.9.1 Texture Query Functions..135
8.9.2 Texel Lookup Functions...137
8.9.3 Texture Gather Instructions..144
8.9.4 Compatibility Profile Texture Functions..147

8.10 Atomic-Counter Functions...149
8.11 Image Functions...149

5

8.12 Fragment Processing Functions..152
8.12.1 Derivative Functions..152
8.12.2 Interpolation Functions...154

8.13 Noise Functions..155
8.14 Geometry Shader Functions...156
8.15 Shader Invocation Control Functions...158
8.16 Shader Memory Control Function..158

9 Shading Language Grammar for Core Profile..160

6

1 Introduction

This document specifies only version 4.20 of the OpenGL Shading Language. It requires __VERSION__
to substitute 420, and requires #version to accept only 420. If #version is declared with a smaller
number, the language accepted is a previous version of the shading language, which will be supported
depending on the version and type of context in the OpenGL API. See the OpenGL Graphics System
Specification, Version 4.2, for details on what language versions are supported.

Previous versions of the OpenGL Shading Language, as well as the OpenGL ES Shading Language, are
not strict subsets of the version specified here, particularly with respect to precision, name-hiding rules,
and treatment of interface variables. See the specification corresponding to a particular language version
for details specific to that version of the language.

All OpenGL Graphics System Specification references in this specification are to version 4.2.

1

1 Introduction

1.1 Acknowledgments
This specification is based on the work of those who contributed to past versions of the OpenGL
Language Specification, the OpenGL ES 2.0 Language Specification, and the following contributors to
this version:

Pat Brown, NVIDIA
Jeff Bolz, NVIDIA
Frank Chen
Pierre Boudier, AMD
Piers Daniell, NVIDIA
Chris Dodd, NVIDIA
Nick Haemel, NVIDIA
Jason Green, TransGaming
Brent Insko, Intel
Jon Leech
Bill Licea-Kane, AMD
Daniel Koch, TransGaming
Barthold Lichtenbelt, NVIDIA
Bruce Merry, ARM
Robert Ohannessian
Acorn Pooley, NVIDIA
Kevin Rogovin
Ian Romanick, Intel
Greg Roth, Nvidia
Graham Sellers, AMD
Dave Shreiner, ARM
Jeremy Sandmel, Apple
Robert Simpson, Qualcomm
Eric Werness, NVIDIA
Mark Young, AMD

1.2 Changes

1.2.1 Summary of Changes from Version 4.10
Note: No features were deprecated between versions 4.10 and 4.20.

• Move these previously deprecated features to be only in the compatibility profile:

◦ The keyword attribute for vertex shader inputs. (Use in instead.)

◦ The keyword varying for inputs and outputs. (Use in and out instead.)

◦ The original texturing built-in functions. (Use the new forms instead.)

◦ The built-in variables gl_FragColor and gl_FragData. (Use out instead.)

◦ Built-in constants related to these.

2

1 Introduction

• Change from ASCII to UTF-8 for the language character set and also allow any characters inside
comments (except the byte value 0), including '\'.

• Add line-continuation using '\', as in C++.

• ES convergence

◦ Add table showing “Treatment of Mismatched Input/Output Variables” in section 4.3.4.

◦ NaNs are not required to be generated, dividing a non-zero by zero makes inf, see 2nd
paragraph 4.7.1 for full modification.

◦ Clarify that .xyzwxy.xy is illegal, is it temporarily makes a “vec6”.

◦ Clarify that return statements only accept values (no return of a void function).

• Add image types (GL_ARB_shader_image_load_store)

◦ 33 new types, all with “image” in their name, correspond to the non-shadow texture types

◦ addition of memory qualifiers: coherent, volatile, restrict, readonly, and writeonly

◦ can read/write/modify images from a shader, through new built-in functions

◦ qualifiers can act independently on the opaque shader variable and the backing image, so
extra qualifiers can be used to separately qualify these

• Variables declared in if and else statements are scoped only to the end of those statements. Note,
this is not backward compatible, it may depend on #version.

• Allow implicit conversions of return values to the declared type of the function.

• The const keyword can be used to declare variables within a function body with initializer
expressions that are not constant expressions.

• Qualifiers on variable declarations no longer have to follow a strict order. The layout qualifier
can be used multiple times, and multiple parameter qualifiers can be used.

• Parameter qualifiers can include precision and memory qualifiers.

• Add a new atomic_uint type to support atomic counters. Also, add built-in functions for
manipulating atomic counters.

◦ atomicCounterIncrement, atomicCounterDecrement, and atomicCounter

• Add layout qualifier identifiers binding and offset to bind units to sampler and image variable
declarations, atomic counters, and uniform blocks.

• Add built-in functions to pack/unpack 16 bit floating-point numbers
(ARB_shading_language_pack2f).

◦ packHalf2x16 and unpackHalf2x16

◦ packSnorm2x16 and unpackSnorm2x16

• Add gl_FragDepth layout qualifiers to communicate what kind of changes will be made to
gl_FragDepth (GL_AMD_conservative depth).

3

1 Introduction

• Add C-style curly brace initializer lists syntax for initializers. Full initialization of aggregates is
required when these are used.

• Allow .length() to be applied to vectors and matrices, returning the number of components or
columns.

• Clarify that .length() returns an int type and can be used as a constant integer expression.

• Allow swizzle operations on scalars.

• Even the potential for recursion through subroutine uniforms is an error.

• Positive signed decimal literals, as well as octal and hexadecimal, can set all 32 bits. This
includes setting the sign bit to create a negative value.

• Make GLSL consistent with the API regarding user clipping, by no longer referring to
gl_Position when gl_ClipVertex is not written. Rather, user clipping becomes undefined.

• Minor consistency fixes, corrections

◦ Consistently state structures have members not fields. The period (.) is still called the field
selector, for all its multiple uses.

◦ Remove comment that there is no communication between instantiations of a shader.

◦ Clarified that a comma sequence-operator expression cannot be a constant expression. E.g.,
“(2,3)” is not allowed, semantically, as a valid constant expression 3, even though it is an
expression that will evaluate to 3.

◦ Use vec2 instead of vec3 for coordinate in textureGather*(sampler2DRect,...).

◦ Clarify that textureGatherOffset() can take non-constants for the offsets.

• Fix typo to allow integer cube-array textures in the built-in function textureSize().

• Correctly restrict indexes of uniform blocks to being dynamically-uniform integral expressions.
This correction also applies to earlier releases (4.00 and 4.10), which inadvertently allowed non-
uniform indexes.

• Update the grammar in the last section.

1.3 Overview
This document describes The OpenGL Shading Language, version 4.20.

Independent compilation units written in this language are called shaders. A program is a set of shaders
that are compiled and linked together, completely creating one or more of the programmable stages of the
OpenGL pipeline. All the shaders for a single programmable stage must be within the same program. A
complete set of programmable stages can be put into a single program or the stages can be partitioned
across multiple programs. The aim of this document is to thoroughly specify the programming language.
The OpenGL Graphics System Specification will specify the OpenGL entry points used to manipulate and
communicate with programs and shaders.

4

1 Introduction

1.4 Error Handling
Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases. Compilers are required to return messages regarding lexically,
grammatically, or semantically incorrect shaders.

1.5 Typographical Conventions
Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

1.6 Deprecation
Note that while this section is true of GLSL in general, version 4.2 has no deprecated features in it.
Previously deprecated features have been moved to the compatibility profile and no new features have
been deprecated.

Previous versions of the OpenGL Shading Language deprecated some features. These are clearly called
out in this specification as “deprecated”. They are still present in this version of the language, but are
targeted for potential removal in a future version of the shading language. The OpenGL API has a
forward compatibility mode that will disallow use of deprecated features. If compiling in a mode where
use of deprecated features is disallowed, their use causes compile time errors. See the OpenGL Graphics
System Specification for details on what causes deprecated language features to be accepted or to return
an error.

5

2 Overview of OpenGL Shading

The OpenGL Shading Language is actually several closely related languages. These languages are used
to create shaders for each of the programmable processors contained in the OpenGL processing pipeline.
Currently, these processors are the vertex, tessellation control, tessellation evaluation, geometry, and
fragment processors.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex, tessellation control, tessellation evaluation, geometry, or fragment.

Most OpenGL state is not tracked or made available to shaders. Typically, user-defined variables will be
used for communicating between different stages of the OpenGL pipeline. However, a small amount of
state is still tracked and automatically made available to shaders, and there are a few built-in variables for
interfaces between different stages of the OpenGL pipeline.

2.1 Vertex Processor
The vertex processor is a programmable unit that operates on incoming vertices and their associated data.
Compilation units written in the OpenGL Shading Language to run on this processor are called vertex
shaders. When a complete set of vertex shaders are compiled and linked, they result in a vertex shader
executable that runs on the vertex processor.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that require
knowledge of several vertices at a time.

2.2 Tessellation Control Processor
The tessellation control processor is a programmable unit that operates on a patch of incoming vertices
and their associated data, emitting a new output patch. Compilation units written in the OpenGL Shading
Language to run on this processor are called tessellation control shaders. When a complete set of
tessellation control shaders are compiled and linked, they result in a tessellation control shader executable
that runs on the tessellation control processor.

The tessellation control shader is invoked for each vertex of the output patch. Each invocation can read
the attributes of any vertex in the input or output patches, but can only write per-vertex attributes for the
corresponding output patch vertex. The shader invocations collectively produce a set of per-patch
attributes for the output patch. After all tessellation control shader invocations have completed, the output
vertices and per-patch attributes are assembled to form a patch to be used by subsequent pipeline stages.

Tessellation control shader invocations run mostly independently, with undefined relative execution order.
However, the built-in function barrier() can be used to control execution order by synchronizing
invocations, effectively dividing tessellation control shader execution into a set of phases. Tessellation
control shaders will get undefined results if one invocation reads a per-vertex or per-patch attribute

6

2 Overview of OpenGL Shading

written by another invocation at any point during the same phase, or if two invocations attempt to write
different values to the same per-patch output in a single phase.

2.3 Tessellation Evaluation Processor
The tessellation evaluation processor is a programmable unit that evaluates the position and other
attributes of a vertex generated by the tessellation primitive generator, using a patch of incoming vertices
and their associated data. Compilation units written in the OpenGL Shading Language to run on this
processor are called tessellation evaluation shaders. When a complete set of tessellation evaluation
shaders are compiled and linked, they result in a tessellation evaluation shader executable that runs on the
tessellation evaluation processor.

Each invocation of the tessellation evaluation executable computes the position and attributes of a single
vertex generated by the tessellation primitive generator. The executable can read the attributes of any
vertex in the input patch, plus the tessellation coordinate, which is the relative location of the vertex in the
primitive being tessellated. The executable writes the position and other attributes of the vertex.

2.4 Geometry Processor
The geometry processor is a programmable unit that operates on data for incoming vertices for a primitive
assembled after vertex processing and outputs a sequence of vertices forming output primitives.
Compilation units written in the OpenGL Shading Language to run on this processor are called geometry
shaders. When a complete set of geometry shaders are compiled and linked, they result in a geometry
shader executable that runs on the geometry processor.

A single invocation of the geometry shader executable on the geometry processor will operate on a
declared input primitive with a fixed number of vertices. This single invocation can emit a variable
number of vertices that are assembled into primitives of a declared output primitive type and passed to
subsequent pipeline stages.

2.5 Fragment Processor
The fragment processor is a programmable unit that operates on fragment values and their associated
data. Compilation units written in the OpenGL Shading Language to run on this processor are called
fragment shaders. When a complete set of fragment shaders are compiled and linked, they result in a
fragment shader executable that runs on the fragment processor.

A fragment shader cannot change a fragment's (x, y) position. Access to neighboring fragments is not
allowed. The values computed by the fragment shader are ultimately used to update framebuffer memory
or texture memory, depending on the current OpenGL state and the OpenGL command that caused the
fragments to be generated.

7

3 Basics

3.1 Character Set
The source character set used for the OpenGL shading languages, outside of comments, is a subset of
UTF-8. It includes the following characters:

The letters a-z, A-Z, and the underscore (_).

The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (^), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and
question mark (?).

The number sign (#) for preprocessor use.

The backslash (\) as the line-continuation character when used as the last character of a line, just
before a new line.

White space: the space character, horizontal tab, vertical tab, form feed, carriage-return, and line-
feed.

An error will be given if any other character is used outside a comment.

There are no trigraphs. There are no escape sequences or other uses of the backslash beyond use as the
line-continuation character.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any of these combinations is simply referred to as a new line.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character.

3.2 Source Strings
The source for a single shader is an array of strings of characters from the character set. A single shader
is made from the concatenation of these strings. Each string can contain multiple lines, separated by new
lines. No new lines need be present in a string; a single line can be formed from multiple strings. No new
lines or other characters are inserted by the implementation when it concatenates the strings to form a
single shader. Multiple shaders can be linked together to form a single program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first

8

3 Basics

string being string 0. Line numbers are one more than the number of new lines that have been processed,
including counting the new lines that will be removed by the line-continuation character (\).

Lines separated by the line-continuation character preceding a new line are concatenated together before
either comment processing or preprocessing. No white space is substituted for the line-continuation
character. That is, a single token could be formed by the concatenation by taking the characters at the end
of one line concatenating them with the characters at the beginning of the next line.

float f\
oo;
// forms a single line equivalent to “float foo;”
// (assuming '\' is the last character before the new line and “oo” are
// the first two characters of the next line)

3.3 Preprocessor
There is a preprocessor that processes the source strings as part of the compilation process.

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension
#version

#line

The following operators are also available

defined
##

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new
line. Preprocessing does not change the number or relative location of new lines in a source string.
Preprocessing takes places after new lines have been removed by the line-continuation character.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause a diagnostic
message and make the implementation treat the shader as ill-formed.

9

3 Basics

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

__LINE__
__FILE__
__VERSION__

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new
lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is currently
being processed.

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL shading
language. The version of the shading language described in this document will have __VERSION__
substitute the decimal integer 420.

All macro names containing two consecutive underscores (__) are reserved for future use as predefined
macro names. All macro names prefixed with “GL_” (“GL” followed by a single underscore) are also
reserved.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++ preprocessors.
Expressions following #if and #elif are further restricted to expressions operating on literal integer
constants, plus identifiers consumed by the defined operator. It is an error to use #if or #elif on
expressions containing undefined macro names, other than as arguments to the defined operator.
Character constants are not supported. The operators available are as follows.

Precedence Operator class Operators Associativity
 1 (highest) parenthetical grouping () NA

2 unary defined
+ - ~ !

Right to Left

3 multiplicative * / % Left to Right

4 additive + - Left to Right

5 bit-wise shift << >> Left to Right

6 relational < > <= >= Left to Right

7 equality == != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 (lowest) logical inclusive or | | Left to Right

10

3 Basics

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

Two tokens in a macro can be concatenated into one token using the token pasting (##) operator, as is
standard for C++ preprocessors. The result must be a valid single token, which will then be subject to
macro expansion. That is, macro expansion happens only after token pasting. There are no other number
sign based operators (e.g., no # or #@), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the C+
+ preprocessor, not those in the OpenGL Shading Language.

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the
processor targeted by the shader.

#error will cause the implementation to put a diagnostic message into the shader object’s information log
(section 6.1.12 “Shader and Program Queries” in the OpenGL Graphics System Specification for how to
access a shader object’s information log). The message will be the tokens following the #error directive,
up to the first new line. The implementation must then consider the shader to be ill-formed.

#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of this language. No
implementation may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

Shaders should declare the version of the language they are written to. The language version a shader is
written to is specified by

#version number profileopt

where number must be a version of the language, following the same convention as __VERSION__ above.
The directive “#version 420” is required in any shader that uses version 4.20 of the language. Any
number representing a version of the language a compiler does not support will cause an error to be
generated. Version 1.10 of the language does not require shaders to include this directive, and shaders that
do not include a #version directive will be treated as targeting version 1.10. Shaders that specify
#version 100 will be treated as targeting version 1.00 of the OpenGL ES Shading Language.

11

3 Basics

Shaders declaring version 1.40, 1.50, 3.30, 4.0, or 4.1 of the shading language can be linked with shaders
declaring version 4.20 in the same program. Shaders targeting earlier versions (1.30 or earlier) of the
shading language cannot be linked with version 4.20 shaders.

If the optional profile argument is provided, it must be the name of an OpenGL profile. Currently, there
are two choices:

core
compatibility

If no profile argument is provided, the default is core. Unless otherwise specified, this specification is
documenting the core profile, and everything specified for the core profile is also available in the
compatibility profile. Features specified as belonging specifically to the compatibility profile are not
available in the core profile.

There is a built-in macro definition for each profile the implementation supports. All implementations
provide the following macro:

#define GL_core_profile 1

Implementations providing the compatibility profile provide the following macro:

#define GL_compatibility_profile 1

The #version directive must occur in a shader before anything else, except for comments and white space.

12

3 Basics

By default, compilers of this language must issue compile time syntactic, grammatical, and semantic
errors for shaders that do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with respect to extensions are declared with the
#extension directive

#extension extension_name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following

behavior Effect

require Behave as specified by the extension extension_name.
Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enable Behave as specified by the extension extension_name.
Warn on the #extension if the extension extension_name is not supported.
Give an error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings
on any detectable use of that extension, unless such use is supported by other
enabled or required extensions.
If all is specified, then warn on all detectable uses of any extension used.
Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.
If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.
Warn on the #extension if the extension extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

13

3 Basics

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.

#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are constant integer expressions. After processing this directive
(including its new line), the implementation will behave as if it is compiling at line number line and source
string number source-string-number. Subsequent source strings will be numbered sequentially, until
another #line directive overrides that numbering.

3.4 Comments
Comments are delimited by /* and */, or by // and a new line. The begin comment delimiters (/* or //) are
not recognized as comment delimiters inside of a comment, hence comments cannot be nested. If a
comment resides entirely within a single line, it is treated syntactically as a single space. New lines are
not eliminated by comments.

Inside comments, any byte values may be used, except a byte whose value is 0. No errors will be given
for the content of comments and no validation on the content of comments need be done.

Removal of new lines by the line-continuation character (\) logically occurs before comments are
processed. That is, a single-line comment ending in the line-continuation character (\) includes the next
line in the comment.

// a single-line comment containing the next line \
a = b; // this is still in the first comment

14

3 Basics

3.5 Tokens
The language is a sequence of tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator
; { }

3.6 Keywords
The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

 attribute const uniform varying

 coherent volatile restrict readonly writeonly

 atomic_uint

 layout

 centroid flat smooth noperspective

 patch sample

 break continue do for while switch case default

 if else

 subroutine

 in out inout

 float double int void bool true false

 invariant

 discard return

 mat2 mat3 mat4 dmat2 dmat3 dmat4

 mat2x2 mat2x3 mat2x4 dmat2x2 dmat2x3 dmat2x4

 mat3x2 mat3x3 mat3x4 dmat3x2 dmat3x3 dmat3x4

 mat4x2 mat4x3 mat4x4 dmat4x2 dmat4x3 dmat4x4

 vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4 dvec2 dvec3 dvec4

 uint uvec2 uvec3 uvec4

15

3 Basics

 lowp mediump highp precision

 sampler1D sampler2D sampler3D samplerCube

 sampler1DShadow sampler2DShadow samplerCubeShadow

 sampler1DArray sampler2DArray

 sampler1DArrayShadow sampler2DArrayShadow

 isampler1D isampler2D isampler3D isamplerCube

 isampler1DArray isampler2DArray

 usampler1D usampler2D usampler3D usamplerCube

 usampler1DArray usampler2DArray

 sampler2DRect sampler2DRectShadow isampler2DRect usampler2DRect

 samplerBuffer isamplerBuffer usamplerBuffer

 sampler2DMS isampler2DMS usampler2DMS

 sampler2DMSArray isampler2DMSArray usampler2DMSArray

 samplerCubeArray samplerCubeArrayShadow isamplerCubeArray usamplerCubeArray

 image1D iimage1D uimage1D

 image2D iimage2D uimage2D

 image3D iimage3D uimage3D

 image2DRect iimage2DRect uimage2DRect

 imageCube iimageCube uimageCube

 imageBuffer iimageBuffer uimageBuffer

 image1DArray iimage1DArray uimage1DArray

 image2DArray iimage2DArray uimage2DArray

 imageCubeArray iimageCubeArray uimageCubeArray

 image2DMS iimage2DMS uimage2DMS

 image2DMSArray iimage2DMSArray uimage2DMSArray

 struct

The following are the keywords reserved for future use. Using them will result in an error:

 common partition active

 asm

 class union enum typedef template this packed

 resource

16

3 Basics

 goto

 inline noinline public static extern external interface

 long short half fixed unsigned superp

 input output

 hvec2 hvec3 hvec4 fvec2 fvec3 fvec4

 sampler3DRect

 filter

 sizeof cast

 namespace using

 row_major

In addition, all identifiers containing two consecutive underscores (__) are reserved as possible future
keywords.

3.7 Identifiers
Identifiers are used for variable names, function names, structure names, and field selectors (field
selectors select components of vectors and matrices similar to structure members, as discussed in section
5.5 “Vector Components” and section 5.6 “Matrix Components”). Identifiers have the form

identifier
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved for use by OpenGL, and may not be declared in a shader as
either a variable or a function. However, as noted in the specification, there are some cases where
previously declared variables can be redeclared, and predeclared "gl_" names are allowed to be
redeclared in a shader only for these specific purposes. More generally, it is an error to redeclare a
variable, including those starting “gl_”.

3.8 Definitions
Some language rules described below depend on the following definitions.

17

3 Basics

3.8.1 Static Use
A shader contains a static use of (or static assignment to) a variable x if, after preprocessing, the shader
contains a statement that would read (or write) x, whether or not run-time flow of control will cause that
statement to be executed.

3.8.2 Uniform and Non-Uniform Control Flow
When executing statements in a fragment shader, control flow starts as uniform control flow; all fragments
enter the same control path into main(). Control flow becomes non-uniform when different fragments
take different paths through control-flow statements (selection, iteration, and jumps). Control flow
subsequently returns to being uniform after such divergent sub-statements or skipped code completes,
until the next time different control paths are taken.

For example:

main()
{
 float a = ...;// this is uniform flow control
 if (a < b) { // this expression is true for some fragments, not all
 ; // non-uniform flow control
 } else {
 ; // non-uniform flow control
 }
 ; // uniform flow control again
}

Other examples of non-uniform flow control can occur within switch statements and after conditional
breaks, continues, early returns, and after fragment discards, when the condition is true for some
fragments but not others. Loop iterations that only some fragments execute are also non-uniform flow
control.

This is similarly defined for other shader stages, based on the per-instance data items they process.

3.8.3 Dynamically Uniform Expressions
A fragment-shader expression is dynamically uniform if all fragments evaluating it get the same resulting
value. When loops are involved, this refers to the expression's value for the same loop iteration. When
functions are involved, this refers to calls from the same call point.

This is similarly defined for other shader stages, based on the per-instance data they process.

Note that constant expressions are trivially dynamically uniform. It follows that typical loop counters
based on these are also dynamically uniform.

18

4 Variables and Types

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=).

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL Shading Language is type safe. There are some implicit conversions between types.
Exactly how and when this can occur is described in section 4.1.10 “Implicit Conversions” and as
referenced by other sections in this specification.

4.1 Basic Types
The OpenGL Shading Language supports the following basic data types, grouped as follows.

Transparent types

Type Meaning
void for functions that do not return a value

bool a conditional type, taking on values of true or false

int a signed integer

uint an unsigned integer

float a single floating-point scalar

double a single double-precision floating point scalar

vec2 a two-component floating-point vector

vec3 a three-component floating-point vector

vec4 a four-component floating-point vector

dvec2 a two-component double-precision floating-point vector

dvec3 a three-component double-precision floating-point vector

dvec4 a four-component double-precision floating-point vector

bvec2 a two-component Boolean vector

bvec3 a three-component Boolean vector

bvec4 a four-component Boolean vector

ivec2 a two-component signed integer vector

19

4 Variables and Types

Type Meaning
ivec3 a three-component signed integer vector

ivec4 a four-component signed integer vector

uvec2 a two-component unsigned integer vector

uvec3 a three-component unsigned integer vector

uvec4 a four-component unsigned integer vector

mat2 a 2×2 floating-point matrix

mat3 a 3×3 floating-point matrix

mat4 a 4×4 floating-point matrix

mat2x2 same as a mat2

mat2x3 a floating-point matrix with 2 columns and 3 rows

mat2x4 a floating-point matrix with 2 columns and 4 rows

mat3x2 a floating-point matrix with 3 columns and 2 rows

mat3x3 same as a mat3

mat3x4 a floating-point matrix with 3 columns and 4 rows

mat4x2 a floating-point matrix with 4 columns and 2 rows

mat4x3 a floating-point matrix with 4 columns and 3 rows

mat4x4 same as a mat4

dmat2 a 2×2 double-precision floating-point matrix

dmat3 a 3×3 double-precision floating-point matrix

dmat4 a 4×4 double-precision floating-point matrix

dmat2x2 same as a dmat2

dmat2x3 a double-precision floating-point matrix with 2 columns and 3 rows

dmat2x4 a double-precision floating-point matrix with 2 columns and 4 rows

dmat3x2 a double-precision floating-point matrix with 3 columns and 2 rows

dmat3x3 same as a dmat3

dmat3x4 a double-precision floating-point matrix with 3 columns and 4 rows

dmat4x2 a double-precision floating-point matrix with 4 columns and 2 rows

dmat4x3 a double-precision floating-point matrix with 4 columns and 3 rows

dmat4x4 same as a dmat4

20

4 Variables and Types

Floating Point Opaque Types

Type Meaning
sampler1D
image1D

a handle for accessing a 1D texture

sampler2D
image2D

a handle for accessing a 2D texture

sampler3D
image3D

a handle for accessing a 3D texture

samplerCube
imageCube

a handle for accessing a cube mapped texture

sampler2DRect
image2DRect

a handle for accessing a rectangular texture

sampler1DArray
image1DArray

a handle for accessing a 1D array texture

sampler2DArray
image2DArray

a handle for accessing a 2D array texture

samplerBuffer
imageBuffer

a handle for accessing a buffer texture

sampler2DMS
image2DMS

a handle for accessing a 2D multi-sample texture

sampler2DMSArray
image2DMSArray

a handle for accessing a 2D multi-sample array texture

samplerCubeArray
imageCubeArray

a handle for accessing a cube map array texture

sampler1DShadow a handle for accessing a 1D depth texture with comparison

sampler2DShadow a handle for accessing a 2D depth texture with comparison

sampler2DRectShadow a handle for accessing a rectangular texture with comparison

sampler1DArrayShadow a handle for accessing a 1D array depth texture with comparison

sampler2DArrayShadow a handle for accessing a 2D array depth texture with comparison

samplerCubeShadow a handle for accessing a cube map depth texture with comparison

samplerCubeArrayShadow a handle for accessing a cube map array depth texture with
comparison

Signed Integer Opaque Types

Type Meaning
isampler1D
iimage1D

a handle for accessing an integer 1D texture

21

4 Variables and Types

Type Meaning
isampler2D
iimage2D

a handle for accessing an integer 2D texture

isampler3D
iimage3D

a handle for accessing an integer 3D texture

isamplerCube
iimageCube

a handle for accessing an integer cube mapped texture

isampler2DRect
iimage2DRect

a handle for accessing an integer 2D rectangular texture

isampler1DArray
iimage1DArray

a handle for accessing an integer 1D array texture

isampler2DArray
iimage2DArray

a handle for accessing an integer 2D array texture

isamplerBuffer
iimageBuffer

a handle for accessing an integer buffer texture

isampler2DMS
iimage2DMS

a handle for accessing an integer 2D multi-sample texture

isampler2DMSArray
iimage2DMSArray

a handle for accessing an integer 2D multi-sample array texture

isamplerCubeArray
iimageCubeArray

a handle for accessing an integer cube map array texture

Unsigned Integer Opaque Types

Type Meaning
atomic_uint a handle for accessing an unsigned integer atomic counter

usampler1D
uimage1D

a handle for accessing an unsigned integer 1D texture

usampler2D
uimage2D

a handle for accessing an unsigned integer 2D texture

usampler3D
uimage3D

a handle for accessing an unsigned integer 3D texture

usamplerCube
uimageCube

a handle for accessing an unsigned integer cube mapped texture

usampler2DRect
uimage2DRect

a handle for accessing an unsigned integer rectangular texture

usampler1DArray
uimage1DArray

a handle for accessing an unsigned integer 1D array texture

usampler2DArray
uimage2DArray

a handle for accessing an unsigned integer 2D array texture

22

4 Variables and Types

Type Meaning
usamplerBuffer
uimageBuffer

a handle for accessing an unsigned integer buffer texture

usampler2DMS
uimage2DMS

a handle for accessing an unsigned integer 2D multi-sample texture

usampler2DMSArray
uimage2DMSArray

a handle for accessing an unsigned integer 2D multi-sample texture
array

usamplerCubeArray
uimageCubeArray

a handle for accessing an unsigned integer cube map array texture

In addition, a shader can aggregate these basic types using arrays and structures to build more complex
types.

There are no pointer types.

4.1.1 Void
Functions that do not return a value must be declared as void. There is no default function return type.
The keyword void cannot be used in any other declarations (except for empty formal or actual parameter
lists).

4.1.2 Booleans
To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type, holding
only one of two values meaning either true or false. Two keywords true and false can be used as literal
Boolean constants. Booleans are declared and optionally initialized as in the follow example:

bool success; // declare “success” to be a Boolean
bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) must be an expression whose type is bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3 Integers
Signed and unsigned integer variables are fully supported. In this document, the term integer is meant to
generally include both signed and unsigned integers. Unsigned integers have exactly 32 bits of precision.
Signed integers use 32 bits, including a sign bit, in two's complement form. Operations resulting in
overflow or underflow will not cause any exception, nor will they saturate, rather they will “wrap” to yield
the low-order 32 bits of the result.

Integers are declared and optionally initialized with integer expressions, as in the following example:

int i, j = 42; // default integer literal type is int
uint k = 3u; // “u” establishes the type as uint

23

4 Variables and Types

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16)
as follows.

integer-constant :
decimal-constant integer-suffixopt

octal-constant integer-suffixopt

hexadecimal-constant integer-suffixopt

integer-suffix: one of
u U

decimal-constant :
nonzero-digit
decimal-constant digit

octal-constant :
0
octal-constant octal-digit

hexadecimal-constant :
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

digit :
0
nonzero-digit

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

octal-digit : one of
0 1 2 3 4 5 6 7

hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or after
the leading 0x or 0X of a constant, or before the suffix u or U. When tokenizing, the maximal token
matching the above will be recognized before a new token is started. When the suffix u or U is present,
the literal has type uint, otherwise the type is int. A leading unary minus sign (-) is interpreted as an
arithmetic unary negation, not as part of the constant. Hence, literals themselves are always expressed
with non-negative syntax, though they could result in a negative value.

It is an error to provide a literal integer whose bit pattern cannot fit in 32 bits. The bit pattern of the literal
is always used unmodified. So a signed literal whose bit pattern includes a set sign bit creates a negative
value. For example,

24

4 Variables and Types

int a = 0xffffffff; // 32 bits, a gets the value -1
int b = 0xffffffffU; // ERROR: can't convert uint to int
uint c = 0xffffffff; // 32 bits, c gets the value 0xFFFFFFFF
uint d = 0xffffffffU; // 32 bits, d gets the value 0xFFFFFFFF
int e = -1; // the literal is “1”, then negation is performed,
 // and the resulting non-literal 32-bit signed
 // bit pattern of 0xFFFFFFFF is assigned, giving e
 // the value of -1.
uint f = -1u; // the literal is “1u”, then negation is performed,
 // and the resulting non-literal 32-bit unsigned
 // bit pattern of 0xFFFFFFFF is assigned, giving f
 // the value of 0xFFFFFFFF.
int g = 3000000000; // a signed decimal literal taking 32 bits,
 // setting the sign bit, g gets -1294967296
int h = 0xA0000000; // okay, 32-bit signed hexadecimal
int i = 5000000000; // ERROR: needs more than 32 bits
int j = 0xFFFFFFFFF; // ERROR: needs more that 32 bits
int k = 0x80000000; // k gets -2147483648 == 0x80000000
int l = 2147483648; // l gets -2147483648 (the literal set the sign bit)

Despite all these examples initializing variables, literals are recognized and given values and types
independently of their context.

4.1.4 Floats
Single-precision and double-precision floating point variables are available for use in a variety of scalar
calculations. Floating-point variables are defined as in the following example:

float a, b = 1.5;
double c, d = 2.0LF;

As an input value to one of the processing units, a single-precision or double-precision floating-point
variable is expected to match the corresponding IEEE 754 floating-point definition for precision and
dynamic range. Floating-point variables within a shader are also encoded according to the IEEE 754
specification for single-precision floating-point values (logically, not necessarily physically). While
encodings are logically IEEE 754, operations (addition, multiplication, etc.) are not necessarily performed
as required by IEEE 754. See section 4.7.1 “Range and Precision” for more details on precision and
usage of NaNs (Not a Number) and Infs (positive or negative infinities).

25

4 Variables and Types

Floating-point constants are defined as follows.

floating-constant :
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant :
digit-sequence . digit-sequence
digit-sequence .
. digit-sequence

exponent-part :
e signopt digit-sequence
E signopt digit-sequence

sign : one of
+ –

digit-sequence :
digit
digit-sequence digit

floating-suffix: one of
f F lf LF

A decimal point (.) is not needed if the exponent part is present. No white space may appear anywhere
within a floating-point constant, including before a suffix. When tokenizing, the maximal token matching
the above will be recognized before a new token is started. When the suffix "lf" or "LF" is present, the
literal has type double. Otherwise, the literal has type float. A leading unary minus sign (-) is interpreted
as a unary operator and is not part of the floating-point constant

4.1.5 Vectors
The OpenGL Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, or Booleans. Floating-point vector variables can be used to store colors,
normals, positions, texture coordinates, texture lookup results and the like. Boolean vectors can be used
for component-wise comparisons of numeric vectors. Some examples of vector declaration are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 less;

Initialization of vectors can be done with constructors, which are discussed shortly.

4.1.6 Matrices
The OpenGL Shading Language has built-in types for 2×2, 2×3, 2×4, 3×2, 3×3, 3×4, 4×2, 4×3, and 4×4
matrices of floating-point numbers. Matrix types beginning with "mat" have single-precision components

26

4 Variables and Types

while matrix types beginning with "dmat" have double-precision components. The first number in the
type is the number of columns, the second is the number of rows. If there is only one number, the matrix
is square. Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;
mat4x4 view; // an alternate way of declaring a mat4
mat3x2 m; // a matrix with 3 columns and 2 rows
dmat4 highPrecisionMVP;
dmat2x4 dm;

Initialization of matrix values is done with constructors (described in section 5.4 “Constructors”) in
column-major order.

4.1.7 Opaque Types
The opaque types declare variables that are effectively opaque handles to other objects. These objects are
accessed through built-in functions, not through direct reading or writing of the declared variable. They
can only be declared as function parameters or uniform-qualified variables. Except for array indexing,
structure member selection, and parentheses, opaque variables are not allowed to be operands in
expressions.

Opaque variables cannot be treated as l-values; hence cannot be used as out or inout function parameters,
nor can they be assigned into. However, they can be passed as in parameters with matching type and
memory qualifiers. They are initialized only through the OpenGL API; they cannot be declared with an
initializer in a shader.

Because a single opaque type declaration effectively declares two objects, the opaque handle itself and the
object it is a handle to, there is room for both a storage qualifier and a memory qualifier. The storage
qualifier will qualify the opaque handle, while the memory qualifier will qualify the object it as a handle
to.

4.1.7.1 Samplers
Sampler types (e.g., sampler2D) are opaque types, declared and behaving as described above for opaque
types. They do not use memory qualifiers. When aggregated into arrays within a shader, samplers can
only be indexed with a dynamically uniform integral expression, otherwise results are undefined.

Sampler variables are handles to one-, two-, and three- dimensional textures, cube maps, depth textures
(shadowing), etc., as enumerated in the basic types tables. There are distinct sampler types for each
texture target, and for each of float, integer, and unsigned integer data types. Texture accesses are done
through built-in texture functions (described in section 8.9 “Texture Functions” ”) and samplers are used
to specify which texture to access and how it is to be filtered.

4.1.7.2 Images
Image types are opaque types, declared and behaving as described above for opaque types. They can be
further qualified with memory qualifiers. When aggregated into arrays within a shader, images can only
be indexed with a dynamically uniform integral expression, otherwise results are undefined.

27

4 Variables and Types

Image variables are handles to one-, two-, or three-dimensional images corresponding to all or a portion
of a single level of a texture image bound to an image unit. There are distinct image types for each texture
target, and for each of float, integer, and unsigned integer data types. Image accesses should use an image
type that matches the target of the texture whose level is bound to the image unit, or for non-layered
bindings of 3D or array images should use the image type that matches the dimensionality of the layer of
the image (i.e., a layer of 3D, 2DArray, Cube, or CubeArray should use image2D, a layer of 1DArray
should use image1D, and a layer of 2DMSArray should use image2DMS). If the image target type does
not match the bound image in this manner, if the data type does not match the bound image, or if the
format layout qualifier does not match the image unit format as described in Section 3.9.20 of the
OpenGL Specification, the results of image accesses are undefined but cannot include program
termination.

Image variables are used in the image load, store, and atomic functions described in Section 8.11 "Image
Functions" to specify an image to access.

4.1.7.3 Atomic Counters
Atomic counter types (atomic_uint) are opaque handles to counters, declared and behaving as described
above for opaque types. The variables they declare specify which counter to access when using the built-
in atomic counter functions as described in section 8.10 “Atomic Counter Functions”. They are bound to
buffers as described in section 4.4.4.1 “Atomic Counter Layout Qualifiers”. When aggregated into arrays
within a shader, atomic counters can only be indexed with a dynamically uniform integral expression,
otherwise results are undefined.

4.1.8 Structures
User-defined types can be created by aggregating other already defined types into a structure using the
struct keyword. For example,

struct light {
 float intensity;
 vec3 position;
} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the complete correct grammar is as given in
section 9 “Shading Language Grammar” .

struct-definition :
qualifieropt struct nameopt { member-list } declaratorsopt ;

member-list :
member-declaration;
member-declaration member-list;

member-declaration :

28

4 Variables and Types

basic-type declarators;
where name becomes the user-defined type, and can be used to declare variables to be of this new type.
The name shares the same name space as other variables, types, and functions. All previously visible
variables, types, constructors, or functions with that name are hidden. The optional qualifier only applies
to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration. Member declarators may contain precision
qualifiers, but may not contain any other qualifiers. Bit fields are not supported. Member types must be
already defined (there are no forward references). Member declarations cannot contain initializers.
Member declarators can contain arrays. Such arrays must have a size specified, and the size must be an
integral constant expression that's greater than zero (see section 4.3.3 “Constant Expressions”). Each
level of structure has its own name space for names given in member declarators; such names need only
be unique within that name space.

Anonymous structures are not supported. Embedded structure definitions are not supported.

struct S { float f; };

struct T {
S; // Error: anonymous structures disallowed
struct { ... }; // Error: embedded structures disallowed
S s; // Okay: nested structures with name are allowed

};

Structures can be initialized at declaration time using constructors, as discussed in section 5.4.3 “Structure
Constructors” .

Any restrictions on the usage of a type or qualifier also apply to any structure that contains a member of
that type or qualifier. This also applies to structure members that are structures, recursively.

4.1.9 Arrays
Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing an optional size. When an array size is specified in a declaration, it must be an integral constant
expression (see section 4.3.3 “Constant Expressions”) greater than zero. If an array is indexed with an
expression that is not an integral constant expression, or if an array is passed as an argument to a function,
then its size must be declared before any such use. It is legal to declare an array without a size and then
later re-declare the same name as an array of the same type and specify a size. It is illegal to declare an
array with a size, and then later (in the same shader) index the same array with an integral constant
expression greater than or equal to the declared size. It is also illegal to index an array with a negative
constant expression. Arrays declared as formal parameters in a function declaration must specify a size.
Undefined behavior results from indexing an array with a non-constant expression that’s greater than or
equal to the array’s size or less than 0. Only one-dimensional arrays may be declared. All basic types and
structures can be formed into arrays. Some examples are:

29

4 Variables and Types

float frequencies[3];
uniform vec4 lightPosition[4];
light lights[];
const int numLights = 2;
light lights[numLights];

An array type can be formed by specifying a type followed by square brackets ([]) and including a size:

float[5]

This type can be used anywhere any other type can be used, including as the return value from a function

float[5] foo() { }

as a constructor of an array

float[5](3.4, 4.2, 5.0, 5.2, 1.1)

as an unnamed parameter

void foo(float[5])

and as an alternate way of declaring a variable or function parameter.

float[5] a;

It is an error to declare arrays of arrays:

float a[5][3]; // illegal
float[5] a[3]; // illegal

Arrays can have initializers formed from array constructors:

float a[5] = float[5](3.4, 4.2, 5.0, 5.2, 1.1);
float a[5] = float[](3.4, 4.2, 5.0, 5.2, 1.1); // same thing

Unsized arrays can be explicitly sized by an initializer at declaration time:

float a[5];
...
float b[] = a; // b is explicitly size 5
float b[5] = a; // means the same thing
float b[] = float[](1,2,3,4,5); // also explicitly sizes to 5

However, implicitly sized arrays cannot be assigned to. Note, this is a rare case that initializers and
assignments appear to have different semantics.

Arrays know the number of elements they contain. This can be obtained by using the length method:

a.length(); // returns 5 for the above declarations

This returns a type int. The length method cannot be called on an array that has not been explicitly sized.

30

4 Variables and Types

4.1.10 Implicit Conversions
In some situations, an expression and its type will be implicitly converted to a different type. The
following table shows all allowed implicit conversions:

Type of expression Can be implicitly converted to
int uint

int
uint

float

int
uint
float

double

ivec2 uvec2

ivec3 uvec3

ivec4 uvec4

ivec2
uvec2

vec2

ivec3
uvec3

vec3

ivec4
uvec4

vec4

ivec2
uvec2
vec2

dvec2

ivec3
uvec3
vec3

dvec3

ivec4
uvec4
vec4

dvec4

mat2 dmat2

mat3 dmat3

mat4 dmat4

mat2x3 dmat2x3

mat2x4 dmat2x4

mat3x2 dmat3x2

mat3x4 dmat3x4

mat4x2 dmat4x2

mat4x3 dmat4x3

31

4 Variables and Types

There are no implicit array or structure conversions. For example, an array of int cannot be implicitly
converted to an array of float.

When an implicit conversion is done, it is not a re-interpretation of the expression's bit pattern, but a
conversion of its value to an equivalent value in the new type. For example, the integer value -5 will be
converted to the floating-point value -5.0. Integer values having more bits of precision than a floating
point mantissa will lose precision when converted to float.

When performing implicit conversion for binary operators, there may be multiple data types to which the
two operands can be converted. For example, when adding an int value to a uint value, both values can
be implicitly converted to uint, float, and double. In such cases, a floating-point type is chosen if either
operand has a floating-point type. Otherwise, an unsigned integer type is chosen if either operand has an
unsigned integer type. Otherwise, a signed integer type is chosen. If operands can be implicitly converted
to multiple data types deriving from the same base data type, the type with the smallest component size is
used.

The conversions in the table above are done only as indicated by other sections of this specification.

4.1.11 Initializers
At declaration, an initial value for an aggregate variable may be provided, specified as an equals (=)
followed by an initializer. The initializer is either an assignment-expression or a list of initializers
enclosed in curly braces. The grammar for the initializer is:

initializer :
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list :
initializer
initializer-list , initializer

The assignment-expression is a normal expression except that a comma (,) outside parentheses is
interpreted as the end of the initializer, not as the sequence operator. As explained in more detail below,
this allows creation of nested initializers: The aggregate and its initializer must exactly match in terms of
nesting, number of components/elements/members present at each level, and types of
components/elements/members.

An assignment-expression in an initializer must be either the same type as the object it initializes or be a
type that can be converted to the object's type according to section 4.1.10 "Implicit Conversions". Since
these include constructors, an aggregate can be initialized by either a constructor or an initializer list; an
element in an initializer list can be a constructor.

If an initializer is a list of initializers enclosed in curly braces, the variable being declared must be a
vector, a matrix, an array, or a structure.

int i = { 1 }; // illegal, i is not an aggregate

32

4 Variables and Types

A list of initializers enclosed in a matching set of curly braces is applied to one aggregate. This may be
the variable being declared or an aggregate contained in the variable being declared. Individual
initializers from the initializer list are applied to the elements/members of the aggregate, in order.

If the aggregate has a vector type, initializers from the list are applied to the components of the vector, in
order, starting with component 0. The number of initializers must match the number of components.

If the aggregate has a matrix type, initializers from the list must be vector initializers and are applied to
the columns of the matrix, in order, starting with column 0. The number of initializers must match the
number of columns.

If the aggregate has a structure type, initializers from the list are applied to the members of the structure,
in the order declared in the structure, starting with the first member. The number of initializers must
match the number of members.

Applying these rules, the following matrix declarations are equivalent:

mat2x2 a = mat2(vec2(1.0, 0.0), vec2(0.0, 1.0));
mat2x2 b = { vec2(1.0, 0.0), vec2(0.0, 1.0) };
mat2x2 c = { { 1.0, 0.0 }, { 0.0, 1.0 } };

All of the following declarations are illegal.

float a[2] = { 3.4, 4.2, 5.0 }; // illegal
vec2 b = { 1.0, 2.0, 3.0 }; // illegal
mat3x3 c = { vec3(0.0), vec3(1.0), vec3(2.0), vec3(3.0) }; // illegal
mat2x2 d = { 1.0, 0.0, 0.0, 1.0 }; // illegal, can't flatten nesting
struct {
 float a;
 int b;
} e = { 1.2, 2, 3 }; // illegal

In all cases, the innermost initializer (i.e., not a list of initializers enclosed in curly braces) applied to an
object must have the same type as the object being initialized or be a type that can be converted to the
object's type according to section 4.1.10 "Implicit Conversions". In the latter case, an implicit conversion
will be done on the initializer before the assignment is done.

struct {
 float a;
 int b;
} e = { 1.2, 2 }; // legal, all types match

33

4 Variables and Types

struct {
 float a;
 int b;
} e = { 1, 3 }; // legal, first initializer is converted

All of the following declarations are illegal.

int a = true; // illegal
vec4 b[2] = { vec4(0.0), 1.0 }; // illegal
mat4x2 c = { vec3(0.0), vec3(1.0) }; // illegal

struct S1 {
 vec4 a;
 vec4 b;
};

struct {
 float s;
 float t;
} d[] = { S1(vec4(0.0), vec4(1.1)) }; // illegal

If an initializer (of either form) is provided for an unsized array, the size of the array is determined by the
number of top-level (non-nested) initializers within the initializer. All of the following declarations create
arrays explicitly sized with five elements:

float a[] = float[](3.4, 4.2, 5.0, 5.2, 1.1);
float b[] = { 3.4, 4.2, 5.0, 5.2, 1.1 };
float c[] = a; // c is explicitly size 5
float d[5] = b; // means the same thing

It is an error to have too few or too many initializers in an initializer list for the aggregate being
initialized. That is, all elements of an array, all members of a structure, all columns of a matrix, and all
components of a vector must have exactly one initializer expression present, with no unconsumed
initializers.

4.2 Scoping
The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
it is declared in. If it is declared in a while test or a for statement, then it is scoped to the end of the
following sub-statement. If it is declared in an if or else statement, it is scoped to the end of that
statement. (See section 6.2 “Selection” and section 6.3 “Iteration” for the location of statements and sub-
statements.) Otherwise, if it is declared as a statement within a compound statement, it is scoped to the
end of that compound statement. If it is declared as a parameter in a function definition, it is scoped until
the end of that function definition. A function body has a scope nested inside the function’s definition.
The if statement’s expression does not allow new variables to be declared, hence does not form a new
scope.

34

4 Variables and Types

Within a declaration, the scope of a name starts immediately after the initializer if present or immediately
after the name being declared if not. Several examples:

int x = 1;
{

int x = 2, y = x; // y is initialized to 2
}

struct S
{

int x;
};

{
S S = S(0); // 'S' is only visible as a struct and constructor
S; // 'S' is now visible as a variable

}

int x = x; // Error if x has not been previously defined.

All variable names, structure type names, and function names in a given scope share the same name space.
Function names can be redeclared in the same scope, with the same or different parameters, without error.
An implicitly sized array can be re-declared in the same scope as an array of the same base type.
Otherwise, within one compilation unit, a declared name cannot be redeclared in the same scope; doing so
results in a redeclaration error. If a nested scope redeclares a name used in an outer scope, it hides all
existing uses of that name. There is no way to access the hidden name or make it unhidden, without
exiting the scope that hid it.

The built-in functions are scoped in a scope outside the global scope users declare global variables in.
That is, a shader's global scope, available for user-defined functions and global variables, is nested inside
the scope containing the built-in functions. When a function name is redeclared in a nested scope, it hides
all functions declared with that name in the outer scope. Function declarations (prototypes) cannot occur
inside of functions; they must be at global scope, or for the built-in functions, outside the global scope.

Shared globals are global variables declared with the same name in independently compiled units
(shaders) within the same language (e.g., vertex) that are linked together when making a single program.
(Globals forming the interface between two different shader languages are discussed in other sections.)
Shared globals share the same name space, and must be declared with the same type. They will share the
same storage. Shared global arrays must have the same base type and the same explicit size. An array
implicitly sized in one shader can be explicitly sized by another shader. If no shader has an explicit size
for the array, the largest implicit size is used. Scalars must have exactly the same type name and type
definition. Structures must have the same name, sequence of type names, and type definitions, and
member names to be considered the same type. This rule applies recursively for nested or embedded
types. If a shared global has multiple initializers, the initializers must all be constant expressions, and
they must all have the same value. Otherwise, a link error will result. (A shared global having only one
initializer does not require that initializer to be a constant expression.)

35

4 Variables and Types

4.3 Storage Qualifiers
Variable declarations may have at most one storage qualifier specified in front of the type. These are
summarized as

Storage Qualifier Meaning
< none: default > local read/write memory, or an input parameter to a function

const a variable whose value cannot be changed

in linkage into a shader from a previous stage, variable is copied in

out linkage out of a shader to a subsequent stage, variable is copied out

attribute compatibility profile only and vertex language only; same as in when in a
vertex shader

uniform value does not change across the primitive being processed, uniforms
form the linkage between a shader, OpenGL, and the application

varying compatibility profile only and vertex and fragment languages only; same
as out when in a vertex shader and same as in when in a fragment shader

Some input and output qualified variables can be qualified with at most one additional auxiliary storage
qualifier:

Auxiliary Storage
Qualifier

Meaning

centroid centroid-based interpolation

sample per-sample interpolation

patch per-tessellation-patch attributes

Not all combinations of qualification are allowed. Which variable types can have which qualifiers are
specifically defined in upcoming sections.

36

4 Variables and Types

Local variables can only use the const storage qualifier (or use no storage qualifier).

Function parameters can use const, in, and out qualifiers, but as parameter qualifiers. Parameter
qualifiers are discussed in section 6.1.1 “Function Calling Conventions”.

Function return types and structure members do not use storage qualifiers.

Initializers in global declarations may only be used in declarations of global variables with no storage
qualifier, with a const qualifier or with a uniform qualifier. Global variables without storage qualifiers
that are not initialized in their declaration or by the application will not be initialized by OpenGL, but
rather will enter main() with undefined values.

When comparing an output from one shader stage to an input of a subsequent shader stage, the input and
output don't match if their auxiliary qualifiers (or lack thereof) are not the same.

4.3.1 Default Storage Qualifier
If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other pipeline stages. For either global or local unqualified variables, the declaration will
appear to allocate memory associated with the processor it targets. This variable will provide read/write
access to this allocated memory.

4.3.2 Constant Qualifier
Named compile-time constants or read-only variables can be declared using the const qualifier. The const
qualifier can be used with any of the non-void transparent basic data types, as well as with structures and
arrays of these. It is an error to write to a const variable outside of its declaration, so they must be
initialized when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);
const float ceiling = a + b; // a and b not necessarily constants

Structure members may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor or initializer.

Initializers for const declarations at global scope must be constant expressions, as defined in section 4.3.3
“Constant Expressions.”

4.3.3 Constant Expressions
A constant expression is one of

• a literal value (e.g., 5 or true)

• a variable declared with the const qualifier and an initializer, where the initializer is a constant
expression

• an expression formed by an operator on operands that are all constant expressions, including getting an
element of a constant array, or a member of a constant structure, or components of a constant vector.

37

4 Variables and Types

However, the lowest precedence operators of the sequence operator (,) and the assignment operators
(=, +=, ...) are not included in the operators that can create a constant expression.

• valid use of the length() method on a sized object, whether or not the object itself is constant

• a constructor whose arguments are all constant expressions

• a built-in function call whose arguments are all constant expressions, with the exception of the texture
lookup functions and the noise functions. The built-in functions dFdx, dFdy, and fwidth must return
0 when evaluated inside an initializer with an argument that is a constant expression.

Function calls to user-defined functions (non-built-in functions) cannot be used to form constant
expressions.

An integral constant expression is a constant expression that evaluates to a scalar signed or unsigned
integer.

Constant expressions will be evaluated in an invariant way so as to create the same value in multiple
shaders when the same constant expressions appear in those shaders. See section 4.8.1 “The Invariant
Qualifier” for more details on how to create invariant expressions.

4.3.4 Input Variables
Shader input variables are declared with the storage qualifier in. They form the input interface between
previous stages of the OpenGL pipeline and the declaring shader. Input variables must be declared at
global scope. Values from the previous pipeline stage are copied into input variables at the beginning of
shader execution. Variables declared as inputs cannot be written to during shader execution.

Only the input variables that are statically read need to be written by the previous stage; it is allowed to
have superfluous declarations of input variables. This is shown in the following table.

Treatment of Mismatched Input
Variables

Consuming Shader (input variables)

No Declaration Declared but no
Static Use

Declared and
Static Use

Generating
Shader
(output

variables)

No Declaration Allowed Allowed Error

Declared but no
Static Use Allowed Allowed Allowed

(values are undefined)

Declared and
Static Use Allowed Allowed

Allowed
(values are potentially

undefined)

Errors are based on static use only. Compilation may generate a warning, but not an error, for any
dynamic use the compiler can deduce that might cause consumption of undefined values.

See section 7 “Built-in Variables” for a list of the built-in input names.

Vertex shader input variables (or attributes) receive per-vertex data. They are declared in a vertex shader
with the in qualifier. It is an error to use any auxiliary or interpolation qualifiers on a vertex shader input.
The values copied in are established by the OpenGL API or through the use of the layout identifier

38

4 Variables and Types

location. Vertex shader inputs can be single- or double-precision floating-point scalars, vectors, and
matrices, or signed- and unsigned-integer scalars and vectors. Vertex shader inputs can also form arrays
of these types, but not structures.

Example declarations in a vertex shader:

in vec4 position;
in vec3 normal;
in vec2 texCoord[4];

It is expected that graphics hardware will have a small number of fixed vector locations for passing vertex
inputs. Therefore, the OpenGL Shading language defines each non-matrix input variable as taking up one
such vector location. There is an implementation dependent limit on the number of locations that can be
used, and if this is exceeded it will cause a link error. (Declared input variables that are not statically used
do not count against this limit.) A scalar input counts the same amount against this limit as a vec4, so
applications may want to consider packing groups of four unrelated float inputs together into a vector to
better utilize the capabilities of the underlying hardware. A matrix input will use up multiple locations.
The number of locations used will equal the number of columns in the matrix.

Tessellation control, evaluation, and geometry shader input variables get the per-vertex values written out
by output variables of the same names in the previous active shader stage. For these inputs, centroid and
interpolation qualifiers are allowed, but have no effect. Since tessellation control, tessellation evaluation,
and geometry shaders operate on a set of vertices, each input variable (or input block, see interface blocks
below) needs to be declared as an array. For example,

in float foo[]; // geometry shader input for vertex “out float foo”

Each element of such an array corresponds to one vertex of the primitive being processed. Each array can
optionally have a size declared. The array size will be set by, (or if provided must be consistent with) the
input layout declaration(s) establishing the type of input primitive, as described later in section 4.4.1
“Input Layout Qualifiers”.

Some inputs and outputs are arrayed, meaning that for an interface between two shader stages either the
input or output declaration requires an extra level of array indexing for the declarations to match. For
example, with the interface between a vertex shader and a geometry shader, vertex shader output variables
and geometry shader input variables of the same name must match in type and qualification, except that
the vertex shader name cannot be declared as an array while the geometry shader name must be declared
as an array, to allow for vertex indexing. It is a link error if a non-arrayed input is not declared with the
same type, qualification, and array dimensionality as the matching output. It is an error if an arrayed input
is not declared as an array of the same type and qualification as the corresponding (non-array) output.
Symmetrically, it is an error if an arrayed output is not declared as an array of the same type and
qualification as the corresponding (non-array) input.

If the output corresponding to an arrayed input is itself an array, it must appear in an output block (see
interface blocks below) in the outputting shader and in an input block in the inputting shader with a block
instance name declared as an array. This is required because two-dimensional arrays are not supported.

Additionally, tessellation evaluation shaders support per-patch input variables declared with the patch and
in qualifiers. Per-patch input variables are filled with the values of per-patch output variables written by
the tessellation control shader. Per-patch inputs may be declared as one-dimensional arrays, but are not
indexed by vertex number. Applying the patch qualifier to inputs can only be done in tessellation

39

4 Variables and Types

evaluation shaders. As with other input variables, per-patch inputs must be declared using the same type
and qualification as per-patch outputs from the previous (tessellation control) shader stage.

Fragment shader inputs get per-fragment values, typically interpolated from a previous stage's outputs.
They are declared in fragment shaders with the in storage qualifier. The auxiliary storage qualifiers
centroid and sample can also be applied, as well as the interpolation qualifiers flat, noperspective, and
smooth. It is an error to use patch in a fragment shader. Fragment inputs can only be signed and
unsigned integers and integer vectors, floating point scalars, floating-point vectors, matrices, or arrays or
structures of these. Fragment shader inputs that are signed or unsigned integers, integer vectors, or any
double-precision floating-point type must be qualified with the interpolation qualifier flat.

Fragment inputs are declared as in the following examples:

in vec3 normal;
centroid in vec2 TexCoord;
invariant centroid in vec4 Color;
noperspective in float temperature;
flat in vec3 myColor;
noperspective centroid in vec2 myTexCoord;

The fragment shader inputs form an interface with the last active shader in the vertex processing pipeline.
For this interface, the last active shader stage output variables and fragment shader input variables of the
same name must match in type and qualification (other than out matching to in).

When an interface between shader stages is formed using shaders from two separate program objects, it is
not possible to detect mismatches between inputs and outputs when the programs are linked. When there
are mismatches between inputs and outputs on such interfaces, the values passed across the interface will
be partially or completely undefined. Shaders can ensure matches across such interfaces either by using
input and output layout qualifiers (sections 4.4.1 “Input Layout Qualifiers” and 4.4.2 “Output Layout
Qualifiers”) or by using identical input and output declarations of blocks or variables. Complete rules for
interface matching between programs are found in the "Shader Interface Matching" portion of section
2.14.PPO of the OpenGL Graphics System Specification.

4.3.5 Uniform
The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only and are initialized externally either at link
time or through the API. The link time initial value is either the value of the variable's initializer, if
present, or 0 if no initializer is present. Opaque types cannot have initializers.

Example declarations are:

uniform vec4 lightPosition;
uniform vec3 color = vec3(0.7, 0.7, 0.2); // value assigned at link time

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit. The number of user-defined

40

4 Variables and Types

uniform variables and the number of built-in uniform variables that are used within a shader are added
together to determine whether available uniform storage has been exceeded.

If multiple shaders are linked together, then they will share a single global uniform name space, including
within a language as well as across languages. Hence, the types and initializers of uniform variables with
the same name must match across all shaders that are linked into a single program.

It is legal for some shaders to provide an initializer for a particular uniform variable, while another shader
does not, but all provided initializers must be equal.

4.3.6 Output Variables
Shader output variables are declared with a storage qualifier using the keyword out. They form the output
interface between the declaring shader and the subsequent stages of the OpenGL pipeline. Output
variables must be declared at global scope. During shader execution they will behave as normal
unqualified global variables. Their values are copied out to the subsequent pipeline stage on shader exit.
Only output variables that are read by the subsequent pipeline stage need to be written; it is allowed to
have superfluous declarations of output variables.

There is not an inout storage qualifier at global scope for declaring a single variable name as both input
and output to a shader. A variable also cannot be declared with both the in and the out qualifiers. Output
variables must be declared with different names than input variables. However, nesting an input or output
inside an interface block with an instance name allows the same names with one referenced through a
block instance name.

Vertex, tessellation evaluation, and geometry output variables output per-vertex data and are declared
using the out storage qualifier. Applying patch to an output can only be done in a tessellation control
shader. Output variables can only be floating-point scalars, floating-point vectors, matrices, signed or
unsigned integers or integer vectors, or arrays or structures of any these.

Individual vertex, tessellation evaluation, and geometry outputs are declared as in the following examples:

out vec3 normal;
centroid out vec2 TexCoord;
invariant centroid out vec4 Color;
noperspective out float temperature;
flat out vec3 myColor;
noperspective centroid out vec2 myTexCoord;
sample out vec4 perSampleColor;

These can also appear in interface blocks, as described in section 4.3.8 “Interface Blocks”. Interface
blocks allow simpler addition of arrays to the interface from vertex to geometry shader. They also allow a
fragment shader to have the same input interface as a geometry shader for a given vertex shader.

Tessellation control shader output variables are may be used to output per-vertex and per-patch data. Per-
vertex output variables are arrayed (see arrayed under 4.3.4 Inputs) and declared using the out qualifier
without the patch qualifier. Per-patch output variables are declared using the patch and out qualifiers.
Per-vertex and per-patch output variables can only be floating-point scalars, floating-point vectors,
matrices, signed or unsigned integers or integer vectors, or arrays or structures of any these. Since
tessellation control shaders produce an arrayed primitive comprising multiple vertices, each per-vertex

41

4 Variables and Types

output variable (or output block, see interface blocks below) needs to be declared as an array. For
example,

out float foo[]; // feeds next stage input “in float foo[]”

Each element of such an array corresponds to one vertex of the primitive being produced. Each array can
optionally have a size declared. The array size will be set by (or if provided must be consistent with) the
output layout declaration(s) establishing the number of vertices in the output patch, as described later in
section 4.4.2.1 “Tessellation Control Outputs”.

As described under the section 4.3.4 “Input Variables” above, if a per-vertex output of the tessellation
control shader is itself an array with multiple values per vertex, it must appear in an output block (see
interface blocks below) in the tessellation control shader with a block instance name declared as an array.

Each tessellation control shader invocation has a corresponding output patch vertex, and may assign
values to per-vertex outputs only if they belong to that corresponding vertex. If a per-vertex output
variable is used as an l-value, it is an error if the expression indicating the vertex index is not the identifier
gl_InvocationID.

The order of execution of a tessellation control shader invocation relative to the other invocations for the
same input patch is undefined unless the built-in function barrier() is used. This provides some control
over relative execution order. When a shader invocation calls barrier(), its execution pauses until all
other invocations have reached the same point of execution. Output variable assignments performed by
any invocation executed prior to calling barrier() will be visible to any other invocation after the call to
barrier() returns.

Because tessellation control shader invocations execute in undefined order between barriers, the values of
per-vertex or per-patch output variables will sometimes be undefined. Consider the beginning and end of
shader execution and each call to barrier() as synchronization points. The value of an output variable
will be undefined in any of the three following cases:

1. At the beginning of execution.

2. At each synchronization point, unless

• the value was well-defined after the previous synchronization point and was not written by any
invocation since, or

• the value was written by exactly one shader invocation since the previous synchronization
point, or

• the value was written by multiple shader invocations since the previous synchronization point,
and the last write performed by all such invocations wrote the same value.

3. When read by a shader invocation, if

• the value was undefined at the previous synchronization point and has not been writen by the
same shader invocation since, or

• the output variable is written to by any other shader invocation between the previous and next
synchronization points, even if that assignment occurs in code following the read.

Fragment outputs output per-fragment data and are declared using the out storage qualifier. It is an error
to use auxiliary storage qualifiers or interpolation qualifiers on an output in a fragment shader. Fragment
outputs can only be float, floating-point vectors, signed or unsigned integers or integer vectors, or arrays

42

4 Variables and Types

of any these. Matrices and structures cannot be output. Fragment outputs are declared as in the following
examples:

out vec4 FragmentColor;
out uint Luminosity;

4.3.7 Interface Blocks
Input, output, and uniform variable declarations can be grouped into named interface blocks to provide
coarser granularity backing than is achievable with individual declarations. They can have an optional
instance name, used in the shader to reference their members. An output block of one programmable
stage is backed by a corresponding input block in the subsequent programmable stage. A uniform block is
backed by the application with a buffer object. It is illegal to have an input block in a vertex shader or an
output block in a fragment shader; these uses are reserved for future use.

An interface block is started by an in, out, or uniform keyword, followed by a block name, followed by
an open curly brace ({) as follows:

interface-block :
layout-qualifieropt interface-qualifier block-name { member-list } instance-nameopt ;

interface-qualifier :
in
out
uniform

member-list :
member-declaration
member-declaration member-list

member-declaration :
layout-qualifieropt qualifiersopt type declarators ;

instance-name :
identifier
identifier []
identifier [integral-constant-expression]

Each of the above elements is discussed below, with the exception of layout qualifiers (layout-qualifier),
which are defined in the next section.

First, an example,

uniform Transform {
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 uniform mat3 NormalMatrix; // allowed restatement of qualifier
 float Deformation;
};

The above establishes a uniform block named “Transform” with four uniforms grouped inside it.

43

4 Variables and Types

Types and declarators are the same as for other input, output, and uniform variable declarations outside
blocks, with these exceptions:

• initializers are not allowed

• opaque types are not allowed

• structure definitions cannot be nested inside a block

Otherwise, built-in types, previously declared structures, and arrays of these are allowed as the type of a
declarator in the same manner they are allowed outside a block.

If no optional qualifier is used in a member-declaration, the qualification of the variable is just in, out, or
uniform as determined by interface-qualifier. If optional qualifiers are used, they can include
interpolation qualifiers, auxiliary storage qualifiers, and storage qualifiers and they must declare an input,
output, or uniform variable consistent with the interface qualifier of the block: Input variables, output
variables, and uniform variables can only be in in blocks, out blocks, and uniform blocks, respectively.
Repeating the in, out, or uniform interface qualifier for a member's storage qualifier is optional. For
example,

in Material {
 smooth in vec4 Color1; // legal, input inside in block
 smooth vec4 Color2; // legal, 'in' inherited from 'in Material'
 vec2 TexCoord; // legal, TexCoord is an input
 uniform float Atten; // illegal, mismatched storage qualifier

};

For this section, define an interface to be one of these

• All the uniforms of a program. This spans all compilation units linked together within one program.

• The boundary between adjacent programmable pipeline stages: This spans all the outputs in all
compilation units of the first stage and all the inputs in all compilation units of the second stage.

The block name (block-name) is used to match interfaces: an output block of one pipeline stage will be
matched to an input block with the same name in the subsequent pipeline stage. For uniform blocks, the
application uses the block name to identify the block. Block names have no other use within a shader
beyond interface matching; it is an error to use a block name at global scope for anything other than as a
block name (e.g., use of a block name for a global variable name or function name is currently reserved).
Matched block names within an interface (as defined above) must match in terms of having the same
number of declarations with the same sequence of types and the same sequence of member names, as well
as having the same member-wise layout qualification (see next section). Furthermore, if a matching block
is declared as an array, then the array sizes must also match (or follow array matching rules for the
interface between a vertex and a geometry shader). Any mismatch will generate a link error. A block
name is allowed to have different definitions in different interfaces within the same shader, allowing, for
example, an input block and output block to have the same name.

44

4 Variables and Types

If an instance name (instance-name) is not used, the names declared inside the block are scoped at the
global level and accessed as if they were declared outside the block. If an instance name (instance-name)
is used, then it puts all the members inside a scope within its own name space, accessed with the field
selector (.) operator (analogously to structures). For example,

in Light {
 vec4 LightPos;
 vec3 LightColor;
};
in ColoredTexture {
 vec4 Color;
 vec2 TexCoord;
} Material; // instance name
vec3 Color; // different Color than Material.Color
vec4 LightPos; // illegal, already defined
...
... = LightPos; // accessing LightPos
... = Material.Color; // accessing Color in ColoredTexture block

Outside the shading language (i.e., in the API), members are similarly identified except the block name is
always used in place of the instance name (API accesses are to interfaces, not to shaders). If there is no
instance name, then the API does not use the block name to access a member, just the member name.

out Vertex {
 vec4 Position; // API transform/feedback will use “Vertex.Position”
 vec2 Texture;
} Coords; // shader will use “Coords.Position”

out Vertex2 {
 vec4 Color; // API will use “Color”
};

For blocks declared as arrays, the array index must also be included when accessing members, as in this
example

uniform Transform { // API uses “Transform[2]” to refer to instance 2
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 float Deformation;
} transforms[4];
...
... = transforms[2].ModelViewMatrix; // shader access of instance 2
// API uses “Transform.ModelViewMatrix” to query an offset or other query

For uniform blocks declared as an array, each individual array element corresponds to a separate buffer-
object bind range, backing one instance of the block. As the array size indicates the number of buffer
objects needed, uniform block array declarations must specify an array size. A uniform block array can
only be indexed with a dynamically uniform integral expression, otherwise results are undefined.

When using OpenGL API entry points to identify the name of an individual block in an array of blocks,
the name string must include an array index (e.g., Transform[2]). When using OpenGL API entry points

45

4 Variables and Types

to refer to offsets or other characteristics of a block member, an array index must not be specified (e.g.,
Transform.ModelViewMatrix).

Geometry shader input blocks must be declared as arrays and follow the array declaration and linking
rules for all geometry shader inputs. All other input and output block arrays must specify an array size.

There is an implementation dependent limit on the number of uniform blocks that can be used per stage.
If this limit is exceeded, it will cause a link error.

4.4 Layout Qualifiers
Layout qualifiers can appear in several forms of declaration. They can appear as part of an interface
block definition or block member, as shown in the grammar in the previous section. They can also appear
with just an interface qualifier (a storage qualifier that is in, out, or uniform) to establish layouts of other
declarations made with that interface qualifier:

layout-qualifier interface-qualifier ;

Or, they can appear with an individual variable declared with an interface qualifier:

layout-qualifier interface-qualifier declaration ;

Declarations of layouts can only be made at global scope, and only where indicated in the following
subsections; their details are specific to what the interface qualifier is, and are discussed individually.

The layout-qualifier expands to

layout-qualifier :
layout (layout-qualifier-id-list)

layout-qualifier-id-list :
layout-qualifier-id
layout-qualifier-id , layout-qualifier-id-list

layout-qualifier-id
layout-qualifier-name
layout-qualifier-name = layout-qualifier-value

The tokens used for layout-qualifier-name are identifiers, not keywords. Generally, they can be listed in
any order. Order-dependent meanings exist only if explicitly called out below. Similarly, these identifiers
are not case sensitive, unless explicitly noted otherwise.

More than one layout qualifier may appear in a single declaration. If the same layout-qualifier-name
occurs in multiple layout qualifiers for the same declaration, the last one overrides the former ones.

4.4.1 Input Layout Qualifiers
Some input layout qualifiers apply to all shader languages and some apply only to specific languages.
The latter are discussed in separate sections below.

All shaders allow input layout qualifiers on input variable declarations. The location layout qualifier
identifier for inputs is:

46

4 Variables and Types

layout-qualifier-id
location = integer-constant

Only one argument is accepted. For example,

layout(location = 3) in vec4 normal;

will establish that the shader input normal is assigned to vector location number 3. For vertex shader
inputs, the location specifies the number of the generic vertex attribute from which input values are taken.
For inputs of all other shader types, the location specifies a vector number that can be used to match
against outputs from a previous shader stage, even if that shader is in a different program object.

If a vertex shader input is any scalar or vector type, it will consume a single location. If a non-vertex
shader input is a scalar or vector type other than dvec3 or dvec4, it will consume a single location, while
types dvec3 or dvec4 will consume two consecutive locations. Inputs of type double and dvec2 will
consume only a single location, in all stages.

If the declared input is an array of size n and each element takes m locations, it will be assigned m * n
consecutive locations starting with the location specified. For example,

layout(location = 6) in vec4 colors[3];

will establish that the shader input colors is assigned to vector location numbers 6, 7, and 8.

If the declared input is an n x m single- or double-precision matrix, it will be assigned multiple locations
starting with the location specified. The number of locations assigned for each matrix will be the same as
for an n-element array of m-component vectors. For example,

layout(location = 9) in mat4 transforms[2];

will establish that shader input transforms is assigned to vector locations 9-16, with transforms[0] being
assigned to locations 9-12 and transforms[1] being assigned to locations 13-16.

If the declared input is a structure, its members will be assigned consecutive locations in the order of
declaration, with the first member assigned the location specified for the structure. The number of
locations consumed by a structure member is determined by applying the rules above recursively as
though the structure member were declared as an input variable of the same type. For example,

layout(location = 3) struct S {
 vec3 a;
 mat2 b;
 vec4 c[2];
} s;

will assign location 3 to s.a, locations 4 and 5 to the two column vectors of s.b, and locations 6 and 7 to
s.c.

Location layout qualifiers may be used on input variables declared as structures, but not on individual
members. Location layout qualifiers may not be used on input blocks or input block members.

47

4 Variables and Types

The number of input locations available to a shader is limited. For vertex shaders, the limit is the
advertised number of vertex attributes. For all other shaders, the limit is implementation-dependent and
must be no less than one fourth of the advertised maximum input component count. A program will fail to
link if any attached shader uses a location greater than or equal to the number of supported locations,
unless device-dependent optimizations are able to make the program fit within available hardware
resources.

A program will fail to link if any two non-vertex shader input variables are assigned to the same location.
For vertex shaders, multiple input variables may be assigned to the same location using either layout
qualifiers or via the OpenGL API. However, such aliasing is intended only to support vertex shaders
where each execution path accesses at most one input per each location. Implementations are permitted,
but not required, to generate link errors if they detect that every path through the vertex shader executable
accesses multiple inputs assigned to any single location. For all shader types, a program will fail to link if
explicit location assignments leave the linker unable to find space for other variables without explicit
assignments.

For the purposes of determining if a non-vertex input matches an output from a previous shader stage, the
location layout qualifier (if any) must match.

If a vertex shader input variable with no location assigned in the shader text has a location specified
through the OpenGL API, the API-assigned location will be used. Otherwise, such variables will be
assigned a location by the linker. See section 2.11.3 “Vertex Attributes” of the OpenGL Graphics System
Specification for more details. A link error will occur if an input variable is declared in multiple shaders
of the same language with conflicting locations.

4.4.1.1 Tessellation Evaluation Inputs
Additional input layout qualifier identifiers allowed for tessellation evaluation shaders are:

layout-qualifier-id
triangles
quads
isolines
equal_spacing
fractional_even_spacing
fractional_odd_spacing
cw
ccw
point_mode

One subset of these identifiers, primitive mode, is used to specify a tessellation primitive mode to be used
by the tessellation primitive generator. To specify a primitive mode, the identifier must be one of
triangles, quads, or isolines, which specify that the tessellation primitive generator should subdivide a
triangle into smaller triangles, a quad into triangles, or a quad into a collection of lines, respectively.

A second subset of these identifiers, vertex spacing, is used to specify the spacing used by the tessellation
primitive generator when subdividing an edge. To specify vertex spacing, the identifier must be one of
the following.

equal_spacing signifying that edges should be divided into a collection of equal-sized segments.

48

4 Variables and Types

fractional_even_spacing signifying that edges should be divided into an even number of equal-
length segments plus two additional shorter "fractional" segments.

fractional_odd_spacing signifying that edges should be divided into an odd number of equal-
length segments plus two additional shorter "fractional" segments.

A third subset of these identifiers, ordering, specifies whether the tessellation primitive generator
produces triangles in clockwise or counter-clockwise order, according to the coordinate system depicted
in the OpenGL specification. The ordering identifiers cw and ccw indicate clockwise and counter-
clockwise triangles, respectively. If the tessellation primitive generator does not produce triangles,
ordering is ignored.

Finally, point mode, is specified with the identifier point_mode indicating the tessellation primitive
generator should produce a point for each unique vertex in the subdivided primitive, rather than
generating lines or triangles.

Any or all of these identifiers may be specified one or more times in a single input layout declaration. If
primitive mode, vertex spacing, or ordering is declared more than once in the tessellation evaluation
shaders of a program, all such declarations must use the same identifier.

At least one tessellation evaluation shader (compilation unit) in a program must declare a primitive mode
in its input layout. Declaring vertex spacing, ordering, or point mode identifiers is optional. It is not
required that all tessellation evaluation shaders in a program declare a primitive mode. If spacing or
vertex ordering declarations are omitted, the tessellation primitive generator will use equal spacing or
counter-clockwise vertex ordering, respectively. If a point mode declaration is omitted, the tessellation
primitive generator will produce lines or triangles according to the primitive mode.

4.4.1.2 Geometry Shader Inputs
Additional layout qualifier identifiers for geometry shader inputs include primitive identifiers and an
invocation count identifier:

layout-qualifier-id
points
lines
lines_adjacency
triangles
triangles_adjacency
invocations = integer-constant

The identifiers points, lines, lines_adjacency, triangles, and triangles_adjacency are used to specify the
type of input primitive accepted by the geometry shader, and only one of these is accepted. At least one
geometry shader (compilation unit) in a program must declare this input primitive layout, and all geometry
shader input layout declarations in a program must declare the same layout. It is not required that all
geometry shaders in a program declare an input primitive layout.

The identifier invocations is used to specify the number of times the geometry shader executable is
invoked for each input primitive received. Invocation count declarations are optional. If no invocation
count is declared in any geometry shader in a program, the geometry shader will be run once for each
input primitive. If an invocation count is declared, all such declarations must specify the same count. If a

49

4 Variables and Types

shader specifies an invocation count greater than the implementation-dependent maximum, it will fail to
compile.

For example,

layout(triangles, invocations = 6) in;

will establish that all inputs to the geometry shader are triangles and that the geometry shader executable
is run six times for each triangle processed.

All geometry shader input unsized array declarations will be sized by an earlier input primitive layout
qualifier, when present, as per the following table.

Layout Size of Input Arrays
points 1

lines 2

lines_adjacency 4

triangles 3

triangles_adjacency 6

The intrinsically declared input array gl_in[] will also be sized by any input primitive-layout declaration.
Hence, the expression

gl_in.length()

will return the value from the table above.

For inputs declared without an array size, including intrinsically declared inputs (i.e., gl_in), a layout must
be declared before any use of the method length or other any array use that requires the array size to be
known.

It is a compile-time error if a layout declaration's array size (from table above) does not match all the
explicit array sizes specified in declarations of an input variables in the same shader. The following
includes examples of compile time errors:

50

4 Variables and Types

// code sequence within one shader...
in vec4 Color1[]; // legal, size still unknown
...Color1.length()...// illegal, length() unknown
in vec4 Color2[2]; // legal, size is 2
...Color1.length()...// illegal, Color1 still has no size
in vec4 Color3[3]; // illegal, input sizes are inconsistent
layout(lines) in; // legal for Color2, input size is 2, matching Color2
in vec4 Color4[3]; // illegal, contradicts layout of lines
...Color1.length()...// legal, length() is 2, Color1 sized by layout()
layout(lines) in; // legal, matches other layout() declaration
layout(triangles) in;// illegal, does not match earlier layout() declaration

It is a link-time error if not all provided sizes (sized input arrays and layout size) match across all
geometry shaders in a program.

4.4.1.3 Fragment Shader Inputs
Additional fragment layout qualifier identifiers include the following for gl_FragCoord

layout-qualifier-id
origin_upper_left
pixel_center_integer

By default, gl_FragCoord assumes a lower-left origin for window coordinates and assumes pixel centers
are located at half-pixel coordinates. For example, the (x, y) location (0.5, 0.5) is returned for the lower-
left-most pixel in a window. The origin can be changed by redeclaring gl_FragCoord with the
origin_upper_left identifier, moving the origin of gl_FragCoord to the upper left of the window, with y
increasing in value toward the bottom of the window. The values returned can also be shifted by half a
pixel in both x and y by pixel_center_integer so it appears the pixels are centered at whole number pixel
offsets. This moves the (x, y) value returned by gl_FragCoord of (0.5, 0.5) by default, to (0.0, 0.0) with
pixel_center_integer.

Redeclarations are done as follows

in vec4 gl_FragCoord; // redeclaration that changes nothing is allowed

// All the following are allowed redeclaration that change behavior
layout(origin_upper_left) in vec4 gl_FragCoord;
layout(pixel_center_integer) in vec4 gl_FragCoord;
layout(origin_upper_left, pixel_center_integer) in vec4 gl_FragCoord;

If gl_FragCoord is redeclared in any fragment shader in a program, it must be redeclared in all the
fragment shaders in that program that have a static use gl_FragCoord. All redeclarations of
gl_FragCoord in all fragment shaders in a single program must have the same set of qualifiers. Within
any shader, the first redeclarations of gl_FragCoord must appear before any use of gl_FragCoord. The
built-in gl_FragCoord is only predeclared in fragment shaders, so redeclaring it in any other shader
language will be illegal.

Redeclaring gl_FragCoord with origin_upper_left and/or pixel_center_integer qualifiers only affects
gl_FragCoord.x and gl_FragCoord.y. It has no affect on rasterization, transformation, or any other part
of the OpenGL pipeline or language features.

51

4 Variables and Types

Fragment shaders also allow the following layout qualifier on in only (not with variable declarations)

layout-qualifier-id
early_fragment_tests

to request that fragment tests be performed before fragment shader execution, as described in section 3.10
of the OpenGL Specification.

For example,

layout(early_fragment_tests) in;

Specifying this will make per-fragment tests be performed before fragment shader execution. If this is not
declared, per-fragment tests will be performed after fragment shader execution.

4.4.2 Output Layout Qualifiers
Some output layout qualifiers apply to all shader languages and some apply only to specific languages.
The latter are discussed in separate sections below.

All shaders allow location output layout qualifiers on output variable declarations. The location layout
qualifier identifier for outputs is:

layout-qualifier-id
location = integer-constant

Fragment shaders allow an additional index output layout qualifiers:

layout-qualifier-id
location = integer-constant
index = integer-constant

Each of these qualifiers may appear at most once. If index is specified, location must also be specified.
If index is not specified, the value 0 is used. For example, in a fragment shader,

layout(location = 3) out vec4 color;

will establish that the fragment shader output color is assigned to fragment color 3 as the first (index zero)
input to the blend equation. And,

layout(location = 3, index = 1) out vec4 factor;

will establish that the fragment shader output factor is assigned to fragment color 3 as the second (index
one) input to the blend equation.

For fragment-shader outputs, the location and index specify the color output number and index receiving
the values of the output. For outputs of all other shader stages, the location specifies a vector number that
can be used to match against inputs in a subsequent shader stage, even if that shader is in a different
program object.

If a declared output is a scalar or vector type other than dvec3 or dvec4, it will consume a single location.
Outputs of type dvec3 or dvec4 will consume two consecutive locations. Outputs of type double and
dvec2 will consume only a single location, in all stages.

52

4 Variables and Types

If the declared output is an array, it will be assigned consecutive locations starting with the location
specified. For example,

layout(location = 2) out vec4 colors[3];

will establish that colors is assigned to vector location numbers 2, 3, and 4.

If the declared output is an n x m single- or double-precision matrix, it will be assigned multiple locations
starting with the location specified. The number of locations assigned will be the same as for an n-
element array of m-component vectors.

If the declared output is a structure, its members will be assigned consecutive locations in the order of
declaration, with the first member assigned the location specified for the structure. The number of
locations consumed by a structure member is determined by applying the rules above recursively as
though the structure member were declared as an output variable of the same type.

Location layout qualifiers may be used on output variables declared as structures, but not on individual
members. Location layout qualifiers may not be used on output blocks or output block members.

The number of output locations available to a shader is limited. For fragment shaders, the limit is the
advertised number of draw buffers. For all other shaders, the limit is implementation-dependent and must
be no less than one fourth of the advertised maximum output component count. A program will fail to
link if any attached shader uses a location greater than or equal to the number of supported locations,
unless device-dependent optimizations are able to make the program fit within available hardware
resources.

A program will fail to link if any two fragment shader output variables are assigned to the same location
and index, or if any two output variables from the same non-fragment shader stage are assigned to the
same location. For fragment shader outputs, locations can be assigned using either a layout qualifier or
via the OpenGL API. For all shader types, a program will fail to link if explicit location assignments
leave the linker unable to find space for other variables without explicit assignments.

If an output variable with no location or index assigned in the shader text has a location specified through
the OpenGL API, the API-assigned location will be used. Otherwise, such variables will be assigned a
location by the linker. All such assignments will have a color index of zero. See section 3.9.2 “Shader
Execution” of the OpenGL Graphics System Specification for more details. A link error will occur if an
output variable is declared in multiple shaders of the same language with conflicting location or index
values.

For the purposes of determining if a non-fragment output matches an input from a subsequent shader
stage, the location layout qualifier (if any) must match.

4.4.2.1 Tessellation Control Outputs
Tessellation control shaders allow output layout qualifiers only on the interface qualifier out, not on an
output block, block member, or variable declaration. The output layout qualifier identifiers allowed for
tessellation control shaders include the vertex-count layout qualifier:

layout-qualifier-id
vertices = integer-constant

53

4 Variables and Types

The identifier vertices specifies the number of vertices in the output patch produced by the tessellation
control shader, which also specifies the number of times the tessellation control shader is invoked. It is an
error for the output vertex count to be less than or equal to zero, or greater than the implementation-
dependent maximum patch size.

The intrinsically declared tessellation control output array gl_out[] will also be sized by any output layout
declaration. Hence, the expression

gl_out.length()

will return the output patch vertex count specified in a previous output layout qualifier. For outputs
declared without an array size, including intrinsically declared outputs (i.e., gl_out), a layout must be
must be declared before any use of the method length() or other array use requires its size be known.

It is a compile-time error if the output patch vertex count specified in an output layout qualifier does not
match the array size specified in any output variable declaration in the same shader.

All tessellation control shader layout declarations in a program must specify the same output patch vertex
count. There must be at least one layout qualifier specifying an output patch vertex count in any program
containing tessellation control shaders; however, such a declaration is not required in all tessellation
control shaders.

4.4.2.2 Geometry Outputs
Geometry shaders can have three additional types of output layout identifiers: an output primitive type, a
maximum output vertex count, and per-output stream numbers. The primitive type and vertex count
identifiers are allowed only on the interface qualifier out, not on an output block, block member, or
variable declaration. The stream identifier is allowed on the interface qualifier out, on output blocks, and
on variable declarations.

The layout qualifier identifiers for geometry shader outputs are

layout-qualifier-id
points
line_strip
triangle_strip
max_vertices = integer-constant
stream = integer-constant

The primitive type identifiers points, line_strip, and triangle_strip are used to specify the type of output
primitive produced by the geometry shader, and only one of these is accepted. At least one geometry
shader (compilation unit) in a program must declare an output primitive type, and all geometry shader
output primitive type declarations in a program must declare the same primitive type. It is not required
that all geometry shaders in a program declare an output primitive type.

The vertex count identifier max_vertices is used to specify the maximum number of vertices the shader
will ever emit in a single invocation. At least one geometry shader (compilation unit) in a program must
declare a maximum output vertex count, and all geometry shader output vertex count declarations in a
program must declare the same count. It is not required that all geometry shaders in a program declare a
count.

54

4 Variables and Types

In this example,

layout(triangle_strip, max_vertices = 60) out; // order does not matter
layout(max_vertices = 60) out; // redeclaration okay
layout(triangle_strip) out; // redeclaration okay
layout(points) out; // error, contradicts triangle_strip
layout(max_vertices = 30) out; // error, contradicts 60

all outputs from the geometry shader are triangles and at most 60 vertices will be emitted by the shader. It
is an error for the maximum number of vertices to be greater than gl_MaxGeometryOutputVertices.

The identifier stream is used to specify that a geometry shader output variable or block is associated with
a particular vertex stream (numbered beginning with zero). A default stream number may be declared at
global scope by qualifying interface qualifier out as in this example:

layout(stream = 1) out;

The stream number specified in such a declaration replaces any previous default and applies to all
subsequent block and variable declarations until a new default is established. The initial default stream
number is zero.

Each output block or non-block output variable is associated with a vertex stream. If the block or variable
is declared with the stream identifier, it is associated with the specified stream; otherwise, it is associated
with the current default stream. A block member may be declared with a stream identifier, but the
specified stream must match the stream associated with the containing block. One example:

layout(stream=1) out; // default is now stream 1
out vec4 var1; // var1 gets default stream (1)
layout(stream=2) out Block1 { // "Block1" belongs to stream 2
 layout(stream=2) vec4 var2; // redundant block member stream decl
 layout(stream=3) vec2 var3; // ILLEGAL (must match block stream)
 vec3 var4; // belongs to stream 2
};
layout(stream=0) out; // default is now stream 0
out vec4 var5; // var5 gets default stream (0)
out Block2 { // "Block2" gets default stream (0)
 vec4 var6;
};
layout(stream=3) out vec4 var7; // var7 belongs to stream 3

Each vertex emitted by the geometry shader is assigned to a specific stream, and the attributes of the
emitted vertex are taken from the set of output blocks and variables assigned to the targeted stream. After
each vertex is emitted, the values of all output variables become undefined. Additionally, the output
variables associated with each vertex stream may share storage. Writing to an output variable associated
with one stream may overwrite output variables associated with any other stream. When emitting each
vertex, a geometry shader should write to all outputs associated with the stream to which the vertex will
be emitted and to no outputs associated with any other stream.

If a geometry shader output block or variable is declared more than once, all such declarations must
associate the variable with the same vertex stream. If any stream declaration specifies a non-existent
stream number, the shader will fail to compile.

55

4 Variables and Types

Built-in geometry shader outputs are always associated with vertex stream zero.

All geometry shader output layout declarations in a program must declare the same layout and same value
for max_vertices. If geometry shaders are in a program, there must be at least one geometry output
layout declaration somewhere in that program, but not all geometry shaders (compilation units) are
required to declare it.

4.4.2.3 Fragment Outputs
The built-in fragment shader variable gl_FragDepth may be redeclared using one of the following layout
qualifiers.

layout-qualifier-id
depth_any
depth_greater
depth_less
depth_unchanged

For example:

layout (depth_greater) out float gl_FragDepth;

The layout qualifier for gl_FragDepth constrains intentions of the final value of gl_FragDepth written
by any shader invocation. GL implementations are allowed to perform optimizations assuming that the
depth test fails (or passes) for a given fragment if all values of gl_FragDepth consistent with the layout
qualifier would fail (or pass). If the final value of gl_FragDepth is inconsistent with its layout qualifier,
the result of the depth test for the corresponding fragment is undefined. However, no error will be
generated in this case. If the depth test passes and depth writes are enabled, the value written to the depth
buffer is always the value of gl_FragDepth, whether or not it is consistent with the layout qualifier.

By default, gl_FragDepth is qualified as depth_any. When the layout qualifier for gl_FragDepth is
depth_any, the shader compiler will note any assignment to gl_FragDepth modifying it in an unknown
way, and depth testing will always be performed after the shader has executed. When the layout qualifier
is depth_greater, the GL can assume that the final value of gl_FragDepth is greater than or equal to the
fragment's interpolated depth value, as given by the z component of gl_FragCoord. When the layout
qualifier is depth_less, the GL can assume that any modification of gl_FragDepth will only decrease its
value. When the layout qualifier is depth_unchanged, the shader compiler will honor any modification to
gl_FragDepth, but the rest of the GL can assume that gl_FragDepth is not assigned a new value.

56

4 Variables and Types

Redeclarations of gl_FragDepth are performed as follows:

// redeclaration that changes nothing is allowed
out float gl_FragDepth;

// assume it may be modified in any way
layout (depth_any) out float gl_FragDepth;

// assume it may be modified such that its value will only increase
layout (depth_greater) out float gl_FragDepth;

// assume it may be modified such that its value will only decrease
layout (depth_less) out float gl_FragDepth;

// assume it will not be modified
layout (depth_unchanged) out float gl_FragDepth;

If gl_FragDepth is redeclared in any fragment shader in a program, it must be redeclared in all fragment
shaders in that program that have static assignments to gl_FragDepth. All redeclarations of
gl_FragDepth in all fragment shaders in a single program must have the same set of qualifiers. Within
any shader, the first redeclarations of gl_FragDepth must appear before any use of gl_FragDepth. The
built-in gl_FragDepth is only predeclared in fragment shaders, so redeclaring it in any other shader
language will be illegal.

4.4.3 Uniform Block Layout Qualifiers
Layout qualifiers can be used for uniform blocks, but not for non-block uniform declarations. The layout
qualifier identifiers for uniform blocks are

layout-qualifier-id
shared
packed
std140
row_major
column_major
binding = integer-constant

None of these have any semantic affect at all on the usage of the variables being declared; they only
describe how data is laid out in memory. For example, matrix semantics are always column-based, as
described in the rest of this specification, no matter what layout qualifiers are being used.

Uniform block layout qualifiers can be declared for global scope, on a single uniform block, or on a single
block member declaration.

57

4 Variables and Types

Default layouts are established (except for binding) at global scope for uniform blocks as

layout(layout-qualifier-id-list) uniform;

When this is done, the previous default qualification is first inherited and then overridden as per the
override rules listed below for each qualifier listed in the declaration. The result becomes the new default
qualification scoped to subsequent uniform block definitions.

The initial state of compilation is as if the following were declared:

layout(shared, column_major) uniform;

Explicitly declaring this in a shader will return defaults back to their initial state.

Uniform blocks can be declared with optional layout qualifiers, and so can their individual member
declarations. Such block layout qualification is scoped only to the content of the block. As with global
layout declarations, block layout qualification first inherits from the current default qualification and then
overrides it. Similarly, individual member layout qualification is scoped just to the member declaration,
and inherits from and overrides the block's qualification.

The shared qualifier overrides only the std140 and packed qualifiers; other qualifiers are inherited. The
compiler/linker will ensure that multiple programs and programmable stages containing this definition
will share the same memory layout for this block, as long as they also matched in their row_major and/or
column_major qualifications. This allows use of the same buffer to back the same block definition across
different programs.

The packed qualifier overrides only std140 and shared; other qualifiers are inherited. When packed is
used, no shareable layout is guaranteed. The compiler and linker can optimize memory use based on what
variables actively get used and on other criteria. Offsets must be queried, as there is no other way of
guaranteeing where (and which) variables reside within the block. Attempts to share a packed uniform
block across programs or stages will generally fail. However, implementations may aid application
management of packed blocks by using canonical layouts for packed blocks.

The std140 qualifier overrides only the packed and shared qualifiers; other qualifiers are inherited. The
layout is explicitly determined by this, as described in section 2.11.4 “Uniform Variables” under Standard
Uniform Block Layout of the OpenGL Graphics System Specification. Hence, as in shared above, the
resulting layout is shareable across programs.

Layout qualifiers on member declarations cannot use the shared, packed, or std140 qualifiers. These can
only be used at global scope or on a block declaration.

The row_major qualifier overrides only the column_major qualifier; other qualifiers are inherited. It only
affects the layout of matrices. Elements within a matrix row will be contiguous in memory.

The column_major qualifier overrides only the row_major qualifier; other qualifiers are inherited. It only
affects the layout of matrices. Elements within a matrix column will be contiguous in memory.

The binding identifier specifies the uniform buffer binding point corresponding to the uniform block,
which will be used to obtain the values of the member variables of the block. It is an error to specify the
binding identifier for the global scope or for block member declarations. Any uniform block declared
without a binding identifier is initially assigned to block binding point zero. After a program is linked, the

58

4 Variables and Types

binding points used for uniform blocks declared with or without a binding identifier can be updated by the
OpenGL API.

If the binding identifier is used with a uniform block instanced as an array then the first element of the
array takes the specified block binding and each subsequent element takes the next consecutive uniform
block binding point.

If the binding point for any uniform block instance is less than zero, or greater than or equal to the
implementation-dependent maximum number of uniform buffer bindings, a compilation error will occur.
When the binding identifier is used with a uniform block instanced as an array of size N, all elements of
the array from binding through binding + N – 1 must be within this range.

When multiple arguments are listed in a layout declaration, the affect will be the same as if they were
declared one at a time, in order from left to right, each in turn inheriting from and overriding the result
from the previous qualification.

For example

layout(row_major, column_major)

results in the qualification being column_major. Other examples:

layout(shared, row_major) uniform; // default is now shared and row_major

layout(std140) uniform Transform { // layout of this block is std140
 mat4 M1; // row_major
 layout(column_major) mat4 M2; // column major
 mat3 N1; // row_major
};

uniform T2 { // layout of this block is shared
 ...
};

layout(column_major) uniform T3 { // shared and column_major
 mat4 M3; // column_major
 layout(row_major) mat4 m4; // row major
 mat3 N2; // column_major
};

4.4.4 Opaque-Uniform Layout Qualifiers
Uniform layout qualifiers can be used to bind opaque uniform variables to specific buffers or units.
Texture image units can be bound to samplers, image units can be bound to images, and atomic counters
can be bound to buffers.

Details for specific to image formats and atomic counter bindings are given in the subsections below.

Image and sampler types both take the uniform layout qualifier identifier for binding:

layout-qualifier-id
binding = integer-constant

59

4 Variables and Types

The identifier binding specifies which unit will be bound. Any uniform sampler or image variable
declared without a binding qualifier is initially bound to unit zero. After a program is linked, the unit
referenced by a sampler or image uniform variable declared with or without a binding identifier can be
updated by the OpenGL API.

If the binding identifier is used with an array, the first element of the array takes the specified unit and
each subsequent element takes the next consecutive unit.

If the binding is less than zero, or greater than or equal to the implementation-dependent maximum
supported number of units, a compilation error will occur. When the binding identifier is used with an
array of size N, all elements of the array from binding through binding + N - 1 must be within this range.

A link error will result if two compilation units in a program specify different integer-constant bindings
for the same opaque-uniform name. However, it is not an error to specify a binding on some but not all
declarations for the same name, as shown in the examples below.

// in one compilation unit...
layout(binding=3) uniform sampler2D s; // s bound to unit 3

// in another compilation unit...
uniform sampler2D s; // okay, s still bound at 3

// in another compilation unit...
layout(binding=4) uniform sampler2D s; // ERROR: contradictory bindings

4.4.4.1 Atomic Counter Layout Qualifiers
The atomic counter qualifiers are

layout-qualifier-id
binding = integer-constant
offset = integer-constant

For example,

layout (binding = 2, offset = 4) uniform atomic_uint a;

will establish that the opaque handle to the atomic counter a will be bound to atomic counter buffer
binding point 2 at an offset of 4 basic machine units into that buffer. The default offset for binding point 2
will be post incremented by 4 (the size of an atomic counter).

A subsequent atomic counter declaration will inherit the previous (post incremented) offset. For example,
a subsequent declaration of

layout (binding = 2) uniform atomic_uint bar;

will establish that the atomic counter bar has a binding to buffer binding point 2 at an offset of 8 basic
machine units into that buffer. The offset for binding point 2 will again be post-incremented by 4 (the size
of an atomic counter).

When multiple variables are listed in a layout declaration, the effect will be the same as if they were
declared one at a time, in order from left to right.

60

4 Variables and Types

Binding points are not inherited, only offsets. Each binding point tracks its own current default offset for
inheritance of subsequent variables using the same binding. The initial state of compilation is that all
binding points have an offset of 0. The offset can be set per binding point at global scope (without
declaring a variable). For example,

layout (binding = 2, offset = 4) uniform atomic_uint;

Establishes that the next atomic_uint declaration for binding point 2 will inherit offset 4 (but does not
establish a default binding):

layout (binding = 2) uniform atomic_uint bar; // offset is 4
layout (offset = 8) uniform atomic_uint bar; // error, no default binding

Atomic counters may share the same binding point, but if a binding is shared, their offsets must be either
explicitly or implicitly (from inheritance) unique and non overlapping.

Example valid uniform declarations, assuming top of shader:

layout (binding=3, offset=4) uniform atomic_uint a; // offset = 4
layout (binding=2) uniform atomic_uint b; // offset = 0
layout (binding=3) uniform atomic_uint c; // offset = 8
layout (binding=2) uniform atomic_uint d; // offset = 4

Example of an invalid uniform declaration:

layout (offset=4) … // error, must include binding
layout (binding=1, offset=0) … a; // okay
layout (binding=2, offset=0) … b; // okay
layout (binding=1, offset=0) … c; // error, offsets must not be shared
 // between a and c
layout (binding=1, offset=2) … d; // error, overlaps offset 0 of a

It is a compile-time error to bind an atomic counter with a binding value greater than or equal to
gl_MaxAtomicCounterBindings.

4.4.4.2 Format Layout Qualifiers
Format layout qualifiers can be used on image variable declarations (those declared with a basic type
having “image” in its keyword). The format layout qualifier identifiers for image variable declarations
are

layout-qualifier-id
float-image-format-qualifier
int-image-format-qualifier
uint-image-format-qualifier
binding = integer-constant

float-image-format-qualifier
rgba32f
rgba16f
rg32f
rg16f

61

4 Variables and Types

r11f_g11f_b10f
r32f
r16f
rgba16
rgb10_a2
rgba8
rg16
rg8
r16
r8
rgba16_snorm
rgba8_snorm
rg16_snorm
rg8_snorm
r16_snorm
r8_snorm

int-image-format-qualifier
rgba32i
rgba16i
rgba8i
rg32i
rg16i
rg8i
r32i
r16i
r8i

uint-image-format-qualifier
rgba32ui
rgba16ui
rgb10_a2ui
rgba8ui
rg32ui
rg16ui
rg8ui
r32ui
r16ui
r8ui

A format layout qualifier specifies the image format associated with a declared image variable. Only one
format qualifier may be specified for any image variable declaration. For image variables with floating-
point component types (keywords starting with “image”), signed integer component types (keywords
starting with “iimage”), or unsigned integer component types (keywords starting with “uimage”), the
format qualifier used must match the float-image-format-qualifier, int-image-format-qualifier, or uint-
image-format-qualifier grammar rules, respectively. It is an error to declare an image variable where the
format qualifier does not match the image variable type.

62

4 Variables and Types

Any image variable used for image loads or atomic operations must specify a format layout qualifier; it is
an error to pass an image uniform variable or function parameter declared without a format layout
qualifier to an image load or atomic function.

The binding identifier was described in section 4.4.4 “Uniform Layout Qualifiers”.

Uniforms not qualified with writeonly must have a format layout qualifier. Note that an image variable
passed to a function for read access cannot be declared as writeonly and hence must have been declared
with a format layout qualifier.

4.5 Interpolation Qualifiers
Inputs and outputs that could be interpolated can be further qualified by at most one of the following
interpolation qualifiers:

Qualifier Meaning
smooth perspective correct interpolation

flat no interpolation

noperspective linear interpolation

The presence of and type of interpolation is controlled by the above interpolation qualifiers as well as the
auxiliary storage qualifiers centroid and sample. The auxiliary storage qualifier patch is not used for
interpolation; it is an error to use interpolation qualifiers with patch.

A variable qualified as flat will not be interpolated. Instead, it will have the same value for every
fragment within a triangle. This value will come from a single provoking vertex, as described by the
OpenGL Graphics System Specification. A variable may be qualified as flat can also be qualified as
centroid or sample, which will mean the same thing as qualifying it only as flat.

A variable qualified as smooth will be interpolated in a perspective-correct manner over the primitive
being rendered. Interpolation in a perspective correct manner is specified in equation 3.6 in the OpenGL
Graphics System Specification, section 3.5 “Line Segments”.

A variable qualified as noperspective must be interpolated linearly in screen space, as described in
equation 3.7 in the OpenGL Graphics System Specification, section 3.5 “Line Segments”.

When multi-sample rasterization is disabled, or for fragment shader input variables qualified with neither
centroid nor sample, the value of the assigned variable may be interpolated anywhere within the pixel
and a single value may be assigned to each sample within the pixel, to the extent permitted by the
OpenGL Graphics System Specification.

When multisample rasterization is enabled, centroid and sample may be used to control the location and
frequency of the sampling of the qualified fragment shader input. If a fragment shader input is qualified
with centroid, a single value may be assigned to that variable for all samples in the pixel, but that value
must be interpolated to a location that lies in both the pixel and in the primitive being rendered, including
any of the pixel's samples covered by the primitive. Because the location at which the variable is
interpolated may be different in neighboring pixels, and derivatives may be computed by computing
differences between neighboring pixels, derivatives of centroid-sampled inputs may be less accurate than
those for non-centroid interpolated variables. If a fragment shader input is qualified with sample, a

63

4 Variables and Types

separate value must be assigned to that variable for each covered sample in the pixel, and that value must
be sampled at the location of the individual sample.

The type and presence of interpolation qualifiers of variables with the same name declared in all linked
shaders for the same cross-stage interface must match, otherwise the link command will fail.

When comparing an output from one stage to an input of a subsequent stage, the input and output don't
match if their interpolation qualifiers (or lack thereof) are not the same.

4.5.1 Redeclaring Built-in Interpolation Variables in the Compatibility Profile
The following predeclared variables can be redeclared with an interpolation qualifier when using the
compatibility profile:

Vertex, tessellation control, tessellation evaluation, and geometry languages:

gl_FrontColor
gl_BackColor
gl_FrontSecondaryColor
gl_BackSecondaryColor

Fragment language:

gl_Color
gl_SecondaryColor

For example,

in vec4 gl_Color; // predeclared by the fragment language
flat in vec4 gl_Color; // redeclared by user to be flat
flat in vec4 gl_FrontColor; // input to geometry shader, no “gl_in[]”
flat out vec4 gl_FrontColor; // output from geometry shader

Ideally, these are redeclared as part of the redeclaration of an interface block, as described in section 7.1.1
“Compatibility Profile Built-In Language Variables”. However, for the above purpose, they can be
redeclared as individual variables at global scope, outside an interface block. A compilation error will
result if a shader has both an interface block redeclaration and a separate redeclaration of a member of
that interface block outside the interface block redeclaration.

If gl_Color is redeclared with an interpolation qualifier, then gl_FrontColor and gl_BackColor (if they
are written to) must also be redeclared with the same interpolation qualifier, and vice versa. If
gl_SecondaryColor is redeclared with an interpolation qualifier, then gl_FrontSecondaryColor and
gl_BackSecondaryColor (if they are written to) must also be redeclared with the same interpolation
qualifier, and vice versa. This qualifier matching on predeclared variables is only required for variables
that are statically used within the shaders in a program.

64

4 Variables and Types

4.6 Parameter Qualifiers
In addition to precision qualifiers and memory qualifiers, parameters can have these parameter qualifiers.

Qualifier Meaning
< none: default > same is in

const for function parameters that cannot be written to

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized
for use when passed in

inout for function parameters passed both into and out of a function

Parameter qualifiers are discussed in more detail in section 6.1.1 “Function Calling Conventions”.

4.7 Precision and Precision Qualifiers
Precision qualifiers are added for code portability with OpenGL ES, not for functionality. They have the
same syntax as in OpenGL ES, as described below, but they have no semantic meaning, which includes no
effect on the precision used to store or operate on variables.

If an extension adds in the same semantics and functionality in the OpenGL ES 2.0 specification for
precision qualifiers, then the extension is allowed to reuse the keywords below for that purpose.

For the purposes of determining if an output from one shader stage matches an input of the next stage, the
precision qualifier need not match.

4.7.1 Range and Precision
The precision of stored single- and double-precision floating-point variables is defined by the IEEE 754
standard for 32-bit and 64-bit floating-point numbers. This includes support for NaNs (Not a Number)
and Infs (positive or negative infinities).

The following rules apply to both single and double-precision operations: Infinities and zeros are
generated as dictated by IEEE, but subject to the precisions allowed in the following table and subject to
allowing positive and negative zeros to be interchanged. However, dividing a non-zero by 0 results in the
appropriately signed IEEE Inf: If both positive and negative zeros are implemented, the correctly signed
Inf will be generated, otherwise positive Inf is generated. Any denormalized value input into a shader or
potentially generated by any operation in a shader can be flushed to 0. The rounding mode cannot be set
and is undefined. NaNs are not required to be generated. Support for signaling NaNs is not required and
exceptions are never raised. Operations and built-in functions that operate on a NaN are not required to
return a NaN as the result.

Precisions are expressed in terms of maximum relative error in units of ULP (units in the last place),
unless otherwise noted.

65

4 Variables and Types

For single precision operations, precisions are required as follows:

Operation Precision

a + b, a – b, a * b Correctly rounded.

<, <=, ==, >, >= Correct result.

a / b, 1.0 / b 2.5 ULP for b in the range [2-126, 2126].

a * b + c Correctly rounded single operation or sequence of
two correctly rounded operations.

fma() Inherited from a * b + c.

pow(x, y) Inherited from exp2 (x * log2 (y)).

exp (x), exp2 (x) (3 + 2 * |x|) ULP.

log (), log2 () 3 ULP outside the range [0.5, 2.0].

Absolute error < 2-21 inside the range [0.5, 2.0].

sqrt () Inherited from 1.0 / inversesqrt().

inversesqrt () 2 ULP.

implicit and explicit
conversions between types

Correctly rounded.

Built-in functions defined in the specification with an equation built from the above operations inherit the
above errors. These include, for example, the geometric functions, the common functions, and many of
the matrix functions. Built-in functions not listed above and not defined as equations of the above have
undefined precision. These include, for example, the trigonometric functions and determinant.

The precision of double-precision operations is at least that of single precision.

4.7.2 Precision Qualifiers
Any floating point or any integer declaration can have the type preceded by one of these precision
qualifiers:

Qualifier Meaning
highp None.

mediump None.

lowp None.

66

4 Variables and Types

For example:

lowp float color;
out mediump vec2 P;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

Literal constants do not have precision qualifiers. Neither do Boolean variables. Neither do floating point
constructors nor integer constructors when none of the constructor arguments have precision qualifiers.

Precision qualifiers, as with other qualifiers, do not effect the basic type of the variable. In particular,
there are no constructors for precision conversions; constructors only convert types. Similarly, precision
qualifiers, as with other qualifiers, do not contribute to function overloading based on parameter types. As
discussed in the next chapter, function input and output is done through copies, and therefore qualifiers do
not have to match.

4.7.3 Default Precision Qualifiers
The precision statement

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int or float, and the
precision-qualifier can be lowp, mediump, or highp. Any other types or qualifiers will result in an error.
If type is float, the directive applies to non-precision-qualified floating point type (scalar, vector, and
matrix) declarations. If type is int, the directive applies to all non-precision-qualified integer type (scalar,
vector, signed, and unsigned) declarations. This includes global variable declarations, function return
declarations, function parameter declarations, and local variable declarations.

Non-precision qualified declarations will use the precision qualifier specified in the most recent precision
statement that is still in scope. The precision statement has the same scoping rules as variable
declarations. If it is declared inside a compound statement, its effect stops at the end of the innermost
statement it was declared in. Precision statements in nested scopes override precision statements in outer
scopes. Multiple precision statements for the same basic type can appear inside the same scope, with later
statements overriding earlier statements within that scope.

The vertex, tessellation, and geometry languages have the following predeclared globally scoped default
precision statements:

precision highp float;
precision highp int;

The fragment language has the following predeclared globally scoped default precision statements:

precision mediump int;
precision highp float;

67

4 Variables and Types

4.7.4 Available Precision Qualifiers
The built-in macro GL_FRAGMENT_PRECISION_HIGH is defined to 1:

#define GL_FRAGMENT_PRECISION_HIGH 1

This macro is available in the vertex, tessellation, geometry, and fragment languages.

4.8 Variance and the Invariant Qualifier
In this section, variance refers to the possibility of getting different values from the same expression in
different programs. For example, say two vertex shaders, in different programs, each set gl_Position with
the same expression in both shaders, and the input values into that expression are the same when both
shaders run. It is possible, due to independent compilation of the two shaders, that the values assigned to
gl_Position are not exactly the same when the two shaders run. In this example, this can cause problems
with alignment of geometry in a multi-pass algorithm.

In general, such variance between shaders is allowed. When such variance does not exist for a particular
output variable, that variable is said to be invariant.

4.8.1 The Invariant Qualifier
To ensure that a particular output variable is invariant, it is necessary to use the invariant qualifier. It can
either be used to qualify a previously declared variable as being invariant

invariant gl_Position; // make existing gl_Position be invariant

out vec3 Color;
invariant Color; // make existing Color be invariant

or as part of a declaration when a variable is declared

invariant centroid out vec3 Color;

Only variables output from a shader (including those that are then input to a subsequent shader) can be
candidates for invariance. This includes user-defined output variables and the built-in output variables.
As only outputs need be declared with invariant, an output from one shader stage will still match an input
of a subsequent stage without the input being declared as invariant.

Input or output instance names on blocks are not used when redeclaring built-in variables.

The invariant keyword can be followed by a comma separated list of previously declared identifiers. All
uses of invariant must be at the global scope, and before any use of the variables being declared as
invariant.

To guarantee invariance of a particular output variable across two programs, the following must also be
true:

• The output variable is declared as invariant in both programs.

• The same values must be input to all shader input variables consumed by expressions and flow control
contributing to the value assigned to the output variable.

68

4 Variables and Types

• The texture formats, texel values, and texture filtering are set the same way for any texture function
calls contributing to the value of the output variable.

• All input values are all operated on in the same way. All operations in the consuming expressions and
any intermediate expressions must be the same, with the same order of operands and same
associativity, to give the same order of evaluation. Intermediate variables and functions must be
declared as the same type with the same explicit or implicit precision qualifiers. Any control flow
affecting the output value must be the same, and any expressions consumed to determine this control
flow must also follow these invariance rules.

• All the data flow and control flow leading to setting the invariant output variable reside in a single
compilation unit.

Essentially, all the data flow and control flow leading to an invariant output must match.

Initially, by default, all output variables are allowed to be variant. To force all output variables to be
invariant, use the pragma

#pragma STDGL invariant(all)

before all declarations in a shader. If this pragma is used after the declaration of any variables or
functions, then the set of outputs that behave as invariant is undefined. It is an error to use this pragma in
a fragment shader.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be degraded
by use of invariance. Hence, use of this pragma is intended as a debug aid, to avoid individually declaring
all output variables as invariant.

4.8.2 Invariance of Constant Expressions
Invariance must be guaranteed for constant expressions. A particular constant expression must evaluate to
the same result if it appears again in the same shader or a different shader. This includes the same
expression appearing two shaders of the same language or shaders of two different languages.

Constant expressions must evaluate to the same result when operated on as already described above for
invariant variables.

4.9 The Precise Qualifier
Some algorithms require floating-point computations to exactly follow the order of operations specified in
the source code and to treat all operations consistently, even if the implementation supports optimizations
that could produce nearly equivalent results with higher performance. For example, many GL
implementations support a "multiply-add" instruction that can compute a floating-point expression such as

result = (a * b) + (c * d);

in two operations instead of three operations; one multiply and one multiply-add instead of two multiplies
and one add. The result of a floating-point multiply-add may not always be identical to first doing a
multiply yielding a floating-point result and then doing a floating-point add. Hence, in this example, the
two multiply operations would not be treated consistently; the two multiplies could effectively appear to
have differing precisions. Without any qualifiers, implementations are permitted to perform such

69

4 Variables and Types

optimizations that effectively modify the order or number of operations used to evaluate an expression,
even if those optimizations may produce slightly different results relative to unoptimized code.

The qualifier precise will ensure that operations contributing to a variable's value are done in their stated
order and are done with operator consistency. Order is determined by operator precedence and
parenthesis, as described in section 5.1 “Operators”. Operator consistency means for each particular
operator, for example the multiply operator (*), its operation is always computed with the same
precision. Note this effectively prevents fusing multiple operations into a single operation.

For example,

precise out vec4 position;

declares that operations used to produce the value of position must be performed in exactly the order
specified in the source code and with all operators being treated consistently. As with the invariant
qualifier (section 4.8.1), the precise qualifier may be used to qualify a built-in or previously declared user-
defined variable as being precise:

out vec3 Color;
precise Color; // make existing Color be precise

This qualifier will affect the evaluation of an r-value in a particular function if and only if the result is
eventually consumed in the same function by an l-value qualified as precise. Any other expressions
within a function are not affected, including return values and output parameters not declared as precise
but that are eventually consumed outside the function by an variable qualified as precise.

70

4 Variables and Types

Some examples of the use of precise:

in vec4 a, b, c, d;
precise out vec4 v;

float func(float e, float f, float g, float h)
{
 return (e*f) + (g*h); // no constraint on order or
 // operator consistency
}

float func2(float e, float f, float g, float h)
{
 precise float result = (e*f) + (g*h); // ensures same precision for
 // the two multiplies
 return result;
}

float func3(float i, float j, precise out float k)
{
 k = i * i + j; // precise, due to <k> declaration
}

void main()
{
 vec4 r = vec3(a * b); // precise, used to compute v.xyz
 vec4 s = vec3(c * d); // precise, used to compute v.xyz
 v.xyz = r + s; // precise
 v.w = (a.w * b.w) + (c.w * d.w); // precise
 v.x = func(a.x, b.x, c.x, d.x); // values computed in func()
 // are NOT precise
 v.x = func2(a.x, b.x, c.x, d.x); // precise!
 func3(a.x * b.x, c.x * d.x, v.x); // precise!
}

For the purposes of determining if an output from one shader stage matches an input of the next stage, the
precise qualifier need not match between the input and the output.

4.10 Memory Qualifiers
Only variables declared as image types (the basic opaque types with “image” in their keyword) can be
qualified with a memory qualifier.

71

4 Variables and Types

Variables declared as image types can qualified with one or more of the following memory qualifiers:

Qualifier Meaning
coherent memory variable where reads and writes are coherent with reads and

writes from other shader invocations

volatile memory variable whose underlying value may be changed at any point
during shader execution by some source other than the current shader
invocation

restrict memory variable where use of that variable is the only way to read
and write the underlying memory in the relevant shader stage

readonly memory variable that can be used to read the underlying memory, but
cannot be used to write the underlying memory

writeonly memory variable that can be used to write the underlying memory, but
cannot be used to read the underlying memory

Memory accesses to image variables declared using the coherent qualifier are performed coherently with
similar accesses from other shader invocations. In particular, when reading a variable declared as
coherent, the values returned will reflect the results of previously completed writes performed by other
shader invocations. When writing a variable declared as coherent, the values written will be reflected in
subsequent coherent reads performed by other shader invocations. As described in the Section 2.11.13 of
the OpenGL Specification, shader memory reads and writes complete in a largely undefined order. The
built-in function memoryBarrier() can be used if needed to guarantee the completion and relative
ordering of memory accesses performed by a single shader invocation.

When accessing memory using variables not declared as coherent, the memory accessed by a shader may
be cached by the implementation to service future accesses to the same address. Memory stores may be
cached in such a way that the values written may not be visible to other shader invocations accessing the
same memory. The implementation may cache the values fetched by memory reads and return the same
values to any shader invocation accessing the same memory, even if the underlying memory has been
modified since the first memory read. While variables not declared as coherent may not be useful for
communicating between shader invocations, using non-coherent accesses may result in higher
performance.

Memory accesses to image variables declared using the volatile qualifier must treat the underlying
memory as though it could be read or written at any point during shader execution by some source other
than the executing shader invocation. When a volatile variable is read, its value must be re-fetched from
the underlying memory, even if the shader invocation performing the read had previously fetched its value
from the same memory. When a volatile variable is written, its value must be written to the underlying
memory, even if the compiler can conclusively determine that its value will be overwritten by a
subsequent write. Since the external source reading or writing a volatile variable may be another shader
invocation, variables declared as volatile are automatically treated as coherent.

Memory accesses to image variables declared using the restrict qualifier may be compiled assuming that
the variable used to perform the memory access is the only way to access the underlying memory using
the shader stage in question. This allows the compiler to coalesce or reorder loads and stores using
restrict-qualified image variables in ways that wouldn't be permitted for image variables not so qualified,

72

4 Variables and Types

because the compiler can assume that the underlying image won't be read or written by other code.
Applications are responsible for ensuring that image memory referenced by variables qualified with
restrict will not be referenced using other variables in the same scope; otherwise, accesses to restrict-
qualified variables will have undefined results.

Memory accesses to image variables declared using the readonly qualifier may only read the underlying
memory, which is treated as read-only memory and cannot be written to. It is an error to pass an image
variable qualified with readonly to imageStore() or other built-in functions that modify image memory.

Memory accesses to image variables declared using the writeonly qualifier may only write the underlying
memory; the underlying memory cannot be read. It is an error to pass an image variable qualified with
writeonly to imageLoad() or other built-in functions that read image memory.

The values of image variables qualified with coherent, volatile, restrict, readonly, or writeonly may not
be passed to functions whose formal parameters lack such qualifiers. (See section 6.1 “Function
Definitions” for more detail on function calling.) It is legal to have additional qualifiers on a formal
parameter, but not to have fewer.

vec4 funcA(restrict image2D a) { ... }
vec4 funcB(image2D a) { ... }
layout(rgba32f) uniform image2D img1;
layout(rgba32f) coherent uniform image2D img2;

funcA(img1); // OK, adding "restrict" is allowed
funcB(img2); // illegal, stripping "coherent" is not

Layout qualifiers cannot be used on formal function parameters, but they are not included in parameter
matching.

Note that the use of const in an image variable declaration is qualifying the const-ness of variable being
declared, not the image it refers to: The qualifier readonly qualifies the image memory (as accessed
through that variable) while const qualifiers the variable itself.

4.11 Order of Qualification
When multiple qualifiers are present in a declaration, they may appear in any order, but they must all
appear before the type. The layout qualifier is the only qualifier that can appear more than once. Further,
a declaration can have at most one storage qualifier, at most one auxiliary storage qualifier, and at most
one interpolation qualifier. Multiple memory qualifiers can be used. Any violation of these rules will
cause a compile-time error.

73

5 Operators and Expressions

5.1 Operators
The OpenGL Shading Language has the following operators.

Precedence Operator Class Operators Associativity
 1 (highest) parenthetical grouping () NA

2

array subscript
function call and constructor structure
field or method selector, swizzle
post fix increment and decrement

[]
()
.
++ --

Left to Right

3
prefix increment and decrement
unary

++ --
+ - ~ !

Right to Left

4 multiplicative * / % Left to Right

5 additive + - Left to Right

6 bit-wise shift << >> Left to Right

7 relational < > <= >= Left to Right

8 equality == != Left to Right

9 bit-wise and & Left to Right

10 bit-wise exclusive or ^ Left to Right

11 bit-wise inclusive or | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or | | Left to Right

15 selection ? : Right to Left

16

Assignment
arithmetic assignments

=
+= -=
*= /=
%= <<= >>=
&= ^= |=

Right to Left

17 (lowest) sequence , Left to Right

There is no address-of operator nor a dereference operator. There is no typecast operator; constructors
are used instead.

74

5 Operators and Expressions

5.2 Array Operations
These are now described in section 5.7 “Structure and Array Operations”.

5.3 Function Calls
If a function returns a value, then a call to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in section 6.1 “Function Definitions” .

5.4 Constructors
Constructors use the function call syntax, where the function name is a type, and the call makes an object
of that type. Constructors are used the same way in both initializers and expressions. (See section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

In general, constructors are not built-in functions with predetermined prototypes. For arrays and
structures, there must be exactly one argument in the constructor for each element or member. For the
other types, the arguments must provide a sufficient number of components to perform the initialization,
and it is an error to include so many arguments that they cannot all be used. Detailed rules follow. The
prototypes actually listed below are merely a subset of examples.

5.4.1 Conversion and Scalar Constructors
Converting between scalar types is done as the following prototypes indicate:

int(uint) // converts an unsigned integer to a signed integer
int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
int(double) // converts a double value to a signed integer
uint(int) // converts a signed integer value to an unsigned integer
uint(bool) // converts a Boolean value to an unsigned integer
uint(float) // converts a float value to an unsigned integer
uint(double) // converts a double value to an unsigned integer
bool(int) // converts a signed integer value to a Boolean
bool(uint) // converts an unsigned integer value to a Boolean value
bool(float) // converts a float value to a Boolean
bool(double) // converts a double value to a Boolean
float(int) // converts a signed integer value to a float
float(uint) // converts an unsigned integer value to a float value
float(bool) // converts a Boolean value to a float
float(double)// converts a double value to a float
double(int) // converts a signed integer value to a double
double(uint) // converts an unsigned integer value to a double
double(bool) // converts a Boolean value to a double
double(float)// converts a float value to a double

75

5 Operators and Expressions

When constructors are used to convert any floating-point type to an integer type, the fractional part of the
floating-point value is dropped. It is undefined to convert a negative floating point value to an uint.

When a constructor is used to convert any integer or floating-point type to a bool, 0 and 0.0 are converted
to false, and non-zero values are converted to true. When a constructor is used to convert a bool to any
integer or floating-point type, false is converted to 0 or 0.0, and true is converted to 1 or 1.0.

The constructor int(uint) preserves the bit pattern in the argument, which will change the argument's
value if its sign bit is set. The constructor uint(int) preserves the bit pattern in the argument, which will
change its value if it is negative.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

5.4.2 Vector and Matrix Constructors
Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized
to 0.0.

If a vector is constructed from multiple scalars, one or more vectors, or one or more matrices, or a mixture
of these, the vector's components will be constructed in order from the components of the arguments. The
arguments will be consumed left to right, and each argument will have all its components consumed, in
order, before any components from the next argument are consumed. Similarly for constructing a matrix
from multiple scalars or vectors, or a mixture of these. Matrix components will be constructed and
consumed in column major order. In these cases, there must be enough components provided in the
arguments to provide an initializer for every component in the constructed value. It is an error to provide
extra arguments beyond this last used argument.

If a matrix is constructed from a matrix, then each component (column i, row j) in the result that has a
corresponding component (column i, row j) in the argument will be initialized from there. All other
components will be initialized to the identity matrix. If a matrix argument is given to a matrix constructor,
it is an error to have any other arguments.

If the basic type (bool, int, float, or double) of a parameter to a constructor does not match the basic type
of the object being constructed, the scalar construction rules (above) are used to convert the parameters.

76

5 Operators and Expressions

Some useful vector constructors are as follows:

vec3(float) // initializes each component of the vec3 with the float
vec4(ivec4) // makes a vec4 with component-wise conversion
vec4(mat2) // the vec4 is column 0 followed by column 1

vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // uses 4 Boolean conversions

vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0
vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

That is, result[i][j] is set to the float argument for all i = j and set to 0 for all i≠ j.

77

5 Operators and Expressions

To initialize a matrix by specifying vectors or scalars, the components are assigned to the matrix elements
in column-major order.

mat2(vec2, vec2); // one column per argument
mat3(vec3, vec3, vec3); // one column per argument
mat4(vec4, vec4, vec4, vec4); // one column per argument
mat3x2(vec2, vec2, vec2); // one column per argument

dmat2(dvec2, dvec2);
dmat3(dvec3, dvec3, dvec3);
dmat4(dvec4, dvec4, dvec4, dvec4);

mat2(float, float, // first column
 float, float); // second column

mat3(float, float, float, // first column
 float, float, float, // second column
 float, float, float); // third column

mat4(float, float, float, float, // first column
 float, float, float, float, // second column
 float, float, float, float, // third column
 float, float, float, float); // fourth column

mat2x3(vec2, float, // first column
 vec2, float); // second column

dmat2x4(dvec3, double, // first column
 double, dvec3) // second column

A wide range of other possibilities exist, to construct a matrix from vectors and scalars, as long as enough
components are present to initialize the matrix. To construct a matrix from a matrix:

mat3x3(mat4x4); // takes the upper-left 3x3 of the mat4x4
mat2x3(mat4x2); // takes the upper-left 2x2 of the mat4x4, last row is 0,0
mat4x4(mat3x3); // puts the mat3x3 in the upper-left, sets the lower right
 // component to 1, and the rest to 0

5.4.3 Structure Constructors
Once a structure is defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
 float intensity;
 vec3 position;
};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

78

5 Operators and Expressions

The arguments to the constructor will be used to set the structure's members, in order, using one argument
per member. Each argument must be the same type as the member it sets, or be a type that can be
converted to the member's type according to section 4.1.10 “Implicit Conversions.”

Structure constructors can be used as initializers or in expressions.

5.4.4 Array Constructors
Array types can also be used as constructor names, which can then be used in expressions or initializers.
For example,

const float c[3] = float[3](5.0, 7.2, 1.1);
const float d[3] = float[](5.0, 7.2, 1.1);

float g;
...
float a[5] = float[5](g, 1, g, 2.3, g);
float b[3];

b = float[3](g, g + 1.0, g + 2.0);

There must be exactly the same number of arguments as the size of the array being constructed. If no size
is present in the constructor, then the array is explicitly sized to the number of arguments provided. The
arguments are assigned in order, starting at element 0, to the elements of the constructed array. Each
argument must be the same type as the element type of the array, or be a type that can be converted to the
element type of the array according to section 4.1.10 “Implicit Conversions.”

5.5 Vector and Scalar Components and Length
The names of the components of a vector or scalar are denoted by a single letter. As a notational
convenience, several letters are associated with each component based on common usage of position,
color or texture coordinate vectors. The individual components can be selected by following the variable
name with period (.) and then the component name.

The component names supported are:

{x, y, z, w} Useful when accessing vectors that represent points or normals

{r, g, b, a} Useful when accessing vectors that represent colors

{s, t, p, q} Useful when accessing vectors that represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.
They are also the names of the only component in a scalar.

Note that the third component of the texture coordinate set, r in OpenGL, has been renamed p so as to
avoid the confusion with r (for red) in a color.

Accessing components beyond those declared for the type is an error so, for example:

79

5 Operators and Expressions

vec2 pos;
float height;
pos.x // is legal
pos.z // is illegal
height.x // is legal
height.y // is illegal

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from
 // the same set.

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz= pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)
float f = 1.2;
vec4 dup = f.xxxx; // dup = (1.2, 1.2, 1.2, 1.2)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector or scalar r-value. Any resulting vector of any operation must be a valid
vector in the language; hence the following is illegal:

vec4 f;
vec4 g = pos.xyzwxy.xyzw; // illegal; pos.xyzwxy is non-existent “vec6”

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must be applied to an l-value of vector or scalar type, contain no duplicate
components, and it results in an l-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors (but not to scalars) to provide numeric indexing.
So in

vec4 pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, as well as a generic way of accessing components. Any integer expression can be used as the

80

5 Operators and Expressions

subscript. The first component is at index zero. Reading from or writing to a vector using a constant
integral expression with a value that is negative or greater than or equal to the size of the vector is illegal.
When indexing with non-constant expressions, behavior is undefined if the index is negative, or greater
than or equal to the size of the vector.

The length method may be applied to vectors (but not scalars). The result is the number of components in
the vector. For example,

vec3 v;
const int L = v.length();

sets the constant L to 3. The type returned by .length() on a vector is int.

5.6 Matrix Components
The components of a matrix can be accessed using array subscripting syntax. Applying a single subscript
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a
vector of the same size as the matrix. The leftmost column is column 0. A second subscript would then
operate on the resulting vector, as defined earlier for vectors. Hence, two subscripts select a column and
then a row.

mat4 m;
m[1] = vec4(2.0); // sets the second column to all 2.0
m[0][0] = 1.0; // sets the upper left element to 1.0
m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix with a non-constant
expression. It is an error to access a matrix with a constant expression that is outside the bounds of the
matrix.

The length method may be applied to matrices. The result is the number of columns of the matrix. For
example,

mat3x4 v;
const int L = v.length();

sets the constant L to 3. The type returned by .length() on a matrix is int.

5.7 Structure and Array Operations
The members of a structure and the length method of an array are selected using the period (.).

In total, only the following operators are allowed to operate on arrays and structures as whole entities:

 field selector .

equality == !=

assignment =

indexing (arrays only) []

81

5 Operators and Expressions

The equality operators and assignment operator are only allowed if the two operands are same size and
type. Structure types must be of the same declared structure. Both array operands must be explicitly
sized. When using the equality operators, two structures are equal if and only if all the members are
component-wise equal, and two arrays are equal if and only if all the elements are element-wise equal.

Array elements are accessed using the array subscript operator ([]). An example of accessing an array
element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Array elements are accessed using an expression whose type is int or uint.

Behavior is undefined if a shader subscripts an array with an index less than 0 or greater than or equal to
the size the array was declared with.

Arrays can also be accessed with the method operator (.) and the length method to query the size of the
array:

lightIntensity.length() // return the size of the array

5.8 Assignments
Assignments of values to variable names are done with the assignment operator (=):

lvalue-expression = rvalue-expression

The lvalue-expression evaluates to an l-value. The assignment operator stores the value of rvalue-
expression into the l-value and returns an r-value with the type and precision of lvalue-expression. The
lvalue-expression and rvalue-expression must have the same type, or the expression must have a type in
the table in section 4.1.10 “Implicit Conversions” that converts to the type of lvalue-expression, in which
case an implicit conversion will be done on the rvalue-expression before the assignment is done. Any
other desired type-conversions must be specified explicitly via a constructor. L-values must be writable.
Variables that are built-in types, entire structures or arrays, structure members, l-values with the field
selector (.) applied to select components or swizzles without repeated fields, l-values within parentheses,
and l-values dereferenced with the array subscript operator ([]) are all l-values. Other binary or unary
expressions, function names, swizzles with repeated fields, and constants cannot be l-values. The ternary
operator (?:) is also not allowed as an l-value.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.

The other assignment operators are

• add into (+=)

• subtract from (-=)

• multiply into (*=)

• divide into (/=)

• modulus into (%=)

• left shift by (<<=)

82

5 Operators and Expressions

• right shift by (>>=)

• and into (&=)

• inclusive-or into (|=)

• exclusive-or into (^=)

where the general expression

 lvalue op= expression

is equivalent to

 lvalue = lvalue op expression

where op is as described below, and the l-value and expression must satisfy the semantic requirements of
both op and equals (=).

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

5.9 Expressions
Expressions in the shading language are built from the following:

• Constants of type bool, all integer types, all floating-point types, all vector types, and all matrix types.

• Constructors of all types.

• Variable names of all types.

• An array name with the length method applied.

• Subscripted array names.

• Function calls that return values.

• Component field selectors and array subscript results.

• Parenthesized expression. Any expression can be parenthesized. Parentheses can be used to group
operations. Operations within parentheses are done before operations across parentheses.

• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on integer and
floating-point scalars, vectors, and matrices. If the fundamental types in the operands do not match,
then the conversions from section 4.1.10 “Implicit Conversions” are applied to create matching types.
All arithmetic binary operators result in the same fundamental type (signed integer, unsigned integer,
single-precision floating point, or double-precision floating point) as the operands they operate on,
after operand type conversion. After conversion, the following cases are valid

• The two operands are scalars. In this case the operation is applied, resulting in a scalar.

• One operand is a scalar, and the other is a vector or matrix. In this case, the scalar operation is
applied independently to each component of the vector or matrix, resulting in the same size vector
or matrix.

83

5 Operators and Expressions

• The two operands are vectors of the same size. In this case, the operation is done component-wise
resulting in the same size vector.

• The operator is add (+), subtract (-), or divide (/), and the operands are matrices with the same
number of rows and the same number of columns. In this case, the operation is done component-
wise resulting in the same size matrix.

• The operator is multiply (*), where both operands are matrices or one operand is a vector and the
other a matrix. A right vector operand is treated as a column vector and a left vector operand as a
row vector. In all these cases, it is required that the number of columns of the left operand is equal
to the number of rows of the right operand. Then, the multiply (*) operation does a linear
algebraic multiply, yielding an object that has the same number of rows as the left operand and the
same number of columns as the right operand. Section 5.10 “Vector and Matrix Operations”
explains in more detail how vectors and matrices are operated on.

All other cases are illegal.

Dividing by zero does not cause an exception but does result in an unspecified value. Use the built-in
functions dot, cross, matrixCompMult, and outerProduct, to get, respectively, vector dot product,
vector cross product, matrix component-wise multiplication, and the matrix product of a column
vector times a row vector.

• The operator modulus (%) operates on signed or unsigned integer scalars or integer vectors. If the
fundamental types in the operands do not match, then the conversions from section 4.1.10 “Implicit
Conversions” are applied to create matching types. The operands cannot be vectors of differing size.
If one operand is a scalar and the other vector, then the scalar is applied component-wise to the vector,
resulting in the same type as the vector. If both are vectors of the same size, the result is computed
component-wise. The resulting value is undefined for any component computed with a second
operand that is zero, while results for other components with non-zero second operands remain
defined. If both operands are non-negative, then the remainder is non-negative. Results are undefined
if one or both operands are negative. The operator modulus (%) is not defined for any other data
types (non-integer types).

• The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and ++) operate
on integer or floating-point values (including vectors and matrices). All unary operators work
component-wise on their operands. These result with the same type they operated on. For post- and
pre-increment and decrement, the expression must be one that could be assigned to (an l-value). Pre-
increment and pre-decrement add or subtract 1 or 1.0 to the contents of the expression they operate on,
and the value of the pre-increment or pre-decrement expression is the resulting value of that
modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to the contents
of the expression they operate on, but the resulting expression has the expression’s value before the
post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less than or
equal (<=) operate only on scalar integer and scalar floating-point expressions. The result is scalar
Boolean. Either the operands’ types must match, or the conversions from section 4.1.10 “Implicit
Conversions” will be applied to obtain matching types. To do component-wise relational comparisons
on vectors, use the built-in functions lessThan, lessThanEqual, greaterThan, and
greaterThanEqual.

84

5 Operators and Expressions

• The equality operators equal (==), and not equal (!=) operate on all types. They result in a scalar
Boolean. If the operand types do not match, then there must be a conversion from section 4.1.10
“Implicit Conversions” applied to one operand that can make them match, in which case this
conversion is done. For vectors, matrices, structures, and arrays, all components, members, or
elements of one operand must equal the corresponding components, members, or elements in the other
operand for the operands to be considered equal. To get a vector of component-wise equality results
for vectors, use the built-in functions equal and notEqual.

• The logical binary operators and (&&), or (| |), and exclusive or (^^) operate only on two Boolean
expressions and result in a Boolean expression. And (&&) will only evaluate the right hand operand
if the left hand operand evaluated to true. Or (| |) will only evaluate the right hand operand if the left
hand operand evaluated to false. Exclusive or (^^) will always evaluate both operands.

• The logical unary operator not (!). It operates only on a Boolean expression and results in a Boolean
expression. To operate on a vector, use the built-in function not.

• The sequence (,) operator that operates on expressions by returning the type and value of the right-
most expression in a comma separated list of expressions. All expressions are evaluated, in order,
from left to right.

• The ternary selection operator (?:). It operates on three expressions (exp1 ? exp2 : exp3). This
operator evaluates the first expression, which must result in a scalar Boolean. If the result is true, it
selects to evaluate the second expression, otherwise it selects to evaluate the third expression. Only
one of the second and third expressions is evaluated. The second and third expressions can be any
type, as long their types match, or there is a conversion in section 4.1.10 “Implicit Conversions” that
can be applied to one of the expressions to make their types match. This resulting matching type is the
type of the entire expression.

• The one's complement operator (~). The operand must be of type signed or unsigned integer or integer
vector, and the result is the one's complement of its operand; each bit of each component is
complemented, including any sign bits.

• The shift operators (<<) and (>>). For both operators, the operands must be signed or unsigned
integers or integer vectors. One operand can be signed while the other is unsigned. In all cases, the
resulting type will be the same type as the left operand. If the first operand is a scalar, the second
operand has to be a scalar as well. If the first operand is a vector, the second operand must be a scalar
or a vector, and the result is computed component-wise. The result is undefined if the right operand is
negative, or greater than or equal to the number of bits in the left expression's base type. The value of
E1 << E2 is E1 (interpreted as a bit pattern) left-shifted by E2 bits. The value of E1 >> E2 is E1 right-
shifted by E2 bit positions. If E1 is a signed integer, the right-shift will extend the sign bit. If E1 is an
unsigned integer, the right-shift will zero-extend.

• The bitwise operators and (&), exclusive-or (^), and inclusive-or (|). The operands must be of type
signed or unsigned integers or integer vectors. The operands cannot be vectors of differing size. If one
operand is a scalar and the other a vector, the scalar is applied component-wise to the vector, resulting
in the same type as the vector. The fundamental types of the operands (signed or unsigned) must
match, and will be the resulting fundamental type. For and (&), the result is the bitwise-and function
of the operands. For exclusive-or (^), the result is the bitwise exclusive-or function of the operands.
For inclusive-or (|), the result is the bitwise inclusive-or function of the operands.

For a complete specification of the syntax of expressions, see section 9 “Shading Language Grammar.”

85

5 Operators and Expressions

5.10 Vector and Matrix Operations
With a few exceptions, operations are component-wise. Usually, when an operator operates on a vector or
matrix, it is operating independently on each component of the vector or matrix, in a component-wise
fashion. For example,

vec3 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;
w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply.

vec3 v, u;
mat3 m;

u = v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);

And

u = m * v;

is equivalent to

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

86

5 Operators and Expressions

And

mat3 m, n, r;

r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;
r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

and similarly for other sizes of vectors and matrices.

87

6 Statements and Structure

The fundamental building blocks of the OpenGL Shading Language are:

• statements and declarations

• function definitions

• selection (if-else and switch-case-default)

• iteration (for, while, and do-while)

• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit:
global-declaration
translation-unit global-declaration

global-declaration:
function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition:
function-prototype { statement-list }

statement-list:
statement
statement-list statement

statement:
compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:
{ statement-list }

simple-statement:
declaration-statement
expression-statement
selection-statement

88

6 Statements and Structure

iteration-statement
jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in section 9 “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1 Function Definitions
As indicated by the grammar above, a valid shader is a sequence of global declarations and function
definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return returnValue;
}

where returnType must be present and include a type. If the type of returnValue does not match
returnType, there must be an implicit conversion in section 4.1.10 “Implicit Conversions” that converts
the type of returnValue to returnType, or a compile error will result.

Each of the typeN must include a type and can optionally include parameter qualifiers. The formal
argument names (args above) in the declarations are optional for both the declaration and definition
forms.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments and as the return type. In both cases, the array must be explicitly sized.
An array is passed or returned by using just its name, without brackets, and the size of the array must
match the size specified in the function's declaration.

Structures are also allowed as argument types. The return type can also be structure.

See section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with a body before they are called. For
example:

float myfunc (float f, // f is an input parameter
 out float g); // g is an output parameter

89

6 Statements and Structure

Functions that return no value must be declared as void. A void function can only use return without a
return argument, even if the return argument has void type. Return statements only accept values:

void func1() { }
void func2() { return func1(); } // illegal return statement

Only a precision qualifier is allowed on the return type of a function. Formal parameters can have
parameter, precision, and memory qualifiers, but no other qualifiers.

Functions that accept no input arguments need not use void in the argument list because prototypes (or
definitions) are required and therefore there is no ambiguity when an empty argument list "()" is declared.
The idiom “(void)” as a parameter list is provided for convenience.

Function names can be overloaded. The same function name can be used for multiple functions, as long
as the parameter types differ. If a function name is declared twice with the same parameter types, then the
return types and all qualifiers must also match, and it is the same function being declared. For example,

vec4 f(in vec4 x, out vec4 y); // (A)
vec4 f(in vec4 x, out uvec4 y); // (B) okay, different argument type
vec4 f(in ivec4 x, out uvec4 y); // (C) okay, different argument type

int f(in vec4 x, out ivec4 y); // error, only return type differs
vec4 f(in vec4 x, in vec4 y); // error, only qualifier differs
vec4 f(const in vec4 x, out vec4 y); // error, only qualifier differs

When function calls are resolved, an exact type match for all the arguments is sought. If an exact match is
found, all other functions are ignored, and the exact match is used. If no exact match is found, then the
implicit conversions in section 4.1.10 “Implicit Conversions” will be applied to find a match.
Mismatched types on input parameters (in or inout or default) must have a conversion from the calling
argument type to the formal parameter type. Mismatched types on output parameters (out or inout) must
have a conversion from the formal parameter type to the calling argument type.

If implicit conversions can be used to find more than one matching function, a single best-matching
function is sought. To determine a best match, the conversions between calling argument and formal
parameter types are compared for each function argument and pair of matching functions. After these
comparisons are performed, each pair of matching functions are compared. A function declaration A is
considered a better match than function declaration B if

• for at least one function argument, the conversion for that argument in A is better than the
corresponding conversion in B; and

• there is no function argument for which the conversion in B is better than the corresponding
conversion in A.

If a single function declaration is considered a better match than every other matching function
declaration, it will be used. Otherwise, a semantic error for an ambiguous overloaded function call occurs
and the shader will fail to compile.

To determine whether the conversion for a single argument in one match is better than that for another
match, the following rules are applied, in order:

1. An exact match is better than a match involving any implicit conversion.

90

6 Statements and Structure

2. A match involving an implicit conversion from float to double is better than a match involving
any other implicit conversion.

3. A match involving an implicit conversion from either int or uint to float is better than a match
involving an implicit conversion from either int or uint to double.

If none of the rules above apply to a particular pair of conversions, neither conversion is considered better
than the other.

For the example function prototypes (A), (B), and (C) above, the following examples show how the rules
apply to different sets of calling argument types:

f(vec4, vec4); // exact match of vec4 f(in vec4 x, out vec4 y)
f(vec4, uvec4); // exact match of vec4 f(in vec4 x, out ivec4 y)
f(vec4, ivec4); // matched to vec4 f(in vec4 x, out vec4 y)
 // (C) not relevant, can't convert vec4 to
 // ivec4. (A) better than (B) for 2nd
 // argument (rule 2), same on first argument.
f(ivec4, vec4); // NOT matched. All three match by implicit
 // conversion. (C) is better than (A) and (B)
 // on the first argument. (A) is better than
 // (B) and (C).

User-defined functions can have multiple declarations, but only one definition. A shader can redefine
built-in functions. If a built-in function is redeclared in a shader (i.e., a prototype is visible) before a call
to it, then the linker will only attempt to resolve that call within the set of shaders that are linked with it.

The function main is used as the entry point to a shader executable. A shader need not contain a function
named main, but one shader in a set of shaders linked together to form a single shader executable must.
This function takes no arguments, returns no value, and must be declared as type void:

void main()
{
 ...
}

The function main can contain uses of return. See section 6.4 “Jumps” for more details.

It is an error to declare or define a function main with any other parameters or return type.

6.1.1 Function Calling Conventions
Functions are called by value-return. This means input arguments are copied into the function at call time,
and output arguments are copied back to the caller before function exit. Because the function works with
local copies of parameters, there are no issues regarding aliasing of variables within a function. To
control what parameters are copied in and/or out through a function definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied in.
This should be used whenever possible to avoid unnecessarily copying parameters in.

91

6 Statements and Structure

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and copied
out. It means the same thing as specifying both in and out.

• A function parameter declared with no such qualifier means the same thing as specifying in.

All arguments are evaluated at call time, exactly once, in order, from left to right. Evaluation of an in
parameter results in a value that is copied to the formal parameter. Evaluation of an out parameter results
in an l-value that is used to copy out a value when the function returns. Evaluation of an inout parameter
results in both a value and an l-value; the value is copied to the formal parameter at call time and the l-
value is used to copy out a value when the function returns.

The order in which output parameters are copied back to the caller is undefined.

If the function matching described in the previous section required argument type conversions, these
conversions are applied at copy-in and copy-out times.

In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters
declared as out or inout.

function-prototype :
precision-qualifier type function-name(parameter-qualifiers precision-qualifier type name
array-specifier, ...)

type :
any basic type, array type, structure name, or structure definition

parameter-qualifiers :
empty
list of parameter-qualifier

parameter-qualifier :
const
in
out
inout
precise
memory qualifier
precision qualifier

name :
empty
identifier

array-specifier :
empty
[integral-constant-expression]

92

6 Statements and Structure

The const qualifier cannot be used with out or inout. The above is used for function declarations (i.e.,
prototypes) and for function definitions. Hence, function definitions can have unnamed arguments.

Recursion is not allowed, not even statically. Static recursion is present if the static function-call graph of
a program contains cycles. This includes all potential function calls through variables declared as
subroutine uniform (described below). It is an error if a single compilation unit (shader) contains either
static recursion or the potential for recursion through subroutine variables.

6.1.2 Subroutines
Subroutines provide a mechanism allowing shaders to be compiled in a manner where the target of one or
more function calls can be changed at run-time without requiring any shader recompilation. For example,
a single shader may be compiled with support for multiple illumination algorithms to handle different
kinds of lights or surface materials. An application using such a shader may switch illumination
algorithms by changing the value of its subroutine uniforms. To use subroutines, a subroutine type is
declared, one or more functions are associated with that subroutine type, and a subroutine variable of that
type is declared. The function currently assigned to the variable function is then called by using function
calling syntax replacing a function name with the name of the subroutine variable. Subroutine variables
are uniforms, and are assigned to specific functions only through commands (UniformSubroutinesuiv) in
the OpenGL API.

Subroutine types are declared using a statement similar to a function declaration, with the subroutine
keyword, as follows:

subroutine returnType subroutineTypeName(type0 arg0, type1 arg1,
 ..., typen argn);

As with function declarations, the formal argument names (args above) are optional. Functions are
associated with subroutine types of matching declarations by defining the function with the subroutine
keyword and a list of subroutine types the function matches:

subroutine(subroutineTypeName0, ..., subroutineTypeNameN)
returnType functionName(type0 arg0, type1 arg1, ..., typen argn)
{ ... } // function body

It is an error if arguments and return type don't match between the function and each associated subroutine
type.

Functions declared with subroutine must include a body. An overloaded function cannot be declared
with subroutine; a program will fail to compile or link if any shader or stage contains two or more
functions with the same name if the name is associated with a subroutine type.

Subroutine type variables are required to be subroutine uniforms, and are declared with a specific
subroutine type in a subroutine uniform variable declaration:

subroutine uniform subroutineTypeName subroutineVarName;

Subroutine uniform variables are called the same way functions are called. When a subroutine variable
(or an element of a subroutine variable array) is associated with a particular function, all function calls
through that variable will call that particular function.

93

6 Statements and Structure

Unlike other uniform variables, subroutine uniform variables are scoped to the shader execution stage the
variable is declared in.

Subroutine variables may be declared as explicitly-sized arrays, which can be dynamically indexed at use.

6.2 Selection
Conditional control flow in the shading language is done by either if, if-else, or switch statements:

selection-statement :
if (bool-expression) statement
if (bool-expression) statement else statement
switch (init-expression) { switch-statement-listopt }

Where switch-statement-list is a list of zero or more switch-statement and other statements defined by the
language, where switch-statement adds some forms of labels. That is

switch-statement-list :
switch-statement
switch-statement-list switch-statement

switch-statement :
case constant-expression :
default :
statement

If an if-expression evaluates to true, then the first statement is executed. If it evaluates to false and there
is an else part then the second statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

The type of init-expression in a switch statement must be a scalar integer. If a case label has a constant-
expression of equal value, then execution will continue after that label. Otherwise, if there is a default
label, execution will continue after that label. Otherwise, execution skips the rest of the switch statement.
It is an error to have more than one default or a replicated constant-expression. A break statement not
nested in a loop or other switch statement (either not nested or nested only in if or if-else statements) will
also skip the rest of the switch statement. Fall through labels are allowed, but it is an error to have no
statement between a label and the end of the switch statement. No statements are allowed in a switch
statement before the first case statement.

No case or default labels can be nested inside other flow control nested within their corresponding
switch.

94

6 Statements and Structure

6.3 Iteration
For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
 sub-statement

while (condition-expression)
 sub-statement

do
 statement
while (condition-expression)

See section 9 “Shading Language Grammar” for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. If the condition-
expression evaluates to true, then the body of the loop is executed. After the body is executed, a for loop
will then evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating
until the condition-expression evaluates to false. The loop is then exited, skipping its body and skipping
its loop-expression. Variables modified by the loop-expression maintain their value after the loop is
exited, provided they are still in scope. Variables declared in init-expression or condition-expression are
only in scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is then
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

For both for and while loops, the sub-statement does not introduce a new scope for variable names, so the
following has a redeclaration error:

for (int i = 0; i < 10; i++) {
 int i; // redeclaration error
}

The do-while loop first executes the body, then executes the condition-expression. This is repeated until
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the
do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope lasts
only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

95

6 Statements and Structure

6.4 Jumps
These are the jumps:

jump_statement:
continue;
break;
return;
return expression;
discard; // in the fragment shader language only

There is no “goto” nor other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the inner most loop of
which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop
condition-expression from which the loop continues as previously defined. For for loops, the jump is to
the loop-expression, followed by the condition-expression.

The break jump can also be used only in loops and switch statements. It is simply an immediate exit of
the inner-most loop or switch statements containing the break. No further execution of condition-
expression, loop-expression, or switch-statement is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to any buffers will occur. Control flow exits the shader, and subsequent implicit or explicit
derivatives are undefined when this exit is non-uniform. It would typically be used within a conditional
statement, for example:

if (intensity < 0.0)
 discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the return
value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in a fragment shader. Using return in
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.

96

7 Built-in Variables

7.1 Built-In Language Variables
Some OpenGL operations occur in fixed functionality and need to provide values to or receive values
from shader executables. Shaders communicate with fixed-function OpenGL pipeline stages, and
optionally with other shader executables, through the use of built-in input and output variables.

In the vertex language, the built-ins are intrinsically declared as:

in int gl_VertexID;
in int gl_InstanceID;

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
};

97

7 Built-in Variables

In the geometry language, the built-in variables are intrinsically declared as:

in gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
} gl_in[];

in int gl_PrimitiveIDIn;
in int gl_InvocationID;

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
};

out int gl_PrimitiveID;
out int gl_Layer;
out int gl_ViewportIndex;

In the tessellation control language, built-in variables are intrinsically declared as:

in gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in int gl_InvocationID;

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
} gl_out[];

patch out float gl_TessLevelOuter[4];
patch out float gl_TessLevelInner[2];

In the tessellation evaluation language, built-in variables are intrinsically declared as:

in gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesIn;

98

7 Built-in Variables

in int gl_PrimitiveID;
in vec3 gl_TessCoord;
patch in float gl_TessLevelOuter[4];
patch in float gl_TessLevelInner[2];

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
};

In the fragment language, built-in variables are intrinsically declared as:

in vec4 gl_FragCoord;
in bool gl_FrontFacing;
in float gl_ClipDistance[];
in vec2 gl_PointCoord;
in int gl_PrimitiveID;
in int gl_SampleID;
in vec2 gl_SamplePosition;
in int gl_SampleMaskIn[];

out float gl_FragDepth;
out int gl_SampleMask[];

Each of the above variables is discussed below.

The variable gl_VertexID is a vertex language input variable that holds an integer index for the vertex, as
defined under “Shader Inputs” in section 2.11.7 “Varying Variables” in the OpenGL Graphics System
Specification. While the variable gl_VertexID is always present, its value is not always defined.

The variable gl_InstanceID is a vertex language input variable that holds the instance number of the
current primitive in an instanced draw call (see “Shader Inputs” in section 2.11.7 “Varying Variables” in
the OpenGL Graphics System Specification). If the current primitive does not come from an instanced
draw call, the value of gl_InstanceID is zero.

As an output variable, gl_Position is intended for writing the homogeneous vertex position. It can be
written at any time during shader execution. This value will be used by primitive assembly, clipping,
culling, and other fixed functionality operations, if present, that operate on primitives after vertex
processing has occurred. Its value is undefined after the vertex processing stage if the vertex shader
executable does not write gl_Position, and it is undefined after geometry processing if the geometry
executable calls EmitVertex() without having written gl_Position since the last EmitVertex() (or hasn't
written it at all). As an input variable, gl_Position reads the output written in the previous shader stage to
gl_Position.

As an output variable, gl_PointSize is intended for a shader to write the size of the point to be rasterized.
It is measured in pixels. If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.
As an input variable, gl_PointSize reads the output written in the previous shader stage to gl_PointSize .

99

7 Built-in Variables

The variable gl_ClipDistance provides the forward compatible mechanism for controlling user clipping.
The element gl_ClipDistance[i] specifies a clip distance for each plane i. A distance of 0 means the
vertex is on the plane, a positive distance means the vertex is inside the clip plane, and a negative distance
means the point is outside the clip plane. The clip distances will be linearly interpolated across the
primitive and the portion of the primitive with interpolated distances less than 0 will be clipped.

The gl_ClipDistance array is predeclared as unsized and must be sized by the shader either redeclaring it
with a size or indexing it only with integral constant expressions. This needs to size the array to include
all the clip planes that are enabled via the OpenGL API; if the size does not include all enabled planes,
results are undefined. The size can be at most gl_MaxClipDistances. The number of varying components
(see gl_MaxVaryingComponents) consumed by gl_ClipDistance will match the size of the array, no
matter how many planes are enabled. The shader must also set all values in gl_ClipDistance that have
been enabled via the OpenGL API, or results are undefined. Values written into gl_ClipDistance for
planes that are not enabled have no effect.

As an output variable, gl_ClipDistance provides the place for the shader to write these distances. As an
input in all but the fragment language, it reads the values written in the previous shader stage. In the
fragment language, gl_ClipDistance array contains linearly interpolated values for the vertex values
written by a shader to the gl_ClipDistance vertex output variable. Only elements in this array that have
clipping enabled will have defined values.

The output variable gl_PrimitiveID is available only in the geometry language and provides a single
integer that serves as a primitive identifier. This is then available to fragment shaders as the fragment
input gl_PrimitiveID, which will select the written primitive ID from the provoking vertex in the primitive
being shaded. If a fragment shader using gl_PrimitiveID is active and a geometry shader is also active,
the geometry shader must write to gl_PrimitiveID or the fragment shader input gl_PrimitiveID is
undefined. See section 2.13.4 “Geometry Shader Execution Environment” (under “Geometry Shader
Outputs”) and section 3.9.2 “Shader Execution” (under “Shader Inputs”) of the OpenGL Graphics System
Specification for more information.

For tessellation control and evaluation languages the input variable gl_PrimitiveID is filled with the
number of primitives processed by the shader since the current set of rendering primitives was started.
For the fragment language, it is filled with the value written to the gl_PrimitiveID geometry shader output
if a geometry shader is present. Otherwise, it is assigned in the same manner as with tessellation control
and evaluation shaders.

The geometry language input variable gl_PrimitiveIDIn behaves identically to the tessellation control and
evaluation language input variable gl_PrimitiveID.

The input variable gl_InvocationID is available only in the tessellation control and geometry languages.
In the tessellation control shader, it identifies the number of the output patch vertex assigned to the
tessellation control shader invocation. In the geometry shader, it identifies the invocation number
assigned to the geometry shader invocation. In both cases, gl_InvocationID is assigned integer values in
the range [0, N-1], where N is the number of output patch vertices or geometry shader invocations per
primitive.

The output variable gl_Layer is available only in the geometry language, and is used to select a specific
layer (or face and layer of a cube map) of a multi-layer framebuffer attachment. The actual layer used will
come from one of the vertices in the primitive being shaded. Which vertex the layer comes from is

100

7 Built-in Variables

undefined, so it is best to write the same layer value for all vertices of a primitive. If a shader statically
assigns a value to gl_Layer, layered rendering mode is enabled. See section 2.13.4 “Geometry Shader
Execution Environment” (under “Geometry Shader Outputs”) and section 4.4.7 “Layered Framebuffers”
of the OpenGL Graphics System Specification for more information. If a shader statically assigns a value
to gl_Layer, and there is an execution path through the shader that does not set gl_Layer, then the value of
gl_Layer is undefined for executions of the shader that take that path.

The output variable gl_Layer takes on a special value when used with an array of cube map textures.
Instead of only referring to the layer, it is used to select a cube map face and a layer. Setting gl_Layer to
the value layer*6+face will render to face face of the cube defined in layer layer. The face values are
defined in Table 4.12 of section 4.4.7 “Layered Framebuffers” of the OpenGL Graphics System
Specification, but repeated below for clarity.

Face Value Resulting Target

0 TEXTURE_CUBE_MAP_POSITIVE_X
1 TEXTURE_CUBE_MAP_NEGATIVE_X
2 TEXTURE_CUBE_MAP_POSITIVE_Y
3 TEXTURE_CUBE_MAP_NEGATIVE_Y
4 TEXTURE_CUBE_MAP_POSITIVE_Z
5 TEXTURE_CUBE_MAP_NEGATIVE_Z

For example, to render to the positive y cube map face located in the 5th layer of the cube map array,
gl_Layer should be set to 5*6+2.

The output variable gl_ViewportIndex is available only in the geometry language and provides the index
of the viewport to which the next primitive emitted from the geometry shader should be drawn. Primitives
generated by the geometry shader will undergo viewport transformation and scissor testing using the
viewport transformation and scissor rectangle selected by the value of gl_ViewportIndex. The viewport
index used will come from one of the vertices in the primitive being shaded. However, which vertex the
viewport index comes from is implementation-dependent, so it is best to use the same viewport index for
all vertices of the primitive. If a geometry shader does not assign a value to gl_ViewportIndex, viewport
transform and scissor rectangle zero will be used. If a geometry shader statically assigns a value to
gl_ViewportIndex and there is a path through the shader that does not assign a value to gl_ViewportIndex,
the value of gl_ViewportIndex is undefined for executions of the shader that take that path. See section
2.13, under "Geometry Shader Outputs" of the OpenGL Graphics System Specification (Core Profile) for
more information.

The variable gl_PatchVerticesIn is available only in the tessellation control and evaluation languages. It
is an integer specifying the number of vertices in the input patch being processed by the shader. A single
tessellation control or evaluation shader can read patches of differing sizes, so the value of
gl_PatchVerticesIn may differ between patches.

The output variables gl_TessLevelOuter[] and gl_TessLevelInner[] are available only in the tessellation
control language. The values written to these variables are assigned to the corresponding outer and inner

101

7 Built-in Variables

tessellation levels of the output patch. They are used by the tessellation primitive generator to control
primitive tessellation and may be read by tessellation evaluation shaders.

The variable gl_TessCoord is available only in the tessellation evaluation language. It specifies a three-
component (u,v,w) vector identifying the position of the vertex being processed by the shader relative to
the primitive being tessellated.

The input variables gl_TessLevelOuter[] and gl_TessLevelInner[] are available only in the tessellation
evaluation shader. If a tessellation control shader is active, these variables are filled with corresponding
outputs written by the tessellation control shader. Otherwise, they are assigned with default tessellation
levels specified in section 2.12 “Tessellation” in the OpenGL Graphics System Specification.

Fragment shaders output values to the OpenGL pipeline using declared out variables, the built-in
variables gl_FragDepth and gl_SampleMask, unless the discard statement is executed.

The fixed functionality computed depth for a fragment may be obtained by reading gl_FragCoord.z,
described below.

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and no shader writes gl_FragDepth, then the fixed function value for depth will be
used as the fragment’s depth value. If a shader statically assigns a value to gl_FragDepth, and there is an
execution path through the shader that does not set gl_FragDepth, then the value of the fragment’s depth
may be undefined for executions of the shader that take that path. That is, if the set of linked fragment
shaders statically contain a write to gl_FragDepth, then it is responsible for always writing it.

If a shader executes the discard keyword, the fragment is discarded, and the values of any user-defined
fragment outputs, gl_FragDepth, and gl_SampleMask become irrelevant.

The variable gl_FragCoord is available as an input variable from within fragment shaders and it holds the
window relative coordinates (x, y, z, 1/w) values for the fragment. If multi-sampling, this value can be for
any location within the pixel, or one of the fragment samples. The use of centroid does not further
restrict this value to be inside the current primitive. This value is the result of the fixed functionality that
interpolates primitives after vertex processing to generate fragments. The z component is the depth value
that would be used for the fragment’s depth if no shader contained any writes to gl_FragDepth. This is
useful for invariance if a shader conditionally computes gl_FragDepth but otherwise wants the fixed
functionality fragment depth.

Fragment shaders have access to the input built-in variable gl_FrontFacing, whose value is true if the
fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by selecting
one of two colors calculated by a vertex or geometry shader.

The values in gl_PointCoord are two-dimensional coordinates indicating where within a point primitive
the current fragment is located, when point sprites are enabled. They range from 0.0 to 1.0 across the
point. If the current primitive is not a point, or if point sprites are not enabled, then the values read from
gl_PointCoord are undefined.

For both the input array gl_SampleMaskIn[] and the output array gl_SampleMask[], bit B of mask M
(gl_SampleMaskIn[M] or gl_SampleMask[M]) corresponds to sample 32*M+B. These arrays have
ceil(s/32) elements, where s is the maximum number of color samples supported by the implementation.

102

7 Built-in Variables

The input variable gl_SampleMaskIn indicates the set of samples covered by the primitive generating the
fragment during multisample rasterization. It has a sample bit set if and only if the sample is considered
covered for this fragment shader invocation.

The output array gl_SampleMask[] sets the sample mask for the fragment being processed. Coverage for
the current fragment will become the logical AND of the coverage mask and the output gl_SampleMask.
This array must be sized in the fragment shader either implicitly or explicitly to be the same size described
above. If the fragment shader statically assigns a value to gl_SampleMask, the sample mask will be
undefined for any array elements of any fragment shader invocations that fail to assign a value. If a
shader does not statically assign a value to gl_SampleMask, the sample mask has no effect on the
processing of a fragment.

The input variable gl_SampleID is filled with the sample number of the sample currently being processed.
This variable is in the range 0 to gl_NumSamples-1, where gl_NumSamples is the total number of samples
in the framebuffer, or 1 if rendering to a non-multisample framebuffer. Any static use of this variable in a
fragment shader causes the entire shader to be evaluated per-sample.

The input variable gl_SamplePosition contains the position of the current sample within the multi-sample
draw buffer. The x and y components of gl_SamplePosition contain the sub-pixel coordinate of the current
sample and will have values in the range 0.0 to 1.0. Any static use of this variable in a fragment shader
causes the entire shader to be evaluated per sample.

The gl_PerVertex block can be redeclared in a shader to explicitly indicate what subset of the fixed
pipeline interface will be used. This is necessary to establish the interface between multiple programs.
For example:

out gl_PerVertex {
 vec4 gl_Position; // will use gl_Position
 float gl_PointSize; // will use gl_PointSize
 vec4 t; // error, only gl_PerVertex members allowed
}; // no other members of gl_PerVertex will be used

This establishes the output interface the shader will use with the subsequent pipeline stage. It must be a
subset of the built-in members of gl_PerVertex.

If a built-in interface block is redeclared, it must appear in the shader before any use of any member
included in the built-in declaration, or a compilation error will result. It is also a compilation error to
redeclare the block more than once or to redeclare a built-in block and then use a member from that built-
in block that was not included in the redeclaration. Also, if a built-in interface block is redeclared, no
member of the built-in declaration can be redeclared outside the block redeclaration. If multiple shaders
using members of a built-in block belonging to the same interface are linked together in the same
program, they must all redeclare the built-in block in the same way, as described in section 4.3.8
“Interface Blocks” for interface block matching, or a link error will result. It will also be a link error if
some shaders in a program redeclare a specific built-in interface block while another shader in that
program does not redeclare that interface block yet still uses a member of that interface block. If a built-
in block interface is formed across shaders in different programs, the shaders must all redeclare the built-
in block in the same way (as described for a single program), or the values passed along the interface are
undefined.

103

7 Built-in Variables

7.1.1 Compatibility Profile Built-In Language Variables
When using the compatibility profile, the GL can provide fixed functionality behavior for the vertex and
fragment programmable pipeline stages. For example, mixing a fixed functionality vertex stage with a
programmable fragment stage.

The following built-in vertex, tessellation control, tessellation evaluation, and geometry output variables
are available to specify inputs for the subsequent programmable shader stage or the fixed functionality
fragment stage. A particular one should be written to if any functionality in a corresponding fragment
shader or fixed pipeline uses it or state derived from it. Otherwise, behavior is undefined. The following
members are added to the output gl_PerVertex block in these languages:

out gl_PerVertex { // part of the gl_PerVertex block described in 7.1
 // in addition to other gl_PerVertex members...
 vec4 gl_ClipVertex;
 vec4 gl_FrontColor;
 vec4 gl_BackColor;
 vec4 gl_FrontSecondaryColor;
 vec4 gl_BackSecondaryColor;
 vec4 gl_TexCoord[];
 float gl_FogFragCoord;
};

The output variable gl_ClipVertex provides a place for vertex and geometry shaders to write the
coordinate to be used with the user clipping planes. Writing to gl_ClipDistance is the preferred method
for user clipping. It is an error for the set of shaders forming a program to statically read or write both
gl_ClipVertex and gl_ClipDistance. If neither gl_ClipVertex nor gl_ClipDistance is written, their values
are undefined and any clipping against user clip planes is also undefined.

Similarly to what was previously described for the core profile, the gl_PerVertex block can be redeclared
in a shader to explicitly include these additional members. For example:

out gl_PerVertex {
 vec4 gl_Position; // will use gl_Position
 vec4 gl_FrontColor; // will consume gl_color in the fragment shader
 vec4 gl_BackColor;
 vec4 gl_TexCoord[3]; // 3 elements of gl_TexCoord will be used
}; // no other aspects of the fixed interface will be used

The user must ensure the clip vertex and user clipping planes are defined in the same coordinate space.
User clip planes work properly only under linear transform. It is undefined what happens under non-
linear transform.

The output variables gl_FrontColor, glFrontSecondaryColor, gl_BackColor, and glBackSecondaryColor
assign primary and secondary colors for front and back faces of primitives containing the vertex being
processed. The output variable gl_TexCoord assigns texture coordinates for the vertex being processed.

For gl_FogFragCoord, the value written will be used as the “c” value in section 3.11 “Fog” of the
compatibility profile of the OpenGL Graphics System Specification, by the fixed functionality pipeline.
For example, if the z-coordinate of the fragment in eye space is desired as “c”, then that's what the vertex
shader executable should write into gl_FogFragCoord.

104

7 Built-in Variables

As with all arrays, indices used to subscript gl_TexCoord must either be an integral constant expressions,
or this array must be re-declared by the shader with a size. The size can be at most
gl_MaxTextureCoords. Using indexes close to 0 may aid the implementation in preserving varying
resources. The redeclaration of gl_TexCoord can also be done at global scope as, for example:

in vec4 gl_TexCoord[3];
out vec4 gl_TexCoord[4];

(This treatment is a special case for gl_TexCoord[], not a general method for redeclaring members of
blocks.) It is a compilation error to redeclare gl_TexCoord[] at global scope if there is a redeclaration of
the corresponding built-in block; only one form of redeclaration is allowed within a shader (and hence
within a stage, as block redeclarations must match across all shaders using it).

In the tessellation control, evaluation, and geometry shaders, the outputs of the previous stage described
above are also available in the input gl_PerVertex block in these languages.

in gl_PerVertex { // part of the gl_PerVertex block described in 7.1
 // in addition to other gl_PerVertex members...
 vec4 gl_ClipVertex;
 vec4 gl_FrontColor;
 vec4 gl_BackColor;
 vec4 gl_FrontSecondaryColor;
 vec4 gl_BackSecondaryColor;
 vec4 gl_TexCoord[];
 float gl_FogFragCoord;
} gl_in[];

These can be redeclared to establish an explicit pipeline interface, the same way as described above for
the output block gl_PerVertex, and the input redeclaration must match the output redeclaration of the
previous stage. However, when a built-in interface block with an instance name is redeclared (e.g., gl_in),
the instance name must be included in the redeclaration. It is an error to not include the built-in instance
name or to change its name. For example,

in gl_PerVertex {
 vec4 gl_ClipVertex;
 vec4 gl_FrontColor;
} gl_in[]; // must be present and must be “gl_in[]”

Treatment of gl_TexCoord[] redeclaration is also identical to that described for the output block
gl_TexCoord[] redeclaration.

The following fragment input block is also available in a fragment shader when using the compatibility
profile:

105

7 Built-in Variables

in gl_PerFragment {
 in float gl_FogFragCoord;
 in vec4 gl_TexCoord[];
 in vec4 gl_Color;
 in vec4 gl_SecondaryColor;
};

The values in gl_Color and gl_SecondaryColor will be derived automatically by the system from
gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor based on which
face is visible in the primitive producing the fragment. If fixed functionality is used for vertex processing,
then gl_FogFragCoord will either be the z-coordinate of the fragment in eye space, or the interpolation of
the fog coordinate, as described in section 3.11 “Fog” of the compatibility profile of the OpenGL
Graphics System Specification. The gl_TexCoord[] values are the interpolated gl_TexCoord[] values
from a vertex shader or the texture coordinates of any fixed pipeline based vertex functionality.

Indices to the fragment shader gl_TexCoord array are as described above in the vertex shader text.

As described above for the input and output gl_PerVertex blocks, the gl_PerFragment block can be
redeclared to create an explicit interface to another program. When matching these interfaces between
separate programs, members in the gl_PerVertex output block must be declared if and only if the
corresponding fragment-shader members generated from them are present in the gl_PerFragment input
block. These matches are described in detail in section 2.14 “Vertex Shaders” of the OpenGL Graphics
System Specification (Compatibility Profile). If they don't match within a program, a link error will
result. If the mismatch is between two programs, values passed between programs are undefined. Unlike
with all other block matching, the order of declaration within gl_PerFragment does not have to match
across shaders and does not have to correspond with order of declaration in a matching gl_PerVertex
redeclaration.

The following fragment output variables are available in a fragment shader when using the compatibility
profile:

out vec4 gl_FragColor;
out vec4 gl_FragData[gl_MaxDrawBuffers];

Writing to gl_FragColor specifies the fragment color that will be used by the subsequent fixed
functionality pipeline. If subsequent fixed functionality consumes fragment color and an execution of the
fragment shader executable does not write a value to gl_FragColor then the fragment color consumed is
undefined.

The variable gl_FragData is an array. Writing to gl_FragData[n] specifies the fragment data that will be
used by the subsequent fixed functionality pipeline for data n. If subsequent fixed functionality consumes
fragment data and an execution of a fragment shader executable does not write a value to it, then the
fragment data consumed is undefined.

If a shader statically assigns a value to gl_FragColor, it may not assign a value to any element of
gl_FragData. If a shader statically writes a value to any element of gl_FragData, it may not assign a
value to gl_FragColor. That is, a shader may assign values to either gl_FragColor or gl_FragData, but
not both. Multiple shaders linked together must also consistently write just one of these variables.
Similarly, if user-declared output variables are in use (statically assigned to), then the built-in variables

106

7 Built-in Variables

gl_FragColor and gl_FragData may not be assigned to. These incorrect usages all generate compile time
errors.

If a shader executes the discard keyword, the fragment is discarded, and the values of gl_FragDepth and
gl_FragColor become irrelevant.

7.2 Compatibility Profile Vertex Shader Built-In Inputs
The following predeclared input names can be used from within a vertex shader to access the current
values of OpenGL state when using the compatibility profile.

in vec4 gl_Color;
in vec4 gl_SecondaryColor;
in vec3 gl_Normal;
in vec4 gl_Vertex;
in vec4 gl_MultiTexCoord0;
in vec4 gl_MultiTexCoord1;
in vec4 gl_MultiTexCoord2;
in vec4 gl_MultiTexCoord3;
in vec4 gl_MultiTexCoord4;
in vec4 gl_MultiTexCoord5;
in vec4 gl_MultiTexCoord6;
in vec4 gl_MultiTexCoord7;
in float gl_FogCoord;

7.3 Built-In Constants
The following built-in constants are provided to all shaders. The actual values used are implementation
dependent, but must be at least the value shown.

//
// Implementation-dependent constants. The example values below
// are the minimum values allowed for these maximums.
//

const int gl_MaxVertexAttribs = 16;
const int gl_MaxVertexUniformComponents = 1024;

const int gl_MaxVaryingComponents = 60;
const int gl_MaxVertexOutputComponents = 64;
const int gl_MaxGeometryInputComponents = 64;
const int gl_MaxGeometryOutputComponents = 128;
const int gl_MaxFragmentInputComponents = 128;
const int gl_MaxVertexTextureImageUnits = 16;
const int gl_MaxCombinedTextureImageUnits = 80;
const int gl_MaxTextureImageUnits = 16;

107

7 Built-in Variables

const int gl_MaxImageUnits = 8;
const int gl_MaxCombinedImageUnitsAndFragmentOutputs = 8;
const int gl_MaxImageSamples = 0;
const int gl_MaxVertexImageUniforms = 0;
const int gl_MaxTessControlImageUniforms = 0;
const int gl_MaxTessEvaluationImageUniforms = 0;
const int gl_MaxGeometryImageUniforms = 0;
const int gl_MaxFragmentImageUniforms = 0;
const int gl_MaxCombinedImageUniforms = 0;
const int gl_MaxFragmentUniformComponents = 1024;
const int gl_MaxDrawBuffers = 8;
const int gl_MaxClipDistances = 8;
const int gl_MaxGeometryTextureImageUnits = 16;
const int gl_MaxGeometryOutputVertices = 256;
const int gl_MaxGeometryTotalOutputComponents = 1024;
const int gl_MaxGeometryUniformComponents = 1024;
const int gl_MaxGeometryVaryingComponents = 64;

108

7 Built-in Variables

const int gl_MaxTessControlInputComponents = 128;
const int gl_MaxTessControlOutputComponents = 128;
const int gl_MaxTessControlTextureImageUnits = 16;
const int gl_MaxTessControlUniformComponents = 1024;
const int gl_MaxTessControlTotalOutputComponents = 4096;

const int gl_MaxTessEvaluationInputComponents = 128;
const int gl_MaxTessEvaluationOutputComponents = 128;
const int gl_MaxTessEvaluationTextureImageUnits = 16;
const int gl_MaxTessEvaluationUniformComponents = 1024;

const int gl_MaxTessPatchComponents = 120;
const int gl_MaxPatchVertices = 32;
const int gl_MaxTessGenLevel = 64;

const int gl_MaxViewports = 16;

const int gl_MaxVertexUniformVectors = 256;
const int gl_MaxFragmentUniformVectors = 256;
const int gl_MaxVaryingVectors = 15;

const int gl_MaxVertexAtomicCounters = 0;
const int gl_MaxTessControlAtomicCounters = 0;
const int gl_MaxTessEvaluationAtomicCounters = 0;
const int gl_MaxGeometryAtomicCounters = 0;
const int gl_MaxFragmentAtomicCounters = 8;
const int gl_MaxCombinedAtomicCounters = 8;
const int gl_MaxAtomicCounterBindings = 1;
const int gl_MaxVertexAtomicCounterBuffers = 0;
const int gl_MaxTessControlAtomicCounterBuffers = 0;
const int gl_MaxTessEvaluationAtomicCounterBuffers = 0;
const int gl_MaxGeometryAtomicCounterBuffers = 0;
const int gl_MaxFragmentAtomicCounterBuffers = 1;
const int gl_MaxCombinedAtomicCounterBuffers = 1;
const int gl_MaxAtomicCounterBufferSize = 16384;

const int gl_MinProgramTexelOffset = -8;
const int gl_MaxProgramTexelOffset = 7;

The constant gl_MaxVaryingFloats is removed in the core profile, use gl_MaxVaryingComponents
instead.

7.3.1 Compatibility Profile Built-In Constants
const int gl_MaxTextureUnits = 2;
const int gl_MaxTextureCoords = 8;
const int gl_MaxClipPlanes = 8;
const int gl_MaxVaryingFloats = 60;

109

7 Built-in Variables

7.4 Built-In Uniform State
As an aid to accessing OpenGL processing state, the following uniform variables are built into the
OpenGL Shading Language.

//
// Depth range in window coordinates,
// section 2.14.1 “Controlling the Viewport” in the
// OpenGL Graphics System Specification.
//
struct gl_DepthRangeParameters {
 float near; // n
 float far; // f
 float diff; // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;

uniform int gl_NumSamples;

7.4.1 Compatibility Profile State
These variables are present only in the compatibility profile.

//
// compatibility profile only
//
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

//
// compatibility profile only
//
uniform mat3 gl_NormalMatrix; // transpose of the inverse of the
 // upper leftmost 3x3 of gl_ModelViewMatrix

uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];

uniform mat4 gl_ModelViewMatrixTranspose;
uniform mat4 gl_ProjectionMatrixTranspose;
uniform mat4 gl_ModelViewProjectionMatrixTranspose;
uniform mat4 gl_TextureMatrixTranspose[gl_MaxTextureCoords];

uniform mat4 gl_ModelViewMatrixInverseTranspose;
uniform mat4 gl_ProjectionMatrixInverseTranspose;

110

7 Built-in Variables

uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];

//
// compatibility profile only
//
uniform float gl_NormalScale;

//
// compatibility profile only
//
uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];

//
// compatibility profile only
//
struct gl_PointParameters {
 float size;
 float sizeMin;
 float sizeMax;
 float fadeThresholdSize;
 float distanceConstantAttenuation;
 float distanceLinearAttenuation;
 float distanceQuadraticAttenuation;
};

uniform gl_PointParameters gl_Point;

//
// compatibility profile only
//
struct gl_MaterialParameters {
 vec4 emission; // Ecm
 vec4 ambient; // Acm
 vec4 diffuse; // Dcm
 vec4 specular; // Scm
 float shininess; // Srm
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

111

7 Built-in Variables

//
// compatibility profile only
//

struct gl_LightSourceParameters {
 vec4 ambient; // Acli
 vec4 diffuse; // Dcli
 vec4 specular; // Scli
 vec4 position; // Ppli
 vec4 halfVector; // Derived: Hi
 vec3 spotDirection; // Sdli
 float spotExponent; // Srli
 float spotCutoff; // Crli
 // (range: [0.0,90.0], 180.0)
 float spotCosCutoff; // Derived: cos(Crli)
 // (range: [1.0,0.0],-1.0)
 float constantAttenuation; // K0
 float linearAttenuation; // K1
 float quadraticAttenuation;// K2
};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters {
 vec4 ambient; // Acs
};

uniform gl_LightModelParameters gl_LightModel;

//
// compatibility profile only
//
// Derived state from products of light and material.
//

struct gl_LightModelProducts {
 vec4 sceneColor; // Derived. Ecm + Acm * Acs
};

uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;

struct gl_LightProducts {
 vec4 ambient; // Acm * Acli
 vec4 diffuse; // Dcm * Dcli
 vec4 specular; // Scm * Scli
};

uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

112

7 Built-in Variables

//
// compatibility profile only
//
uniform vec4 gl_TextureEnvColor[gl_MaxTextureUnits];
uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];

//
// compatibility profile only
//
struct gl_FogParameters {
 vec4 color;
 float density;
 float start;
 float end;
 float scale; // Derived: 1.0 / (end - start)
};

uniform gl_FogParameters gl_Fog;

113

8 Built-in Functions

The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a texture
map. There is no way in the language for these functions to be emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but they
are very common and may have direct hardware support. It is a very hard problem for the compiler to
map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point. The trigonometry
functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent computations
in their own shader code since the built-in functions are assumed to be optimal (e.g., perhaps supported
directly in hardware).

User code can replace built-in functions with their own if they choose, by simply re-declaring and defining
the same name and argument list. Because built-in functions are in a more outer scope than user built-in
functions, doing this will hide all built-in functions with the same name as the re-declared function.

When the built-in functions are specified below, where the input arguments (and corresponding output)
can be float, vec2, vec3, or vec4, genType is used as the argument. Where the input arguments (and
corresponding output) can be int, ivec2, ivec3, or ivec4, genIType is used as the argument. Where the
input arguments (and corresponding output) can be uint, uvec2, uvec3, or uvec4, genUType is used as the
argument. Where the input arguments (or corresponding output) can be bool, bvec2, bvec3, or bvec4,
genBType is used as the argument. Where the input arguments (and corresponding output) can be double,
dvec2, dvec3, dvec4, genDType is used as the argument. For any specific use of a function, the actual
types substituted for genType, genIType, genUType, or genBType have to have the same number of
components for all arguments and for the return type. Similarly, mat is used for any matrix basic type
with single-precision components and dmat is used for any matrix basic type with double-precision
components.

114

8 Built-in Functions

8.1 Angle and Trigonometry Functions
Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genType radians (genType degrees) Converts degrees to radians, i.e.,

180
⋅degrees

genType degrees (genType radians) Converts radians to degrees, i.e.,
180

⋅radians

genType sin (genType angle) The standard trigonometric sine function.

genType cos (genType angle) The standard trigonometric cosine function.

genType tan (genType angle) The standard trigonometric tangent.

genType asin (genType x) Arc sine. Returns an angle whose sine is x. The range

of values returned by this function is [−
2

,

2]

Results are undefined if ∣x∣1.

genType acos (genType x) Arc cosine. Returns an angle whose cosine is x. The
range of values returned by this function is [0, π].
Results are undefined if ∣x∣1.

genType atan (genType y, genType x) Arc tangent. Returns an angle whose tangent is y/x. The
signs of x and y are used to determine what quadrant the
angle is in. The range of values returned by this
function is [− ,] . Results are undefined if x and
y are both 0.

genType atan (genType y_over_x) Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this function

is [−
2

,

2] .

115

8 Built-in Functions

Syntax Description

genType sinh (genType x) Returns the hyperbolic sine function
e x−e−x

2

genType cosh (genType x) Returns the hyperbolic cosine function
e xe−x

2

genType tanh (genType x) Returns the hyperbolic tangent function
sinh x
cosh x

genType asinh (genType x) Arc hyperbolic sine; returns the inverse of sinh.

genType acosh (genType x) Arc hyperbolic cosine; returns the non-negative inverse
of cosh. Results are undefined if x < 1.

genType atanh (genType x) Arc hyperbolic tangent; returns the inverse of tanh.
Results are undefined if ∣x∣≥1.

116

8 Built-in Functions

8.2 Exponential Functions
These all operate component-wise. The description is per component.

Syntax Description
genType pow (genType x, genType y) Returns x raised to the y power, i.e., x y

Results are undefined if x < 0.
Results are undefined if x = 0 and y <= 0.

genType exp (genType x) Returns the natural exponentiation of x, i.e., ex.

genType log (genType x) Returns the natural logarithm of x, i.e., returns the value
y which satisfies the equation x = ey.
Results are undefined if x <= 0.

genType exp2 (genType x) Returns 2 raised to the x power, i.e., 2 x

genType log2 (genType x) Returns the base 2 logarithm of x, i.e., returns the value
y which satisfies the equation x=2 y

Results are undefined if x <= 0.

genType sqrt (genType x)
genDType sqrt (genDType x)

Returns x .
Results are undefined if x < 0.

genType inversesqrt (genType x)
genDType inversesqrt (genDType x) Returns

1
 x

.

Results are undefined if x <= 0.

117

8 Built-in Functions

8.3 Common Functions
These all operate component-wise. The description is per component.

Syntax Description
genType abs (genType x)
genIType abs (genIType x)
genDType abs (genDType x)

Returns x if x >= 0, otherwise it returns –x.

genType sign (genType x)
genIType sign (genIType x)
genDType sign (genDType x)

Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0.

genType floor (genType x)
genDType floor (genDType x)

Returns a value equal to the nearest integer that is less
than or equal to x.

genType trunc (genType x)
genDType trunc (genDType x)

Returns a value equal to the nearest integer to x whose
absolute value is not larger than the absolute value of x.

genType round (genType x)
genDType round (genDType x)

Returns a value equal to the nearest integer to x. The
fraction 0.5 will round in a direction chosen by the
implementation, presumably the direction that is fastest.
This includes the possibility that round(x) returns the
same value as roundEven(x) for all values of x.

genType roundEven (genType x)
genDType roundEven (genDType x)

Returns a value equal to the nearest integer to x. A
fractional part of 0.5 will round toward the nearest even
integer. (Both 3.5 and 4.5 for x will return 4.0.)

genType ceil (genType x)
genDType ceil (genDType x)

Returns a value equal to the nearest integer that is
greater than or equal to x.

genType fract (genType x)
genDType fract (genDType x)

Returns x – floor (x).

genType mod (genType x, float y)
genType mod (genType x, genType y)
genDType mod (genDType x, double y)
genDType mod (genDType x, genDType y)

Modulus. Returns x – y ∗ floor (x/y).

118

8 Built-in Functions

Syntax Description
genType modf (genType x, out genType i)
genDType modf (genDType x,
 out genDType i)

Returns the fractional part of x and sets i to the integer
part (as a whole number floating point value). Both the
return value and the output parameter will have the same
sign as x.

genType min (genType x, genType y)
genType min (genType x, float y)
genDType min (genDType x, genDType y)
genDType min (genDType x, double y)
genIType min (genIType x, genIType y)
genIType min (genIType x, int y)
genUType min (genUType x, genUType y)
genUType min (genUType x, uint y)

Returns y if y < x, otherwise it returns x.

genType max (genType x, genType y)
genType max (genType x, float y)
genDType max (genDType x, genDType y)
genDType max (genDType x, double y)
genIType max (genIType x, genIType y)
genIType max (genIType x, int y)
genUType max (genUType x, genUType y)
genUType max (genUType x, uint y)

Returns y if x < y, otherwise it returns x.

119

8 Built-in Functions

Syntax Description
genType clamp (genType x,
 genType minVal,
 genType maxVal)
genType clamp (genType x,
 float minVal,
 float maxVal)
genDType clamp (genDType x,
 genDType minVal,
 genDType maxVal)
genDType clamp (genDType x,
 double minVal,
 double maxVal)
genIType clamp (genIType x,
 genIType minVal,
 genIType maxVal)
genIType clamp (genIType x,
 int minVal,
 int maxVal)
genUType clamp (genUType x,
 genUType minVal,
 genUType maxVal)
genUType clamp (genUType x,
 uint minVal,
 uint maxVal)

Returns min (max (x, minVal), maxVal).

Results are undefined if minVal > maxVal.

genType mix (genType x,
 genType y,
 genType a)
genType mix (genType x,
 genType y,
 float a)
genDType mix (genDType x,
 genDType y,
 genDType a)
genDType mix (genDType x,
 genDType y,
 double a)

Returns the linear blend of x and y, i.e.,
x⋅1−a y⋅a

120

8 Built-in Functions

Syntax Description
genType mix (genType x,
 genType y,
 genBType a)
genDType mix (genDType x,
 genDType y,
 genBType a)

Selects which vector each returned component comes
from. For a component of a that is false, the
corresponding component of x is returned. For a
component of a that is true, the corresponding
component of y is returned. Components of x and y that
are not selected are allowed to be invalid floating point
values and will have no effect on the results. Thus, this
provides different functionality than, for example,
 genType mix(genType x, genType y, genType(a))
where a is a Boolean vector.

genType step (genType edge, genType x)
genType step (float edge, genType x)
genDType step (genDType edge,
 genDType x)
genDType step (double edge, genDType x)

Returns 0.0 if x < edge, otherwise it returns 1.0.

genType smoothstep (genType edge0,
 genType edge1,
 genType x)
genType smoothstep (float edge0,
 float edge1,
 genType x)
genDType smoothstep (genDType edge0,
 genDType edge1,
 genDType x)
genDType smoothstep (double edge0,
 double edge1,
 genDType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
performs smooth Hermite interpolation between 0 and 1
when edge0 < x < edge1. This is useful in cases where
you would want a threshold function with a smooth
transition. This is equivalent to:

 genType t;
 t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
 return t * t * (3 – 2 * t);
(And similarly for doubles.)

Results are undefined if edge0 >= edge1.

genBType isnan (genType x)
genBType isnan (genDType x)

Returns true if x holds a NaN. Returns false otherwise.
Always returns false if NaNs are not implemented.

genBType isinf (genType x)
genBType isinf (genDType x)

Returns true if x holds a positive infinity or negative
infinity. Returns false otherwise.

genIType floatBitsToInt (genType value)
genUType floatBitsToUint (genType value)

Returns a signed or unsigned integer value representing
the encoding of a floating-point value. The floating-
point value's bit-level representation is preserved.

121

8 Built-in Functions

Syntax Description
genType intBitsToFloat (genIType value)
genType uintBitsToFloat (genUType value)

Returns a floating-point value corresponding to a signed
or unsigned integer encoding of a floating-point value.
If a NaN is passed in, it will not signal, and the resulting
floating point value is unspecified. If an Inf is passed in,
the resulting floating-point value is the corresponding
Inf.

genType fma (genType a, genType b,
 genType c)
genDType fma (genDType a, genDType b,
 genDType c)

Computes and returns a*b + c.
In uses where the return value is eventually consumed by
a variable declared as precise:
• fma() is considered a single operation, whereas the

expression “a*b + c” consumed by a variable
declared precise is considered two operations.

• The precision of fma() can differ from the precision
of the the expression “a*b + c”.

• fma() will be computed with the same precision as
any other fma() consumed by a precise variable,
giving invariant results for the same input values of
a, b, and c.

Otherwise, in the absence of precise consumption, there
are no special constraints on the number of operations or
difference in precision between fma() and the expression
“a*b + c”.

genType frexp (genType x,
 out genIType exp)
genDType frexp (genDType x,
 out genIType exp)

Splits x into a floating-point significand in the range
[0.5, 1.0) and an integral exponent of two, such that:

x=significand⋅2exponent

The significand is returned by the function and the
exponent is returned in the parameter exp. For a
floating-point value of zero, the significant and exponent
are both zero. For a floating-point value that is an
infinity or is not a number, the results are undefined.

genType ldexp (genType x,
 in genIType exp)
genDType ldexp (genDType x,
 in genIType exp)

Builds a floating-point number from x and the
corresponding integral exponent of two in exp, returning:

significand⋅2exponent

If this product is too large to be represented in the
floating-point type, the result is undefined.

122

8 Built-in Functions

123

8 Built-in Functions

8.4 Floating-Point Pack and Unpack Functions
These functions do not operate component-wise, rather as described in each case.

Syntax Description
uint packUnorm2x16 (vec2 v)
uint packSnorm2x16 (vec2 v)
uint packUnorm4x8 (vec4 v)
uint packSnorm4x8 (vec4 v)

First, converts each component of the normalized
floating-point value v into 8- or 16-bit integer values.
Then, the results are packed into the returned 32-bit
unsigned integer.
The conversion for component c of v to fixed point is
done as follows:

packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
packSnorm4x8: round(clamp(c, -1, +1) * 127.0)

The first component of the vector will be written to the
least significant bits of the output; the last component
will be written to the most significant bits.

vec2 unpackUnorm2x16 (uint p)
vec2 unpackSnorm2x16 (uint p)
vec4 unpackUnorm4x8 (uint p)
vec4 unpackSnorm4x8 (uint p)

First, unpacks a single 32-bit unsigned integer p into a
pair of 16-bit unsigned integers, four 8-bit unsigned
integers, or four 8-bit signed integers. Then, each
component is converted to a normalized floating-point
value to generate the returned two- or four-component
vector.

The conversion for unpacked fixed-point value f to
floating point is done as follows:

unpackUnorm2x16: f / 65535.0
unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
unpackUnorm4x8: f / 255.0
unpackSnorm4x8: clamp(f / 127.0, -1, +1)

The first component of the returned vector will be
extracted from the least significant bits of the input; the
last component will be extracted from the most
significant bits.

124

8 Built-in Functions

Syntax Description
double packDouble2x32 (uvec2 v) Returns a double-precision value obtained by packing

the components of v into a 64-bit value. If an IEEE 754
Inf or NaN is created, it will not signal, and the resulting
floating point value is unspecified. Otherwise, the bit-
level representation of v is preserved. The first vector
component specifies the 32 least significant bits; the
second component specifies the 32 most significant bits.

uvec2 unpackDouble2x32 (double v) Returns a two-component unsigned integer vector
representation of v. The bit-level representation of v is
preserved. The first component of the vector contains
the 32 least significant bits of the double; the second
component consists the 32 most significant bits.

uint packHalf2x16 (vec2 v) Returns an unsigned integer obtained by converting the
components of a two-component floating-point vector to
the 16-bit floating-point representation found in the
OpenGL Specification, and then packing these two 16-
bit integers into a 32-bit unsigned integer.
The first vector component specifies the 16 least-
significant bits of the result; the second component
specifies the 16 most-significant bits.

vec2 unpackHalf2x16 (uint v) Returns a two-component floating-point vector with
components obtained by unpacking a 32-bit unsigned
integer into a pair of 16-bit values, interpreting those
values as 16-bit floating-point numbers according to the
OpenGL Specification, and converting them to 32-bit
floating-point values.
The first component of the vector is obtained from the
16 least-significant bits of v; the second component is
obtained from the 16 most-significant bits of v.

125

8 Built-in Functions

8.5 Geometric Functions
These operate on vectors as vectors, not component-wise.

Syntax Description
float length (genType x)
double length (genDType x)

Returns the length of vector x, i.e.,
 x[0]2x [1]2...

float distance (genType p0, genType p1)
double distance (genDType p0,
 genDType p1)

Returns the distance between p0 and p1, i.e.,
length (p0 – p1)

float dot (genType x, genType y)
double dot (genDType x, genDType y)

Returns the dot product of x and y, i.e.,
x [0]⋅y [0]x [1]⋅y [1]...

vec3 cross (vec3 x, vec3 y)
dvec3 cross (dvec3 x, dvec3 y)

Returns the cross product of x and y, i.e.,

[x [1]⋅y [2]−y [1]⋅x [2]
x[2]⋅y [0]−y [2]⋅x[0]
x [0]⋅y [1]−y [0]⋅x [1]]

genType normalize (genType x)
genDType normalize (genDType x)

Returns a vector in the same direction as x but with a
length of 1.

compatibility profile only
vec4 ftransform ()

Available only when using the compatibility profile. For
core OpenGL, use invariant.

For vertex shaders only. This function will ensure that
the incoming vertex value will be transformed in a way
that produces exactly the same result as would be
produced by OpenGL’s fixed functionality transform. It
is intended to be used to compute gl_Position, e.g.,

 gl_Position = ftransform()

This function should be used, for example, when an
application is rendering the same geometry in separate
passes, and one pass uses the fixed functionality path to
render and another pass uses programmable shaders.

126

8 Built-in Functions

Syntax Description
genType faceforward (genType N,
 genType I,
 genType Nref)
genDType faceforward (genDType N,
 genDType I,
 genDType Nref)

If dot(Nref, I) < 0 return N, otherwise return –N.

genType reflect (genType I, genType N)
genDType reflect (genDType I,
 genDType N)

For the incident vector I and surface orientation N,
returns the reflection direction:
I – 2 ∗ dot(N, I) ∗ N
N must already be normalized in order to achieve the
desired result.

genType refract (genType I, genType N,
 float eta)
genDType refract (genDType I,
 genDType N,
 float eta)

For the incident vector I and surface normal N, and the
ratio of indices of refraction eta, return the refraction
vector. The result is computed by

k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
if (k < 0.0)
 return genType(0.0) // or genDType(0.0)
else
 return eta * I - (eta * dot(N, I) + sqrt(k)) * N

The input parameters for the incident vector I and the
surface normal N must already be normalized to get the
desired results.

127

8 Built-in Functions

8.6 Matrix Functions
For each of the following built-in matrix functions, there is both a single-precision floating point version,
where all arguments and return values are single precision, and a double-precision floating version, where
all arguments and return values are double precision. Only the single-precision floating point version is
shown.

Syntax Description
mat matrixCompMult (mat x, mat y) Multiply matrix x by matrix y component-wise, i.e.,

result[i][j] is the scalar product of x[i][j] and y[i][j].

Note: to get linear algebraic matrix multiplication, use
the multiply operator (*).

mat2 outerProduct (vec2 c, vec2 r)
mat3 outerProduct (vec3 c, vec3 r)
mat4 outerProduct (vec4 c, vec4 r)

mat2x3 outerProduct (vec3 c, vec2 r)
mat3x2 outerProduct (vec2 c, vec3 r)

mat2x4 outerProduct (vec4 c, vec2 r)
mat4x2 outerProduct (vec2 c, vec4 r)

mat3x4 outerProduct (vec4 c, vec3 r)
mat4x3 outerProduct (vec3 c, vec4 r)

Treats the first parameter c as a column vector (matrix
with one column) and the second parameter r as a row
vector (matrix with one row) and does a linear algebraic
matrix multiply c * r, yielding a matrix whose number of
rows is the number of components in c and whose
number of columns is the number of components in r.

mat2 transpose (mat2 m)
mat3 transpose (mat3 m)
mat4 transpose (mat4 m)

mat2x3 transpose (mat3x2 m)
mat3x2 transpose (mat2x3 m)

mat2x4 transpose (mat4x2 m)
mat4x2 transpose (mat2x4 m)

mat3x4 transpose (mat4x3 m)
mat4x3 transpose (mat3x4 m)

Returns a matrix that is the transpose of m. The input
matrix m is not modified.

float determinant (mat2 m)
float determinant (mat3 m)
float determinant (mat4 m)

Returns the determinant of m.

128

8 Built-in Functions

Syntax Description
mat2 inverse (mat2 m)
mat3 inverse (mat3 m)
mat4 inverse (mat4 m)

Returns a matrix that is the inverse of m. The input
matrix m is not modified. The values in the returned
matrix are undefined if m is singular or poorly-
conditioned (nearly singular).

129

8 Built-in Functions

8.7 Vector Relational Functions
Relational and equality operators (<, <=, >, >=, ==, !=) are defined to operate on scalars and produce
scalar Boolean results. For vector results, use the following built-in functions. Below, the following
placeholders are used for the listed specific types:

Placeholder Specific Types Allowed

bvec bvec2, bvec3, bvec4

ivec ivec2, ivec3, ivec4

uvec uvec2, uvec3, uvec4

vec vec2, vec3, vec4, dvec2, dvec3, dvec4

In all cases, the sizes of all the input and return vectors for any particular call must match.

Syntax Description
bvec lessThan (vec x, vec y)
bvec lessThan (ivec x, ivec y)
bvec lessThan (uvec x, uvec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual (vec x, vec y)
bvec lessThanEqual (ivec x, ivec y)
bvec lessThanEqual (uvec x, uvec y)

Returns the component-wise compare of x <= y.

bvec greaterThan (vec x, vec y)
bvec greaterThan (ivec x, ivec y)
bvec greaterThan (uvec x, uvec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual (vec x, vec y)
bvec greaterThanEqual (ivec x, ivec y)
bvec greaterThanEqual (uvec x, uvec y)

Returns the component-wise compare of x >= y.

bvec equal (vec x, vec y)
bvec equal (ivec x, ivec y)
bvec equal (uvec x, uvec y)
bvec equal (bvec x, bvec y)

bvec notEqual (vec x, vec y)
bvec notEqual (ivec x, ivec y)
bvec notEqual (uvec x, uvec y)
bvec notEqual (bvec x, bvec y)

Returns the component-wise compare of x == y.

Returns the component-wise compare of x != y.

bool any (bvec x) Returns true if any component of x is true.

130

8 Built-in Functions

Syntax Description
bool all (bvec x) Returns true only if all components of x are true.

bvec not (bvec x) Returns the component-wise logical complement of x.

131

8 Built-in Functions

8.8 Integer Functions
These all operate component-wise. The description is per component. The notation [a, b] means the set
of bits from bit-number a through bit-number b, inclusive. The lowest-order bit is bit 0. “Bit number”
will always refer to counting up from the lowest-order bit as bit 0.

Syntax Description

genUType uaddCarry (genUType x,
 genUType y,
 out genUType carry)

Adds 32-bit unsigned integer x and y, returning the sum
modulo 232. The value carry is set to 0 if the sum was
less than 232, or to 1 otherwise.

genUType usubBorrow (genUType x,
 genUType y,
 out genUType borrow)

Subtracts the 32-bit unsigned integer y from x, returning
the difference if non-negative, or 232 plus the difference
otherwise. The value borrow is set to 0 if x >= y, or to
1 otherwise.

void umulExtended (genUType x,
 genUType y,
 out genUType msb,
 out genUType lsb)
void imulExtended (genIType x,
 genIType y,
 out genIType msb,
 out genIType lsb)

Multiplies 32-bit integers x and y, producing a 64-bit
result. The 32 least-significant bits are returned in lsb.
The 32 most-significant bits are returned in msb.

genIType bitfieldExtract (genIType value,
 int offset, int bits)
genUType bitfieldExtract (genUType value,
 int offset, int bits)

Extracts bits [offset, offset + bits - 1] from value,
returning them in the least significant bits of the result.

For unsigned data types, the most significant bits of the
result will be set to zero. For signed data types, the
most significant bits will be set to the value of bit offset
+ bits – 1.

If bits is zero, the result will be zero. The result will be
undefined if offset or bits is negative, or if the sum of
offset and bits is greater than the number of bits used
to store the operand.

132

8 Built-in Functions

Syntax Description
genIType bitfieldInsert (genIType base,
 genIType insert,
 int offset, int bits)
genUType bitfieldInsert (genUType base,
 genUType insert,
 int offset, int bits)

Returns the insertion the bits least-significant bits of
insert into base.

The result will have bits [offset, offset + bits - 1] taken
from bits [0, bits – 1] of insert, and all other bits taken
directly from the corresponding bits of base. If bits is
zero, the result will simply be base. The result will be
undefined if offset or bits is negative, or if the sum of
offset and bits is greater than the number of bits used to
store the operand.

genIType bitfieldReverse (genIType value)
genUType bitfieldReverse (genUType value)

Returns the reversal of the bits of value. The bit
numbered n of the result will be taken from bit (bits - 1)
- n of value, where bits is the total number of bits used
to represent value.

genIType bitCount (genIType value)
genIType bitCount (genUType value)

Returns the number of bits set to 1 in the binary
representation of value.

genIType findLSB (genIType value)
genIType findLSB (genUType value)

Returns the bit number of the least significant bit set to
1 in the binary representation of value. If value is zero,
-1will be returned.

genIType findMSB (genIType value)
genIType findMSB (genUType value)

Returns the bit number of the most significant bit in the
binary representation of value.

For positive integers, the result will be the bit number of
the most significant bit set to 1. For negative integers,
the result will be the bit number of the most significant
bit set to 0. For a value of zero or negative one, -1 will
be returned.

133

8 Built-in Functions

8.9 Texture Functions
Texture lookup functions are available in all shading stages. However, automatic level of detail is
computed only for fragment shaders. Other shaders operate as though the base level of detail were
computed as zero. The functions in the table below provide access to textures through samplers, as set up
through the OpenGL API. Texture properties such as size, pixel format, number of dimensions, filtering
method, number of mip-map levels, depth comparison, and so on are also defined by OpenGL API calls.
Such properties are taken into account as the texture is accessed via the built-in functions defined below.

Texture data can be stored by the GL as floating point, unsigned normalized integer, unsigned integer or
signed integer data. This is determined by the type of the internal format of the texture. Texture lookups
on unsigned normalized integer and floating point data return floating point values in the range [0, 1].

Texture lookup functions are provided that can return their result as floating point, unsigned integer or
signed integer, depending on the sampler type passed to the lookup function. Care must be taken to use
the right sampler type for texture access. The following table lists the supported combinations of sampler
types and texture internal formats. Blank entries are unsupported. Doing a texture lookup will return
undefined values for unsupported combinations.

Internal Texture Format Floating Point
Sampler Types

Signed Integer
Sampler Types

Unsigned Integer
Sampler Types

Floating point Supported

Normalized Integer Supported

Signed Integer Supported

Unsigned Integer Supported

If an integer sampler type is used, the result of a texture lookup is an ivec4. If an unsigned integer sampler
type is used, the result of a texture lookup is a uvec4. If a floating point sampler type is used, the result of
a texture lookup is a vec4, where each component is in the range [0, 1].

In the prototypes below, the “g” in the return type “gvec4” is used as a placeholder for nothing, “i”, or “u”
making a return type of vec4, ivec4, or uvec4. In these cases, the sampler argument type also starts with
“g”, indicating the same substitution done on the return type; it is either a floating point, signed integer, or
unsigned integer sampler, matching the basic type of the return type, as described above.

For shadow forms (the sampler parameter is a shadow-type), a depth comparison lookup on the depth
texture bound to sampler is done as described in section 3.8.16 “Texture Comparison Modes” of the
OpenGL Graphics System Specification. See the table below for which component specifies Dref. The
texture bound to sampler must be a depth texture, or results are undefined. If a non-shadow texture call is
made to a sampler that represents a depth texture with depth comparisons turned on, then results are
undefined. If a shadow texture call is made to a sampler that represents a depth texture with depth
comparisons turned off, then results are undefined. If a shadow texture call is made to a sampler that does
not represent a depth texture, then results are undefined.

134

8 Built-in Functions

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in any other shaders. For a fragment shader, if bias is present, it is added to the implicit level of
detail prior to performing the texture access operation. No bias or lod parameters for rectangular textures,
multi-sample textures, or texture buffers are supported because mip-maps are not allowed for these types
of textures.

The implicit level of detail is selected as follows: For a texture that is not mip-mapped, the texture is used
directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the implementation
is used to do the texture lookup. If it is mip-mapped and running on the vertex shader, then the base
texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may require implicit derivatives. Implicit
derivatives are undefined within non-uniform control flow and for non-fragment-shader texture fetches.

For Cube forms, the direction of P is used to select which face to do a 2-dimensional texture lookup in, as
described in section 3.8.10 “Cube Map Texture Selection” in the OpenGL Graphics System Specification.

For Array forms, the array layer used will be

max 0,min d−1, floorlayer0.5

where d is the depth of the texture array and layer comes from the component indicated in the tables
below.

8.9.1 Texture Query Functions
The textureSize functions query the dimensions of a specific texture level for a sampler.

The textureQueryLod functions are available only in a fragment shader. They take the components of P
and compute the level of detail information that the texture pipe would use to access that texture through a
normal texture lookup. The level of detail λ' (equation 3.18 in the OpenGL Graphics System
Specification) is obtained after any LOD bias, but prior to clamping to [TEXTURE_MIN_LOD,
TEXTURE_MAX_LOD]. The mipmap array(s) that would be accessed are also computed. If a single
level of detail would be accessed, the level-of-detail number relative to the base level is returned. If
multiple levels of detail would be accessed, a floating-point number between the two levels is returned,
with the fractional part equal to the fractional part of the computed and clamped level of detail. The
algorithm used is given by the following pseudo-code:

135

8 Built-in Functions

float ComputeAccessedLod(float computedLod)
{
 // Clamp the computed LOD according to the texture LOD clamps.
 if (computedLod < TEXTURE_MIN_LOD) computedLod = TEXTURE_MIN_LOD;
 if (computedLod > TEXTURE_MAX_LOD) computedLod = TEXTURE_MAX_LOD;

 // Clamp the computed LOD to the range of accessible levels.
 if (computedLod < 0.0)
 computedLod = 0.0;
 if (computedLod > (float)
 maxAccessibleLevel) computedLod = (float) maxAccessibleLevel;

 // Return a value according to the min filter.
 if (TEXTURE_MIN_FILTER is LINEAR or NEAREST) {
 return 0.0;
 } else if (TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEAREST
 or LINEAR_MIPMAP_NEAREST) {
 return ceil(computedLod + 0.5) - 1.0;
 } else {
 return computedLod;
 }
}

The value maxAccessibleLevel is the level number of the smallest accessible level of the mipmap array
(the value q in section 3.8.9 “Texture Minification” of the OpenGL Graphics System Specification) minus
the base level.

Syntax Description
 int textureSize (gsampler1D sampler, int lod)
ivec2 textureSize (gsampler2D sampler, int lod)
ivec3 textureSize (gsampler3D sampler, int lod)
ivec2 textureSize (gsamplerCube sampler, int lod)
 int textureSize (sampler1DShadow sampler, int lod)
ivec2 textureSize (sampler2DShadow sampler, int lod)
ivec2 textureSize (samplerCubeShadow sampler, int lod)
ivec3 textureSize (gsamplerCubeArray sampler, int lod)
ivec3 textureSize (samplerCubeArrayShadow sampler, int lod)
ivec2 textureSize (gsampler2DRect sampler)
ivec2 textureSize (sampler2DRectShadow sampler)
ivec2 textureSize (gsampler1DArray sampler, int lod)
ivec3 textureSize (gsampler2DArray sampler, int lod)
ivec2 textureSize (sampler1DArrayShadow sampler, int lod)
ivec3 textureSize (sampler2DArrayShadow sampler, int lod)
 int textureSize (gsamplerBuffer sampler)
ivec2 textureSize (gsampler2DMS sampler)
ivec3 textureSize (gsampler2DMSArray sampler)

Returns the dimensions of level
lod (if present) for the texture
bound to sampler, as described
in section 2.11.7 “Shader
Execution” of the OpenGL
Graphics System Specification,
under “Texture Size Query”.
The components in the return
value are filled in, in order, with
the width, height, depth of the
texture.
For the array forms, the last
component of the return value is
the number of layers in the
texture array.

136

8 Built-in Functions

Syntax Description
vec2 textureQueryLod(gsampler1D sampler, float P)
vec2 textureQueryLod(gsampler2D sampler, vec2 P)
vec2 textureQueryLod(gsampler3D sampler, vec3 P)
vec2 textureQueryLod(gsamplerCube sampler, vec3 P)
vec2 textureQueryLod(gsampler1DArray sampler, float P)
vec2 textureQueryLod(gsampler2DArray sampler, vec2 P)
vec2 textureQueryLod(gsamplerCubeArray sampler, vec3 P)
vec2 textureQueryLod(sampler1DShadow sampler, float P)
vec2 textureQueryLod(sampler2DShadow sampler, vec2 P)
vec2 textureQueryLod(samplerCubeShadow sampler, vec3 P)
vec2 textureQueryLod(sampler1DArrayShadow sampler, float P)
vec2 textureQueryLod(sampler2DArrayShadow sampler, vec2 P)
vec2 textureQueryLod(samplerCubeArrayShadow sampler, vec3 P)

Returns the mipmap array(s)
that would be accessed in the x
component of the return value.

Returns the computed level of
detail relative to the base level
in the y component of the return
value.

If called on an incomplete
texture, the results are
undefined.

8.9.2 Texel Lookup Functions

Syntax Description
gvec4 texture (gsampler1D sampler, float P [, float bias])
gvec4 texture (gsampler2D sampler, vec2 P [, float bias])
gvec4 texture (gsampler3D sampler, vec3 P [, float bias])
gvec4 texture (gsamplerCube sampler, vec3 P [, float bias])
 float texture (sampler1DShadow sampler, vec3 P [, float bias])
 float texture (sampler2DShadow sampler, vec3 P [, float bias])
 float texture (samplerCubeShadow sampler, vec4 P [, float bias])
gvec4 texture (gsampler1DArray sampler, vec2 P [, float bias])
gvec4 texture (gsampler2DArray sampler, vec3 P [, float bias])
gvec4 texture (gsamplerCubeArray sampler, vec4 P [, float bias])
 float texture (sampler1DArrayShadow sampler, vec3 P
 [, float bias])
 float texture (sampler2DArrayShadow sampler, vec4 P)
gvec4 texture (gsampler2DRect sampler, vec2 P)
 float texture (sampler2DRectShadow sampler, vec3 P)
 float texture (gsamplerCubeArrayShadow sampler, vec4 P,
 float compare)

Use the texture coordinate P to
do a texture lookup in the
texture currently bound to
sampler.
For shadow forms: When
compare is present, it is used as
Dref and the array layer comes
from P.w. When compare is not
present, the last component of
P is used as Dref and the array
layer comes from the second to
last component of P. (The
second component of P is
unused for 1D shadow lookups.)
For non-shadow forms: the array
layer comes from the last
component of P.

137

8 Built-in Functions

Syntax Description
gvec4 textureProj (gsampler1D sampler, vec2 P [, float bias])
gvec4 textureProj (gsampler1D sampler, vec4 P [, float bias])
gvec4 textureProj (gsampler2D sampler, vec3 P [, float bias])
gvec4 textureProj (gsampler2D sampler, vec4 P [, float bias])
gvec4 textureProj (gsampler3D sampler, vec4 P [, float bias])
 float textureProj (sampler1DShadow sampler, vec4 P
 [, float bias])
 float textureProj (sampler2DShadow sampler, vec4 P
 [, float bias])
gvec4 textureProj (gsampler2DRect sampler, vec3 P)
gvec4 textureProj (gsampler2DRect sampler, vec4 P)
 float textureProj (sampler2DRectShadow sampler, vec4 P)

Do a texture lookup with
projection. The texture
coordinates consumed from P,
not including the last component
of P, are divided by the last
component of P. The resulting
3rd component of P in the
shadow forms is used as Dref.
After these values are computed,
texture lookup proceeds as in
texture.

gvec4 textureLod (gsampler1D sampler, float P, float lod)
gvec4 textureLod (gsampler2D sampler, vec2 P, float lod)
gvec4 textureLod (gsampler3D sampler, vec3 P, float lod)
gvec4 textureLod (gsamplerCube sampler, vec3 P, float lod)
 float textureLod (sampler1DShadow sampler, vec3 P, float lod)
 float textureLod (sampler2DShadow sampler, vec3 P, float lod)
gvec4 textureLod (gsampler1DArray sampler, vec2 P, float lod)
gvec4 textureLod (gsampler2DArray sampler, vec3 P, float lod)
 float textureLod (sampler1DArrayShadow sampler, vec3 P,
 float lod)
gvec4 textureLod (gsamplerCubeArray sampler, vec4 P, float lod)

Do a texture lookup as in
texture but with explicit LOD;
lod specifies λbase and sets the
partial derivatives as follows.
(See section 3.8.11 “Texture
Minification” and equation 3.17
in the OpenGL Graphics System
Specification.)

∂u
∂x

= 0 ∂v
∂x

= 0 ∂w
∂x

= 0

∂u
∂ y

= 0 ∂v
∂ y

= 0 ∂w
∂ y

= 0

138

8 Built-in Functions

Syntax Description
gvec4 textureOffset (gsampler1D sampler, float P,
 int offset [, float bias])
gvec4 textureOffset (gsampler2D sampler, vec2 P,
 ivec2 offset [, float bias])
gvec4 textureOffset (gsampler3D sampler, vec3 P,
 ivec3 offset [, float bias])
gvec4 textureOffset (gsampler2DRect sampler, vec2 P,
 ivec2 offset)
 float textureOffset (sampler2DRectShadow sampler, vec3 P,
 ivec2 offset)
 float textureOffset (sampler1DShadow sampler, vec3 P,
 int offset [, float bias])
 float textureOffset (sampler2DShadow sampler, vec3 P,
 ivec2 offset [, float bias])
gvec4 textureOffset (gsampler1DArray sampler, vec2 P,
 int offset [, float bias])
gvec4 textureOffset (gsampler2DArray sampler, vec3 P,
 ivec2 offset [, float bias])
 float textureOffset (sampler1DArrayShadow sampler, vec3 P,
 int offset [, float bias])

Do a texture lookup as in
texture but with offset added to
the (u,v,w) texel coordinates
before looking up each texel.
The offset value must be a
constant expression. A limited
range of offset values are
supported; the minimum and
maximum offset values are
implementation-dependent and
given by
gl_MinProgramTexelOffset and
gl_MaxProgramTexelOffset,
respectively.
Note that offset does not apply
to the layer coordinate for
texture arrays. This is explained
in detail in section 3.8.11
“Texture Minification” of the
OpenGL Graphics System
Specification, where offset is
u ,v ,w. Note that texel

offsets are also not supported
for cube maps.

gvec4 texelFetch (gsampler1D sampler, int P, int lod)
gvec4 texelFetch (gsampler2D sampler, ivec2 P, int lod)
gvec4 texelFetch (gsampler3D sampler, ivec3 P, int lod)
gvec4 texelFetch (gsampler2DRect sampler, ivec2 P)
gvec4 texelFetch (gsampler1DArray sampler, ivec2 P, int lod)
gvec4 texelFetch (gsampler2DArray sampler, ivec3 P, int lod)
gvec4 texelFetch (gsamplerBuffer sampler, int P)
gvec4 texelFetch (gsampler2DMS sampler, ivec2 P, int sample)
gvec4 texelFetch (gsampler2DMSArray sampler, ivec3 P,
 int sample)

Use integer texture coordinate P
to lookup a single texel from
sampler. The array layer comes
from the last component of P for
the array forms. The level-of-
detail lod (if present) is as
described in sections 2.11.8
“Shader Execution” under Texel
Fetches and 3.8 “Texturing” of
the OpenGL Graphics System
Specification.

139

8 Built-in Functions

Syntax Description
gvec4 texelFetchOffset (gsampler1D sampler, int P, int lod,
 int offset)
gvec4 texelFetchOffset (gsampler2D sampler, ivec2 P, int lod,
 ivec2 offset)
gvec4 texelFetchOffset (gsampler3D sampler, ivec3 P, int lod,
 ivec3 offset)
gvec4 texelFetchOffset (gsampler2DRect sampler, ivec2 P,
 ivec2 offset)
gvec4 texelFetchOffset (gsampler1DArray sampler, ivec2 P, int lod,
 int offset)
gvec4 texelFetchOffset (gsampler2DArray sampler, ivec3 P, int lod,
 ivec2 offset)

Fetch a single texel as in
texelFetch offset by offset as
described in textureOffset.

gvec4 textureProjOffset (gsampler1D sampler, vec2 P,
 int offset [, float bias])
gvec4 textureProjOffset (gsampler1D sampler, vec4 P,
 int offset [, float bias])
gvec4 textureProjOffset (gsampler2D sampler, vec3 P,
 ivec2 offset [, float bias])
gvec4 textureProjOffset (gsampler2D sampler, vec4 P,
 ivec2 offset [, float bias])
gvec4 textureProjOffset (gsampler3D sampler, vec4 P,
 ivec3 offset [, float bias])
gvec4 textureProjOffset (gsampler2DRect sampler, vec3 P,
 ivec2 offset)
gvec4 textureProjOffset (gsampler2DRect sampler, vec4 P,
 ivec2 offset)
 float textureProjOffset (sampler2DRectShadow sampler, vec4 P,
 ivec2 offset)
 float textureProjOffset (sampler1DShadow sampler, vec4 P,
 int offset [, float bias])
 float textureProjOffset (sampler2DShadow sampler, vec4 P,
 ivec2 offset [, float bias])

Do a projective texture lookup
as described in textureProj
offset by offset as described in
textureOffset.

140

8 Built-in Functions

Syntax Description
gvec4 textureLodOffset (gsampler1D sampler, float P,
 float lod, int offset)
gvec4 textureLodOffset (gsampler2D sampler, vec2 P,
 float lod, ivec2 offset)
gvec4 textureLodOffset (gsampler3D sampler, vec3 P,
 float lod, ivec3 offset)
 float textureLodOffset (sampler1DShadow sampler, vec3 P,
 float lod, int offset)
 float textureLodOffset (sampler2DShadow sampler, vec3 P,
 float lod, ivec2 offset)
gvec4 textureLodOffset (gsampler1DArray sampler, vec2 P,
 float lod, int offset)
gvec4 textureLodOffset (gsampler2DArray sampler, vec3 P,
 float lod, ivec2 offset)
 float textureLodOffset (sampler1DArrayShadow sampler, vec3 P,
 float lod, int offset)

Do an offset texture lookup with
explicit LOD. See textureLod
and textureOffset.

gvec4 textureProjLod (gsampler1D sampler, vec2 P, float lod)
gvec4 textureProjLod (gsampler1D sampler, vec4 P, float lod)
gvec4 textureProjLod (gsampler2D sampler, vec3 P, float lod)
gvec4 textureProjLod (gsampler2D sampler, vec4 P, float lod)
gvec4 textureProjLod (gsampler3D sampler, vec4 P, float lod)
float textureProjLod (sampler1DShadow sampler, vec4 P, float lod)
float textureProjLod (sampler2DShadow sampler, vec4 P, float lod)

Do a projective texture lookup
with explicit LOD. See
textureProj and textureLod.

gvec4 textureProjLodOffset (gsampler1D sampler, vec2 P,
 float lod, int offset)
gvec4 textureProjLodOffset (gsampler1D sampler, vec4 P,
 float lod, int offset)
gvec4 textureProjLodOffset (gsampler2D sampler, vec3 P,
 float lod, ivec2 offset)
gvec4 textureProjLodOffset (gsampler2D sampler, vec4 P,
 float lod, ivec2 offset)
gvec4 textureProjLodOffset (gsampler3D sampler, vec4 P,
 float lod, ivec3 offset)
 float textureProjLodOffset (sampler1DShadow sampler, vec4 P,
 float lod, int offset)
 float textureProjLodOffset (sampler2DShadow sampler, vec4 P,
 float lod, ivec2 offset)

Do an offset projective texture
lookup with explicit LOD. See
textureProj, textureLod, and
textureOffset.

141

8 Built-in Functions

Syntax Description
gvec4 textureGrad (gsampler1D sampler, float P,
 float dPdx, float dPdy)
gvec4 textureGrad (gsampler2D sampler, vec2 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureGrad (gsampler3D sampler, vec3 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureGrad (gsamplerCube sampler, vec3 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureGrad (gsampler2DRect sampler, vec2 P,
 vec2 dPdx, vec2 dPdy)
 float textureGrad (sampler2DRectShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
 float textureGrad (sampler1DShadow sampler, vec3 P,
 float dPdx, float dPdy)
 float textureGrad (sampler2DShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
 float textureGrad (samplerCubeShadow sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureGrad (gsampler1DArray sampler, vec2 P,
 float dPdx, float dPdy)
gvec4 textureGrad (gsampler2DArray sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
 float textureGrad (sampler1DArrayShadow sampler, vec3 P,
 float dPdx, float dPdy)
 float textureGrad (sampler2DArrayShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureGrad (gsamplerCubeArray sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)

Do a texture lookup as in
texture but with explicit
gradients. The partial
derivatives of P are with respect
to window x and window y. Set

∂s
∂x

= {∂P
∂x

for a 1D texture

∂P.s
∂x

otherwise

∂s
∂ y

= {∂P
∂y

for a 1D texture

∂P.s
∂y

otherwise

∂t
∂x

= {0.0 for a 1D texture
∂P.t
∂x

otherwise

∂t
∂ y

= {0.0 for a 1D texture
∂P.t
∂y

otherwise

∂r
∂x

= {0.0 for 1D or 2D
∂P.p
∂x

cube, other

∂r
∂ y

= {0.0 for 1D or 2D
∂P.p
∂y

cube, other

For the cube version, the partial
derivatives of P are assumed to
be in the coordinate system used
before texture coordinates are
projected onto the appropriate
cube face.

142

8 Built-in Functions

Syntax Description
gvec4 textureGradOffset (gsampler1D sampler, float P,
 float dPdx, float dPdy, int offset)
gvec4 textureGradOffset (gsampler2D sampler, vec2 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureGradOffset (gsampler3D sampler, vec3 P,
 vec3 dPdx, vec3 dPdy, ivec3 offset)
gvec4 textureGradOffset (gsampler2DRect sampler, vec2 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
 float textureGradOffset (sampler2DRectShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
 float textureGradOffset (sampler1DShadow sampler, vec3 P,
 float dPdx, float dPdy, int offset)
 float textureGradOffset (sampler2DShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureGradOffset (gsampler1DArray sampler, vec2 P,
 float dPdx, float dPdy, int offset)
gvec4 textureGradOffset (gsampler2DArray sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
 float textureGradOffset (sampler1DArrayShadow sampler, vec3
P,
 float dPdx, float dPdy, int offset)
 float textureGradOffset (sampler2DArrayShadow sampler, vec4
P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup with both
explicit gradient and offset, as
described in textureGrad and
textureOffset.

gvec4 textureProjGrad (gsampler1D sampler, vec2 P,
 float dPdx, float dPdy)
gvec4 textureProjGrad (gsampler1D sampler, vec4 P,
 float dPdx, float dPdy)
gvec4 textureProjGrad (gsampler2D sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad (gsampler2D sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad (gsampler3D sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureProjGrad (gsampler2DRect sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad (gsampler2DRect sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)
 float textureProjGrad (sampler2DRectShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)
 float textureProjGrad (sampler1DShadow sampler, vec4 P,
 float dPdx, float dPdy)
 float textureProjGrad (sampler2DShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)

Do a texture lookup both
projectively, as described in
textureProj, and with explicit
gradient as described in
textureGrad. The partial
derivatives dPdx and dPdy are
assumed to be already projected.

143

8 Built-in Functions

Syntax Description
gvec4 textureProjGradOffset (gsampler1D sampler, vec2 P,
 float dPdx, float dPdy, int offset)
gvec4 textureProjGradOffset (gsampler1D sampler, vec4 P,
 float dPdx, float dPdy, int offset)
gvec4 textureProjGradOffset (gsampler2D sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureProjGradOffset (gsampler2D sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureProjGradOffset (gsampler2DRect sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureProjGradOffset (gsampler2DRect sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
 float textureProjGradOffset (sampler2DRectShadow sampler,
 vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureProjGradOffset (gsampler3D sampler, vec4 P,
 vec3 dPdx, vec3 dPdy, ivec3 offset)
 float textureProjGradOffset (sampler1DShadow sampler, vec4 P,
 float dPdx, float dPdy, int offset)
 float textureProjGradOffset (sampler2DShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup projectively
and with explicit gradient as
described in textureProjGrad,
as well as with offset, as
described in textureOffset.

8.9.3 Texture Gather Instructions
The texture gather functions take components of a single floating-point vector operand as a texture
coordinate, determine a set of four texels to sample from the base level of detail of the specified texture
image, and return one component from each texel in a four-component result vector.

When performing a texture gather operation, the minification and magnification filters are ignored, and
the rules for LINEAR filtering in the OpenGL Specification are applied to the base level of the texture
image to identify the four texels i0j1, i1j1, i1j0, and i0j0. The texels are then converted to texture source
colors (Rs, Gs, Bs, As) according to Table 3.20, followed by application of the texture swizzle as described
in section 3.9.2 “Shader Execution” of the OpenGL Graphics System Specification. A four-component
vector is assembled by taking the selected component from each of the post-swizzled texture source colors
in the order (i0j1, i1j1, i1j0, i0j0).

For texture gather functions using a shadow sampler type, each of the four texel lookups performs a depth
comparison against the depth reference value passed in (refZ), and returns the result of that comparison in
the appropriate component of the result vector.

As with other texture lookup functions, the results of a texture gather are undefined for shadow samplers if
the texture referenced is not a depth texture or has depth comparisons disabled; or for non-shadow
samplers if the texture referenced is a depth texture with depth comparisons enabled.

144

8 Built-in Functions

Syntax Description
gvec4 textureGather(gsampler2D sampler, vec2 P
 [, int comp])
gvec4 textureGather(gsampler2DArray sampler,
 vec3 P [, int comp])
gvec4 textureGather(gsamplerCube sampler,
 vec3 P [, int comp])
gvec4 textureGather(gsamplerCubeArray sampler,
 vec4 P[, int comp])
gvec4 textureGather(gsampler2DRect sampler,
 vec2 P[, int comp])
vec4 textureGather(sampler2DShadow sampler,
 vec2 P, float refZ)
vec4 textureGather(sampler2DArrayShadow sampler,
 vec3 P, float refZ)
vec4 textureGather(samplerCubeShadow sampler,
 vec3 P, float refZ)
vec4 textureGather(
 samplerCubeArrayShadow sampler,
 vec4 P, float refZ);
vec4 textureGather(sampler2DRectShadow sampler,
 vec2 P, float refZ);

Returns the value

vec4(Sample_i0_j1(P, base).comp,
 Sample_i1_j1(P, base).comp,
 Sample_i1_j0(P, base).comp,
 Sample_i0_j0(P, base).comp)

If specified, the value of comp must be a
constant integer expression with a value of 0,
1, 2, or 3, identifying the x, y, z, or w post-
swizzled component of the four-component
vector lookup result for each texel,
respectively. If comp is not specified, it is
treated as 0, selecting the x component of
each texel to generate the result.

gvec4 textureGatherOffset(gsampler2D sampler,
 vec2 P, ivec2 offset
 [, int comp])
gvec4 textureGatherOffset(gsampler2DArray sampler,
 vec3 P, ivec2 offset
 [, int comp])
gvec4 textureGatherOffset(gsampler2DRect sampler,
 vec2 P, ivec2 offset
 [, int comp])

vec4 textureGatherOffset(
 sampler2DShadow sampler,
 vec2 P, float refZ, ivec2 offset)
vec4 textureGatherOffset(
 sampler2DArrayShadow sampler,
 vec3 P, float refZ, ivec2 offset)
vec4 textureGatherOffset(
 sampler2DRectShadow sampler,
 vec2 P, float refZ, ivec2 offset)

Perform a texture gather operation as in
textureGather by offset as described in
textureOffset except that the offset can be
variable (non constant) and the
implementation-dependent minimum and
maximum offset values are given by
MIN_PROGRAM_TEXTURE_GATHER_OFFSET
and
MAX_PROGRAM_TEXTURE_GATHER_OFFSET,
respectively.

145

8 Built-in Functions

Syntax Description
gvec4 textureGatherOffsets(
 gsampler2D sampler,
 vec2 P, ivec2 offsets[4]
 [, int comp])
gvec4 textureGatherOffsets(
 gsampler2DArray sampler,
 vec3 P, ivec2 offsets[4]
 [, int comp])
gvec4 textureGatherOffsets(
 gsampler2DRect sampler,
 vec3 P, ivec2 offsets[4]
 [, int comp])

vec4 textureGatherOffsets(
 sampler2DShadow sampler,
 vec2 P, float refZ, ivec2 offsets[4])
vec4 textureGatherOffsets(
 sampler2DArrayShadow sampler,
 vec3 P, float refZ, ivec2 offsets[4])
vec4 textureGatherOffsets(
 sampler2DRectShadow sampler,
 vec2 P, float refZ, ivec2 offsets[4])

Operate identically to textureGatherOffset
except that offsets is used to determine the
location of the four texels to sample. Each
of the four texels is obtained by applying the
corresponding offset in offsets as a (u, v)
coordinate offset to P, identifying the four-
texel LINEAR footprint, and then selecting
the texel i0j0 of that footprint. The specified
values in offsets must be set with constant
integral expressions.

146

8 Built-in Functions

8.9.4 Compatibility Profile Texture Functions
The following texture functions are only in the compatibility profile.

Syntax (deprecated) Description (deprecated)
vec4 texture1D (sampler1D sampler,
 float coord [, float bias])
vec4 texture1DProj (sampler1D sampler,
 vec2 coord [, float bias])
vec4 texture1DProj (sampler1D sampler,
 vec4 coord [, float bias])
vec4 texture1DLod (sampler1D sampler,
 float coord, float lod)
vec4 texture1DProjLod (sampler1D sampler,
 vec2 coord, float lod)
vec4 texture1DProjLod (sampler1D sampler,
 vec4 coord, float lod)

See corresponding signature above without
“1D” in the name.

vec4 texture2D (sampler2D sampler,
 vec2 coord [, float bias])
vec4 texture2DProj (sampler2D sampler,
 vec3 coord [, float bias])
vec4 texture2DProj (sampler2D sampler,
 vec4 coord [, float bias])
vec4 texture2DLod (sampler2D sampler,
 vec2 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,
 vec3 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,
 vec4 coord, float lod)

See corresponding signature above without
“2D” in the name.

vec4 texture3D (sampler3D sampler,
 vec3 coord [, float bias])
vec4 texture3DProj (sampler3D sampler,
 vec4 coord [, float bias])
vec4 texture3DLod (sampler3D sampler,
 vec3 coord, float lod)
vec4 texture3DProjLod (sampler3D sampler,
 vec4 coord, float lod)

See corresponding signature above without
“3D” in the name.

Use the texture coordinate coord to do a
texture lookup in the 3D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate is
divided by coord.q.

vec4 textureCube (samplerCube sampler,
 vec3 coord [, float bias])
vec4 textureCubeLod (samplerCube sampler,
 vec3 coord, float lod)

See corresponding signature above without
“Cube” in the name.

147

8 Built-in Functions

Syntax (deprecated) Description (deprecated)
vec4 shadow1D (sampler1DShadow sampler,
 vec3 coord [, float bias])
vec4 shadow2D (sampler2DShadow sampler,
 vec3 coord [, float bias])
vec4 shadow1DProj (sampler1DShadow sampler,
 vec4 coord [, float bias])
vec4 shadow2DProj (sampler2DShadow sampler,
 vec4 coord [, float bias])
vec4 shadow1DLod (sampler1DShadow sampler,
 vec3 coord, float lod)
vec4 shadow2DLod (sampler2DShadow sampler,
 vec3 coord, float lod)
vec4 shadow1DProjLod(sampler1DShadow sampler,
 vec4 coord, float lod)
vec4 shadow2DProjLod(sampler2DShadow sampler,
 vec4 coord, float lod)

Same functionality as the “texture” based
names above with the same signature.

148

8 Built-in Functions

8.10 Atomic-Counter Functions
The atomic-counter operations in this section operate atomically with respect to each other. They are
atomic for any single counter, meaning any of these operations on a specific counter in one shader
instantiation will be indivisible by any of these operations on the same counter from another shader
instantiation. There is no guarantee that these operations are atomic with respect to other forms of access
to the counter or that they are serialized when applied to separate counters. Such cases would require
additional use of fences, barriers, or other forms a synchronization, if atomicity or serialization is desired.

The value returned by an atomic-counter function is the value of an atomic counter, which may be

• returned and incremented in an atomic operation, or

• decremented and returned in an atomic operation, or

• simply returned.

The underlying counter is a 32-bit unsigned integer. Increments and decrements at the limit of the range
will wrap to [0, 232-1].

Syntax Description

uint atomicCounterIncrement (atomic_uint c) Atomically
1. increments the counter for c, and
2. returns its value prior to the increment

operation.
These two steps are done atomically with respect the
atomic counter functions in this table.

uint atomicCounterDecrement (atomic_uint c) Atomically
1. decrements the counter for c, and
2. returns the value resulting from the

decrement operation.
These two steps are done atomically with respect to
the atomic counter functions in this table.

uint atomicCounter (atomic_uint c) Returns the counter value for c.

8.11 Image Functions
Variables using one of the image basic types may be used by the built-in shader image memory functions
defined in this section to read and write individual texels of a texture. Each image variable references an
image unit, which has a texture image attached.

When image memory functions below access memory, an individual texel in the image is identified using
an (i), (i, j), or (i, j, k) coordinate corresponding to the values of P. For image2DMS and
image2DMSArray variables (and the corresponding int/unsigned int types) corresponding to multi-

149

8 Built-in Functions

sample textures, each texel may have multiple samples and an individual sample is identified using the
integer sample parameter. The coordinates and sample number are used to select an individual texel in
the manner described in section 3.9.X of the OpenGL specification.

Loads and stores support float, integer, and unsigned integer types. The data types below starting
“gimage” serve as placeholders meaning types starting either “image”, “iimage”, or “uimage” in the same
way as gvec or gsampler in earlier sections.

The IMAGE_PARAMS in the prototypes below is a placeholder representing 33 separate functions, each
for a different type of image variable. The IMAGE_PARAMS placeholder is replaced by one of the
following parameter lists:

gimage1D image, int P

gimage2D image, ivec2 P

gimage3D image, ivec3 P

gimage2DRect image, ivec2 P

gimageCube image, ivec3 P

gimageBuffer image, int P

gimage1DArray image, ivec2 P

gimage2DArray image, ivec3 P

gimageCubeArray image, ivec3 P

gimage2DMS image, ivec2 P, int sample

gimage2DMSArray image, ivec3 P, int sample

where each of the line represents one of three different image variable types, and image, P, and sample
specify the individual texel to operate on. The method for identifying the individual texel operated on
from image, P, and sample, and the method for reading and writing the texel are specified in section 3.9.X
of the OpenGL specification ref .

The atomic functions perform atomic operations on individual texels or samples of an image variable.
Atomic memory operations read a value from the selected texel, compute a new value using one of the
operations described below, write the new value to the selected texel, and return the original value read.
The contents of the texel being updated by the atomic operation are guaranteed not to be modified by any
other image store or atomic function between the time the original value is read and the time the new
value is written.

Atomic memory operations are supported on only a subset of all image variable types; image must be
either:

• a signed integer image variable (type starts “iimage”) and a format qualifier of r32i, used with a
data argument of type int, or

• an unsigned image variable (type starts “uimage”) and a format qualifier of r32ui, used with a
data argument of type uint.

150

8 Built-in Functions

Syntax Description

gvec4 imageLoad (readonly IMAGE_PARAMS) Loads the texel at the coordinate P from the image
unit image (in IMAGE_PARAMS). For multi-sample
loads, the sample number is given by sample. When
image, P, sample identify a valid texel, the bits used
to represent the selected texel in memory are
converted to a vec4, ivec4, or uvec4 in the manner
described in section 3.9.20 of the OpenGL
Specification and returned.

void imageStore (writeonly IMAGE_PARAMS,
 gvec4 data)

Stores data into the texel at the coordinate P from
the image specified by image. For multi-sample
stores, the sample number is given by sample. When
image, P, and sample identify a valid texel, the bits
used to represent data are converted to the format of
the image unit in the manner described in section
3.9.20 of the OpenGL Specification and stored to the
specified texel.

uint imageAtomicAdd (IMAGE_PARAMS,
uint data)

int imageAtomicAdd (IMAGE_PARAMS,
int data)

Computes a new value by adding the value of data
to the contents of the selected texel.

uint imageAtomicMin (IMAGE_PARAMS,
uint data)

int imageAtomicMin (IMAGE_PARAMS,
int data)

Computes a new value by taking the minimum of the
value of data and the contents of the selected texel.

uint imageAtomicMax (IMAGE_PARAMS,
uint data)

int imageAtomicMax (IMAGE_PARAMS,
int data)

Computes a new value by taking the maximum of the
value data and the contents of the selected texel.

uint imageAtomicAnd (IMAGE_PARAMS,
uint data)

int imageAtomicAnd (IMAGE_PARAMS,
int data)

Computes a new value by performing a bit-wise and
of the value of data and the contents of the selected
texel.

uint imageAtomicOr (IMAGE_PARAMS,
uint data)

int imageAtomicOr (IMAGE_PARAMS,
int data)

Computes a new value by performing a bit-wise or
of the value of data and the contents of the selected
texel.

151

8 Built-in Functions

Syntax Description
uint imageAtomicXor (IMAGE_PARAMS,

uint data)
int imageAtomicXor (IMAGE_PARAMS,

int data)

Computes a new value by performing a bit-wise
exclusive or of the value of data and the contents of
the selected texel.

uint imageAtomicExchange (IMAGE_PARAMS,
uint data)

int imageAtomicExchange (IMAGE_PARAMS,
int data)

Computes a new value by simply copying the value
of data.

uint imageAtomicCompSwap
(IMAGE_PARAMS,
uint compare,
uint data)

int imageAtomicCompSwap
(IMAGE_PARAMS,
int compare,
int data)

Compares the value of compare and the contents of
the selected texel. If the values are equal, the new
value is given by data; otherwise, it is taken from the
original value loaded from the texel.

8.12 Fragment Processing Functions
Fragment processing functions are only available in fragment shaders.

8.12.1 Derivative Functions
Derivatives may be computationally expensive and/or numerically unstable. Therefore, an OpenGL
implementation may approximate the true derivatives by using a fast but not entirely accurate derivative
computation. Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

 F xdx −F x ~ dFdx x⋅dx 1a

 dFdx x~ F xdx −F x
dx 1b

Backward differencing:

 F x−dx −F x ~−dFdx x⋅dx 2a

 dFdx x~ F x−F x−dx
dx 2b

152

8 Built-in Functions

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0 in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

A GL implementation may use the above or other methods to perform the calculation, subject to the
following conditions:

1. The method may use piecewise linear approximations. Such linear approximations imply that higher
order derivatives, dFdx(dFdx(x)) and above, are undefined.

2. The method may assume that the function evaluated is continuous. Therefore derivatives within non-
uniform control flow are undefined.

3. The method may differ per fragment, subject to the constraint that the method may vary by window
coordinates, not screen coordinates. The invariance requirement described in section 3.2 “Invariance”
of the OpenGL Graphics System Specification, is relaxed for derivative calculations, because the
method may be a function of fragment location.

Other properties that are desirable, but not required, are:

4. Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

5. Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(y))
and dFdy(dFdx(x)) are undefined.

6. Derivatives of constant arguments should be 0.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 5.4 “Hints” of the OpenGL Graphics System Specification), allowing a user to make an image
quality versus speed trade off.

Syntax Description
genType dFdx (genType p) Returns the derivative in x using local differencing for

the input argument p.

genType dFdy (genType p) Returns the derivative in y using local differencing for
the input argument p.

These two functions are commonly used to estimate the
filter width used to anti-alias procedural textures. We
are assuming that the expression is being evaluated in
parallel on a SIMD array so that at any given point in
time the value of the function is known at the grid points
represented by the SIMD array. Local differencing
between SIMD array elements can therefore be used to
derive dFdx, dFdy, etc.

153

8 Built-in Functions

Syntax Description
genType fwidth (genType p) Returns the sum of the absolute derivative in x and y

using local differencing for the input argument p, i.e.,
abs (dFdx (p)) + abs (dFdy (p));

8.12.2 Interpolation Functions
Built-in interpolation functions are available to compute an interpolated value of a fragment shader input
variable at a shader-specified (x, y) location. A separate (x, y) location may be used for each invocation of
the built-in function, and those locations may differ from the default (x, y) location used to produce the
default value of the input.

For all of the interpolation functions, interpolant must be an input variable or an element of an input
variable declared as an array. Component selection operators (e.g., .xy) may not be used when specifying
interpolant. If interpolant is declared with a flat or centroid qualifier, the qualifier will have no effect on
the interpolated value. If interpolant is declared with the noperspective qualifier, the interpolated value
will be computed without perspective correction.

Syntax Description
float interpolateAtCentroid (float interpolant)
vec2 interpolateAtCentroid (vec2 interpolant)
vec3 interpolateAtCentroid (vec3 interpolant)
vec4 interpolateAtCentroid (vec4 interpolant)

Return the value of the input interpolant sampled at a
location inside the both the pixel and the primitive
being processed. The value obtained would be the
same value assigned to the input variable if declared
with the centroid qualifier.

float interpolateAtSample (float interpolant,
 int sample)
vec2 interpolateAtSample (vec2 interpolant,
 int sample)
vec3 interpolateAtSample (vec3 interpolant,
 int sample)
vec4 interpolateAtSample (vec4 interpolant,
 int sample)

Return the value of the input interpolant variable at
the location of sample number sample. If
multisample buffers are not available, the input
variable will be evaluated at the center of the pixel.
If sample sample does not exist, the position used to
interpolate the input variable is undefined.

float interpolateAtOffset (float interpolant,
 vec2 offset)
vec2 interpolateAtOffset (vec2 interpolant,
 vec2 offset)
vec3 interpolateAtOffset (vec3 interpolant,
 vec2 offset)
vec4 interpolateAtOffset (vec4 interpolant,
 vec2 offset)

Return the value of the input interpolant variable
sampled at an offset from the center of the pixel
specified by offset. The two floating-point
components of offset, give the offset in pixels in the x
and y directions, respectively. An offset of (0, 0)
identifies the center of the pixel. The range and
granularity of offsets supported by this function is
implementation-dependent.

154

8 Built-in Functions

8.13 Noise Functions
Noise functions are available to fragment, geometry, and vertex shaders. They are stochastic functions that
can be used to increase visual complexity. Values returned by the following noise functions give the
appearance of randomness, but are not truly random. The noise functions below are defined to have the
following characteristics:

• The return value(s) are always in the range [-1.0,1.0], and cover at least the range [-0.6, 0.6], with a
Gaussian-like distribution.

• The return value(s) have an overall average of 0.0

• They are repeatable, in that a particular input value will always produce the same return value

• They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it has the same
statistical character)

• They have a statistical invariance under translation (i.e., no matter how the domain is translated, it has
the same statistical character)

• They typically give different results under translation.

• The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.

• They are C1 continuous everywhere (i.e., the first derivative is continuous)

Syntax Description
float noise1 (genType x) Returns a 1D noise value based on the input value x.

vec2 noise2 (genType x) Returns a 2D noise value based on the input value x.

vec3 noise3 (genType x) Returns a 3D noise value based on the input value x.

vec4 noise4 (genType x) Returns a 4D noise value based on the input value x.

155

8 Built-in Functions

8.14 Geometry Shader Functions
These functions are only available in geometry shaders. They are described in more depth following the
table.

Syntax Description
void EmitStreamVertex (int stream) Emit the current values of output variables to the current

output primitive on stream stream. The argument to stream
must be a constant integral expression. On return from this
call, the values of all output variables are undefined.
Can only be used if multiple output streams are supported.

void EndStreamPrimitive (int stream) Completes the current output primitive on stream stream and
starts a new one. The argument to stream must be a constant
integral expression. No vertex is emitted.
Can only be used if multiple output streams are supported.

void EmitVertex () Emit the current values of output variables to the current
output primitive. On return from this call, the values of
output variables are undefined.
When multiple output streams are supported, this is
equivalent to calling EmitStreamVertex(0).

void EndPrimitive () Completes the current output primitive and starts a new one.
No vertex is emitted.
When multiple output streams are supported, this is
equivalent to calling EndStreamPrimitive(0).

The function EmitStreamVertex() specifies that a vertex is completed. A vertex is added to the current
output primitive in vertex stream stream using the current values of all output variables associated with
stream. These include gl_PointSize, gl_ClipDistance, gl_Layer, gl_Position, gl_PrimitiveID and
gl_ViewportIndex. The values of all output variables for all output streams are undefined after a call to
EmitStreamVertex(). If a geometry shader invocation has emitted more vertices than permitted by the
output layout qualifier max_vertices, the results of calling EmitStreamVertex() are undefined.

The function EndStreamPrimitive() specifies that the current output primitive for vertex stream stream is
completed and a new output primitive (of the same type) will started by any subsequent
EmitStreamVertex(). This function does not emit a vertex. If the output layout is declared to be
“points”, calling EndStreamPrimitive() is optional.

A geometry shader starts with an output primitive containing no vertices for each stream. When a
geometry shader terminates, the current output primitive for each stream is automatically completed. It is
not necessary to call EndStreamPrimitive() if the geometry shader writes only a single primitive.

156

8 Built-in Functions

Multiple output streams are supported only if the output primitive type is declared to be points. A
program will fail to link if it contains a geometry shader calling EmitStreamVertex() or
EndStreamPrimitive() if its input primitive type is not points.

157

8 Built-in Functions

8.15 Shader Invocation Control Functions
The shader invocation control function is available only in tessellation control shaders. It is used to
control the relative execution order of multiple shader invocations used to process a patch, which are
otherwise executed with an undefined relative order.

Syntax Description
void barrier () For any given static instance of barrier(), all tessellation control shader

invocations for a single input patch must enter it before any will be
allowed to continue beyond it.

The function barrier() provides a partially defined order of execution between shader invocations. This
ensures that values written by one invocation prior to a given static instance of barrier() can be safely
read by other invocations after their call to the same static instance barrier(). Because invocations may
execute in undefined order between these barrier calls, the values of a per-vertex or per-patch output
variable will be undefined in a number of cases enumerated in section 4.3.7 “Output Variables”.

The barrier() function may only be placed inside the function main() of the tessellation control shader
and may not be called within any control flow. Barriers are also disallowed after a return statement in the
function main().

8.16 Shader Memory Control Function
Shaders of all types may read and write the contents of textures and buffer objects using image variables.
While the order of reads and writes within a single shader invocation is well-defined, the relative order of
reads and writes to a single shared memory address from multiple separate shader invocations is largely
undefined. The order of memory accesses performed by one shader invocation, as observed by other
shader invocations, is also largely undefined but can be controlled through memory control functions.

Syntax Description
void memoryBarrier () Control the ordering of memory transactions issued by a single shader

invocation.

The built-in memoryBarrier() waits on the completion of all memory accesses resulting from the use of
image variables or atomic counters (by the same shader invocation calling memoryBarrier()) and then
returns with no other effect. When this function returns, the results of any memory stores performed using
coherent variables performed prior to the call will be visible to any future coherent memory access to the
same addresses from other shader invocations. In particular, the values written this way in one shader
stage are guaranteed to be visible to coherent memory accesses performed by shader invocations in
subsequent stages when those invocations were triggered by the execution of the original shader
invocation (e.g., fragment shader invocations for a primitive resulting from a particular geometry shader
invocation).

158

8 Built-in Functions

159

9 Shading Language Grammar for Core Profile

9 Shading Language Grammar for Core
Profile

The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

CONST BOOL FLOAT DOUBLE INT UINT
BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN SWITCH CASE DEFAULT SUBROUTINE
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 UVEC2 UVEC3 UVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4 CENTROID IN OUT INOUT UNIFORM PATCH SAMPLE
DVEC2 DVEC3 DVEC4 DMAT2 DMAT3 DMAT4

NOPERSPECTIVE FLAT SMOOTH LAYOUT PATCH SAMPLE
MAT2X2 MAT2X3 MAT2X4
MAT3X2 MAT3X3 MAT3X4
MAT4X2 MAT4X3 MAT4X4
DMAT2X2 DMAT2X3 DMAT2X4
DMAT3X2 DMAT3X3 DMAT3X4
DMAT4X2 DMAT4X3 DMAT4X4
SAMPLER1D SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2DSHADOW
SAMPLERCUBESHADOW SAMPLER1DARRAY SAMPLER2DARRAY SAMPLER1DARRAYSHADOW
SAMPLER2DARRAYSHADOW ISAMPLER1D ISAMPLER2D ISAMPLER3D ISAMPLERCUBE
ISAMPLER1DARRAY ISAMPLER2DARRAY USAMPLER1D USAMPLER2D USAMPLER3D
USAMPLERCUBE USAMPLER1DARRAY USAMPLER2DARRAY
SAMPLER2DRECT SAMPLER2DRECTSHADOW ISAMPLER2DRECT USAMPLER2DRECT
SAMPLERBUFFER ISAMPLERBUFFER USAMPLERBUFFER
SAMPLERCUBEARRAY SAMPLERCUBEARRAYSHADOW
ISAMPLERCUBEARRAY USAMPLERCUBEARRAY
SAMPLER2DMS ISAMPLER2DMS USAMPLER2DMS
SAMPLER2DMSArray ISAMPLER2DMSArray USAMPLER2DMSArray
IMAGE1D IIMAGE1D UIMAGE1D IMAGE2D IIMAGE2D
UIMAGE2D IMAGE3D IIMAGE3D UIMAGE3D
IMAGE2DRECT IIMAGE2DRECT UIMAGE2DRECT
IMAGECUBE IIMAGECUBE UIMAGECUBE
IMAGEBUFFER IIMAGEBUFFER UIMAGEBUFFER
IMAGE1DARRAY IIMAGE1DARRAY UIMAGE1DARRAY

 IMAGE2DARRAY IIMAGE2DARRAY UIMAGE2DARRAY
 IMAGECUBEARRAY IIMAGECUBEARRAY UIMAGECUBEARRAY
 IMAGE2DMS IIMAGE2DMS UIMAGE2DMS
 IMAGE2DMSARRAY IIMAGE2DMSARRAY UIMAGE2DMSARRAY

160

9 Shading Language Grammar for Core Profile

STRUCT VOID WHILE

IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT UINTCONSTANT BOOLCONSTANT
FIELD_SELECTION
LEFT_OP RIGHT_OP
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
SUB_ASSIGN

LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION

INVARIANT PRECISE
HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION

The following describes the grammar for the OpenGL Shading Language in terms of the above tokens.

variable_identifier:
 IDENTIFIER

primary_expression:
 variable_identifier
 INTCONSTANT
 UINTCONSTANT
 FLOATCONSTANT
 BOOLCONSTANT
 DOUBLECONSTANT
 LEFT_PAREN expression RIGHT_PAREN

postfix_expression:
 primary_expression
 postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET
 function_call
 postfix_expression DOT FIELD_SELECTION
 postfix_expression INC_OP
 postfix_expression DEC_OP

integer_expression:
 expression

161

9 Shading Language Grammar for Core Profile

function_call:
 function_call_or_method

function_call_or_method:
 function_call_generic

function_call_generic:
 function_call_header_with_parameters RIGHT_PAREN
 function_call_header_no_parameters RIGHT_PAREN

function_call_header_no_parameters:
 function_call_header VOID
 function_call_header

function_call_header_with_parameters:
 function_call_header assignment_expression
 function_call_header_with_parameters COMMA assignment_expression

function_call_header:
 function_identifier LEFT_PAREN

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them as
// keywords. They are now recognized through “type_specifier”.
// Methods (.length), subroutine array calls, and identifiers are recognized through postfix_expression.

function_identifier:
 type_specifier
 postfix_expression

unary_expression:
 postfix_expression
 INC_OP unary_expression
 DEC_OP unary_expression
 unary_operator unary_expression

// Grammar Note: No traditional style type casts.

unary_operator:
 PLUS

162

9 Shading Language Grammar for Core Profile

 DASH
 BANG
 TILDE

// Grammar Note: No '*' or '&' unary ops. Pointers are not supported.

multiplicative_expression:
 unary_expression
 multiplicative_expression STAR unary_expression
 multiplicative_expression SLASH unary_expression
 multiplicative_expression PERCENT unary_expression

additive_expression:
 multiplicative_expression
 additive_expression PLUS multiplicative_expression
 additive_expression DASH multiplicative_expression

shift_expression:
 additive_expression
 shift_expression LEFT_OP additive_expression
 shift_expression RIGHT_OP additive_expression

relational_expression:
 shift_expression
 relational_expression LEFT_ANGLE shift_expression
 relational_expression RIGHT_ANGLE shift_expression
 relational_expression LE_OP shift_expression
 relational_expression GE_OP shift_expression

equality_expression:
 relational_expression
 equality_expression EQ_OP relational_expression
 equality_expression NE_OP relational_expression

and_expression:
 equality_expression
 and_expression AMPERSAND equality_expression

exclusive_or_expression:
 and_expression

163

9 Shading Language Grammar for Core Profile

 exclusive_or_expression CARET and_expression

inclusive_or_expression:
 exclusive_or_expression
 inclusive_or_expression VERTICAL_BAR exclusive_or_expression

logical_and_expression:
 inclusive_or_expression
 logical_and_expression AND_OP inclusive_or_expression

logical_xor_expression:
 logical_and_expression
 logical_xor_expression XOR_OP logical_and_expression

logical_or_expression:
 logical_xor_expression
 logical_or_expression OR_OP logical_xor_expression

conditional_expression:
 logical_or_expression
 logical_or_expression QUESTION expression COLON assignment_expression

assignment_expression:
 conditional_expression
 unary_expression assignment_operator assignment_expression

assignment_operator:
 EQUAL
 MUL_ASSIGN
 DIV_ASSIGN
 MOD_ASSIGN
 ADD_ASSIGN
 SUB_ASSIGN
 LEFT_ASSIGN
 RIGHT_ASSIGN
 AND_ASSIGN
 XOR_ASSIGN
 OR_ASSIGN

expression:

164

9 Shading Language Grammar for Core Profile

 assignment_expression
 expression COMMA assignment_expression

constant_expression:
 conditional_expression

declaration:
 function_prototype SEMICOLON
 init_declarator_list SEMICOLON
 PRECISION precision_qualifier type_specifier SEMICOLON
 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE SEMICOLON
 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER SEMICOLON
 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER LEFT_BRACKET RIGHT_BRACKET SEMICOLON
 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET SEMICOLON
 type_qualifier SEMICOLON
 type_qualifier IDENTIFIER SEMICOLON
 type_qualifier IDENTIFIER identifier_list SEMICOLON

identifier_list:
 COMMA IDENTIFIER
 identifier_list COMMA IDENTIFIER

function_prototype:
 function_declarator RIGHT_PAREN

function_declarator:
 function_header
 function_header_with_parameters

function_header_with_parameters:
 function_header parameter_declaration
 function_header_with_parameters COMMA parameter_declaration

function_header:
 fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator:

165

9 Shading Language Grammar for Core Profile

 type_specifier IDENTIFIER
 type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

parameter_declaration:
 type_qualifier parameter_declarator
 parameter_declarator
 type_qualifier parameter_type_specifier
 parameter_type_specifier

parameter_type_specifier:
 type_specifier

init_declarator_list:
 single_declaration
 init_declarator_list COMMA IDENTIFIER
 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT_BRACKET
 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression
 RIGHT_BRACKET
 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET
 RIGHT_BRACKET EQUAL initializer
 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression
 RIGHT_BRACKET EQUAL initializer
 init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration:
 fully_specified_type
 fully_specified_type IDENTIFIER
 fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET
 fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET
 fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET EQUAL initializer
 fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression
 RIGHT_BRACKET EQUAL initializer
 fully_specified_type IDENTIFIER EQUAL initializer
 INVARIANT IDENTIFIER

// Grammar Note: No 'enum', or 'typedef'.

fully_specified_type:
 type_specifier
 type_qualifier type_specifier

166

9 Shading Language Grammar for Core Profile

invariant_qualifier:
 INVARIANT

interpolation_qualifier:
 SMOOTH
 FLAT
 NOPERSPECTIVE

layout_qualifier:
 LAYOUT LEFT_PAREN layout_qualifier_id_list RIGHT_PAREN

layout_qualifier_id_list:
 layout_qualifier_id
 layout_qualifier_id_list COMMA layout_qualifier_id

layout_qualifier_id:
 IDENTIFIER
 IDENTIFIER EQUAL INTCONSTANT

precise_qualifier:
 PRECISE

type_qualifier:
 single_type_qualifier
 type_qualifier single_type_qualifier

single_type_qualifier:
 storage_qualifier
 layout_qualifier
 precision_qualifier
 interpolation_qualifier
 invariant_qualifier
 precise_qualifier

storage_qualifier:
 CONST
 INOUT
 IN

167

9 Shading Language Grammar for Core Profile

 OUT
 CENTROID
 PATCH
 SAMPLE
 UNIFORM
 SUBROUTINE
 SUBROUTINE LEFT_PAREN IDENTIFIER type_name_list RIGHT_PAREN

type_name_list:
 TYPE_NAME
 type_name_list COMMA TYPE_NAME

type_specifier:
 type_specifier_nonarray
 type_specifier_nonarray LEFT_BRACKET RIGHT_BRACKET
 type_specifier_nonarray LEFT_BRACKET constant_expression RIGHT_BRACKET

type_specifier_nonarray:
 VOID
 FLOAT
 DOUBLE
 INT
 UINT
 BOOL
 VEC2
 VEC3
 VEC4
 DVEC2
 DVEC3
 DVEC4
 BVEC2
 BVEC3
 BVEC4
 IVEC2
 IVEC3
 IVEC4
 UVEC2
 UVEC3

168

9 Shading Language Grammar for Core Profile

 UVEC4
 MAT2
 MAT3
 MAT4
 MAT2X2
 MAT2X3
 MAT2X4
 MAT3X2
 MAT3X3
 MAT3X4
 MAT4X2
 MAT4X3
 MAT4X4
 DMAT2
 DMAT3
 DMAT4
 DMAT2X2
 DMAT2X3
 DMAT2X4
 DMAT3X2
 DMAT3X3
 DMAT3X4
 DMAT4X2
 DMAT4X3
 DMAT4X4
 SAMPLER1D
 SAMPLER2D
 SAMPLER3D
 SAMPLERCUBE
 SAMPLER1DSHADOW
 SAMPLER2DSHADOW
 SAMPLERCUBESHADOW
 SAMPLER1DARRAY
 SAMPLER2DARRAY
 SAMPLER1DARRAYSHADOW
 SAMPLER2DARRAYSHADOW
 SAMPLERCUBEARRAY

169

9 Shading Language Grammar for Core Profile

 SAMPLERCUBEARRAYSHADOW
 ISAMPLER1D
 ISAMPLER2D
 ISAMPLER3D
 ISAMPLERCUBE
 ISAMPLER1DARRAY
 ISAMPLER2DARRAY
 ISAMPLERCUBEARRAY
 USAMPLER1D
 USAMPLER2D
 USAMPLER3D
 USAMPLERCUBE
 USAMPLER1DARRAY
 USAMPLER2DARRAY
 USAMPLERCUBEARRAY
 SAMPLER2DRECT
 SAMPLER2DRECTSHADOW
 ISAMPLER2DRECT
 USAMPLER2DRECT
 SAMPLERBUFFER
 ISAMPLERBUFFER
 USAMPLERBUFFER
 SAMPLER2DMS
 ISAMPLER2DMS
 USAMPLER2DMS
 SAMPLER2DMSARRAY
 ISAMPLER2DMSARRAY
 USAMPLER2DMSARRAY
 IMAGE1D
 IIMAGE1D
 UIMAGE1D
 IMAGE2D
 IIMAGE2D
 UIMAGE2D
 IMAGE3D
 IIMAGE3D
 UIMAGE3D

170

9 Shading Language Grammar for Core Profile

 IMAGE2DRECT
 IIMAGE2DRECT
 UIMAGE2DRECT
 IMAGECUBE
 IIMAGECUBE
 UIMAGECUBE
 IMAGEBUFFER
 IIMAGEBUFFER
 UIMAGEBUFFER
 IMAGE1DARRAY
 IIMAGE1DARRAY
 UIMAGE1DARRAY
 IMAGE2DARRAY
 IIMAGE2DARRAY
 UIMAGE2DARRAY
 IMAGECUBEARRAY
 IIMAGECUBEARRAY
 UIMAGECUBEARRAY
 IMAGE2DMS
 IIMAGE2DMS
 UIMAGE2DMS
 IMAGE2DMSARRAY
 IIMAGE2DMSARRAY
 UIMAGE2DMSARRAY
 struct_specifier
 TYPE_NAME
precision_qualifier:
 HIGH_PRECISION
 MEDIUM_PRECISION
 LOW_PRECISION

struct_specifier:
 STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list:
 struct_declaration
 struct_declaration_list struct_declaration

171

9 Shading Language Grammar for Core Profile

struct_declaration:
 type_specifier struct_declarator_list SEMICOLON
 type_qualifier type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:
 struct_declarator
 struct_declarator_list COMMA struct_declarator

struct_declarator:
 IDENTIFIER
 IDENTIFIER LEFT_BRACKET RIGHT_BRACKET
 IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

initializer:
 assignment_expression

declaration_statement:
 declaration

statement:
 compound_statement
 simple_statement

// Grammar Note: labeled statements for SWITCH only; 'goto' is not supported.

simple_statement:
 declaration_statement
 expression_statement
 selection_statement
 switch_statement
 case_label
 iteration_statement
 jump_statement

compound_statement:
 LEFT_BRACE RIGHT_BRACE
 LEFT_BRACE statement_list RIGHT_BRACE

statement_no_new_scope:
 compound_statement_no_new_scope

172

9 Shading Language Grammar for Core Profile

 simple_statement

compound_statement_no_new_scope:
 LEFT_BRACE RIGHT_BRACE
 LEFT_BRACE statement_list RIGHT_BRACE

statement_list:
 statement
 statement_list statement

expression_statement:
 SEMICOLON
 expression SEMICOLON

selection_statement:
 IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement:
 statement ELSE statement
 statement

condition:
 expression
 fully_specified_type IDENTIFIER EQUAL initializer

switch_statement:
 SWITCH LEFT_PAREN expression RIGHT_PAREN LEFT_BRACE switch_statement_list
RIGHT_BRACE

switch_statement_list:
 /* nothing */
 statement_list

case_label:
 CASE expression COLON
 DEFAULT COLON

iteration_statement:
 WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope
 DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON
 FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN
statement_no_new_scope

173

9 Shading Language Grammar for Core Profile

for_init_statement:
 expression_statement
 declaration_statement

conditionopt:
 condition
 /* empty */

for_rest_statement:
 conditionopt SEMICOLON
 conditionopt SEMICOLON expression

jump_statement:
 CONTINUE SEMICOLON
 BREAK SEMICOLON
 RETURN SEMICOLON
 RETURN expression SEMICOLON
 DISCARD SEMICOLON // Fragment shader only.

// Grammar Note: No 'goto'. Gotos are not supported.

translation_unit:
 external_declaration
 translation_unit external_declaration

external_declaration:
 function_definition
 declaration

function_definition:
 function_prototype compound_statement_no_new_scope

174

	1 Introduction
	1.1 Acknowledgments
	1.2 Changes
	1.2.1 Summary of Changes from Version 4.10

	1.3 Overview
	1.4 Error Handling
	1.5 Typographical Conventions
	1.6 Deprecation

	2 Overview of OpenGL Shading
	2.1 Vertex Processor
	2.2 Tessellation Control Processor
	2.3 Tessellation Evaluation Processor
	2.4 Geometry Processor
	2.5 Fragment Processor

	3 Basics
	3.1 Character Set
	3.2 Source Strings
	3.3 Preprocessor
	3.4 Comments
	3.5 Tokens
	3.6 Keywords
	3.7 Identifiers
	3.8 Definitions
	3.8.1 Static Use
	3.8.2 Uniform and Non-Uniform Control Flow
	3.8.3 Dynamically Uniform Expressions

	4 Variables and Types
	4.1 Basic Types
	4.1.1 Void
	4.1.2 Booleans
	4.1.3 Integers
	4.1.4 Floats
	4.1.5 Vectors
	4.1.6 Matrices
	4.1.7 Opaque Types
	4.1.7.1 Samplers
	4.1.7.2 Images
	4.1.7.3 Atomic Counters

	4.1.8 Structures
	4.1.9 Arrays
	4.1.10 Implicit Conversions
	4.1.11 Initializers

	4.2 Scoping
	4.3 Storage Qualifiers
	4.3.1 Default Storage Qualifier
	4.3.2 Constant Qualifier
	4.3.3 Constant Expressions
	4.3.4 Input Variables
	4.3.5 Uniform
	4.3.6 Output Variables
	4.3.7 Interface Blocks

	4.4 Layout Qualifiers
	4.4.1 Input Layout Qualifiers
	4.4.1.1 Tessellation Evaluation Inputs
	4.4.1.2 Geometry Shader Inputs
	4.4.1.3 Fragment Shader Inputs

	4.4.2 Output Layout Qualifiers
	4.4.2.1 Tessellation Control Outputs
	4.4.2.2 Geometry Outputs
	4.4.2.3 Fragment Outputs

	4.4.3 Uniform Block Layout Qualifiers
	4.4.4 Opaque-Uniform Layout Qualifiers
	4.4.4.1 Atomic Counter Layout Qualifiers
	4.4.4.2 Format Layout Qualifiers

	4.5 Interpolation Qualifiers
	4.5.1 Redeclaring Built-in Interpolation Variables in the Compatibility Profile

	4.6 Parameter Qualifiers
	4.7 Precision and Precision Qualifiers
	4.7.1 Range and Precision
	4.7.2 Precision Qualifiers
	4.7.3 Default Precision Qualifiers
	4.7.4 Available Precision Qualifiers

	4.8 Variance and the Invariant Qualifier
	4.8.1 The Invariant Qualifier
	4.8.2 Invariance of Constant Expressions

	4.9 The Precise Qualifier
	4.10 Memory Qualifiers
	4.11 Order of Qualification

	5 Operators and Expressions
	5.1 Operators
	5.2 Array Operations
	5.3 Function Calls
	5.4 Constructors
	5.4.1 Conversion and Scalar Constructors
	5.4.2 Vector and Matrix Constructors
	5.4.3 Structure Constructors
	5.4.4 Array Constructors

	5.5 Vector and Scalar Components and Length
	5.6 Matrix Components
	5.7 Structure and Array Operations
	5.8 Assignments
	5.9 Expressions
	5.10 Vector and Matrix Operations

	6 Statements and Structure
	6.1 Function Definitions
	6.1.1 Function Calling Conventions
	6.1.2 Subroutines

	6.2 Selection
	6.3 Iteration
	6.4 Jumps

	7 Built-in Variables
	7.1 Built-In Language Variables
	7.1.1 Compatibility Profile Built-In Language Variables

	7.2 Compatibility Profile Vertex Shader Built-In Inputs
	7.3 Built-In Constants
	7.3.1 Compatibility Profile Built-In Constants

	7.4 Built-In Uniform State
	7.4.1 Compatibility Profile State

	8 Built-in Functions
	8.1 Angle and Trigonometry Functions
	8.2 Exponential Functions
	8.3 Common Functions
	8.4 Floating-Point Pack and Unpack Functions
	8.5 Geometric Functions
	8.6 Matrix Functions
	8.7 Vector Relational Functions
	8.8 Integer Functions
	8.9 Texture Functions
	8.9.1 Texture Query Functions
	8.9.2 Texel Lookup Functions
	8.9.3 Texture Gather Instructions
	8.9.4 Compatibility Profile Texture Functions

	8.10 Atomic-Counter Functions
	8.11 Image Functions
	8.12 Fragment Processing Functions
	8.12.1 Derivative Functions
	8.12.2 Interpolation Functions

	8.13 Noise Functions
	8.14 Geometry Shader Functions
	8.15 Shader Invocation Control Functions
	8.16 Shader Memory Control Function

	9 Shading Language Grammar for Core Profile

