PDA

View Full Version : Matrix Math (here we go again)



BwB
03-15-2001, 11:50 PM
Ok, I'm being plagued yet again by matrices!!

In Mark Morley's view frustum culling tutorial he uses:



m[ 0] = a[ 0] * b[ 0] + a[ 1] * b[ 4] + a[ 2] * b[ 8] + a[ 3] * b[12];
m[ 1] = a[ 0] * b[ 1] + a[ 1] * b[ 5] + a[ 2] * b[ 9] + a[ 3] * b[13];
m[ 2] = a[ 0] * b[ 2] + a[ 1] * b[ 6] + a[ 2] * b[10] + a[ 3] * b[14];
m[ 3] = a[ 0] * b[ 3] + a[ 1] * b[ 7] + a[ 2] * b[11] + a[ 3] * b[15];

m[ 4] = a[ 4] * b[ 0] + a[ 5] * b[ 4] + a[ 6] * b[ 8] + a[ 7] * b[12];
m[ 5] = a[ 4] * b[ 1] + a[ 5] * b[ 5] + a[ 6] * b[ 9] + a[ 7] * b[13];
m[ 6] = a[ 4] * b[ 2] + a[ 5] * b[ 6] + a[ 6] * b[10] + a[ 7] * b[14];
m[ 7] = a[ 4] * b[ 3] + a[ 5] * b[ 7] + a[ 6] * b[11] + a[ 7] * b[15];

m[ 8] = a[ 8] * b[ 0] + a[ 9] * b[ 4] + a[10] * b[ 8] + a[11] * b[12];
m[ 9] = a[ 8] * b[ 1] + a[ 9] * b[ 5] + a[10] * b[ 9] + a[11] * b[13];
m[10] = a[ 8] * b[ 2] + a[ 9] * b[ 6] + a[10] * b[10] + a[11] * b[14];
m[11] = a[ 8] * b[ 3] + a[ 9] * b[ 7] + a[10] * b[11] + a[11] * b[15];

m[12] = a[12] * b[ 0] + a[13] * b[ 4] + a[14] * b[ 8] + a[15] * b[12];
m[13] = a[12] * b[ 1] + a[13] * b[ 5] + a[14] * b[ 9] + a[15] * b[13];
m[14] = a[12] * b[ 2] + a[13] * b[ 6] + a[14] * b[10] + a[15] * b[14];
m[15] = a[12] * b[ 3] + a[13] * b[ 7] + a[14] * b[11] + a[15] * b[15];


In my matrix library (and in nVidia's toolkit) we use:




m[ 0] = a[ 0] * b[ 0] + a[ 4] * b[ 1] + a[ 8] * b[ 2] + a[12] * b[ 3];
m[ 1] = a[ 1] * b[ 0] + a[ 5] * b[ 1] + a[ 9] * b[ 2] + a[13] * b[ 3];
m[ 2] = a[ 2] * b[ 0] + a[ 6] * b[ 1] + a[10] * b[ 2] + a[14] * b[ 3];
m[ 3] = a[ 3] * b[ 0] + a[ 7] * b[ 1] + a[11] * b[ 2] + a[15] * b[ 3];

m[ 4] = a[ 0] * b[ 4] + a[ 4] * b[ 5] + a[ 8] * b[ 6] + a[12] * b[ 7];
m[ 5] = a[ 1] * b[ 4] + a[ 5] * b[ 5] + a[ 9] * b[ 6] + a[13] * b[ 7];
m[ 6] = a[ 2] * b[ 4] + a[ 6] * b[ 5] + a[10] * b[ 6] + a[14] * b[ 7];
m[ 7] = a[ 3] * b[ 4] + a[ 7] * b[ 5] + a[11] * b[ 6] + a[15] * b[ 7];

m[ 8] = a[ 0] * b[ 8] + a[ 4] * b[ 9] + a[ 8] * b[10] + a[12] * b[11];
m[ 9] = a[ 1] * b[ 8] + a[ 5] * b[ 9] + a[ 9] * b[10] + a[13] * b[11];
m[10] = a[ 2] * b[ 8] + a[ 6] * b[ 9] + a[10] * b[10] + a[14] * b[11];
m[11] = a[ 3] * b[ 8] + a[ 7] * b[ 9] + a[11] * b[10] + a[15] * b[11];

m[12] = a[ 0] * b[12] + a[ 4] * b[13] + a[ 8] * b[14] + a[12] * b[15];
m[13] = a[ 1] * b[12] + a[ 5] * b[13] + a[ 9] * b[14] + a[13] * b[15];
m[14] = a[ 2] * b[12] + a[ 6] * b[13] + a[10] * b[14] + a[14] * b[15];
m[15] = a[ 3] * b[12] + a[ 7] * b[13] + a[11] * b[14] + a[15] * b[15];


Soooo.... I am assuming that the second method is the "correct" matrix multiply but Mark is using the first method to avoid having to transpose something? Could somebody please tell me the operations that would be required to be performed on the matrix a and/or b before hand if I were to use the "correct" form of multiplication instead?
My uneducated guess would be that both a and b would have to be transposed for the second form of multiplication to work. Also, is there a way to extract the view frustum planes from the resultant matrix if I were to simply do a (correct mult) b or are the transposes (if my guess is correct) required to get proper planes?

Thanks in advance and sorry this ones so long! http://www.opengl.org/discussion_boards/ubb/smile.gif

Bob
03-16-2001, 03:45 AM
Err, I might be wrong, but aren't these two functions identical?

Bob
03-16-2001, 03:48 AM
Uhm, I think I take that one back http://www.opengl.org/discussion_boards/ubb/smile.gif

What is correct multiplying? Post or pre-multiplication using standard or transpose OpenGL representation?

BwB
03-16-2001, 10:35 AM
Argggg.. I dont know http://www.opengl.org/discussion_boards/ubb/smile.gif I just want to look at it one way! Too confusing... head.. starting... to hurt...

claurel
03-16-2001, 01:11 PM
The first method is for matrices stored in row major form and the second is for column major matrices. OpenGL uses column major matrices: whenever you set or get an OpenGL matrix, it must be column major. For what it's worth, I personally find it more intuitive to work with row major matrices . . . just what I'm used to, I guess. In the few instances where I pass a matrix to GL, I have to be sure and transpose it first.

--Chris

BwB
03-16-2001, 04:18 PM
Ok, that makes sense Chris, now why is Mark using Row major operations on matrices gotten directly from OpenGL(glGetFloatv(GL_PROJECTION_MATRIX))? Again, I'm assuming to avoid transposing the matrices first but his leads me to the latter part of my question, would transposing both matrices allow the frustum culling to work with column-major matrix multiplication (not that I want to tranpose them just to use one function, but I'd like to know for reference)?